首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Alterations in bone tissue composition during osteoporosis likely disrupt the mechanical environment of bone cells and may thereby initiate a mechanobiological response. It has proved challenging to characterize the mechanical environment of bone cells in vivo, and the mechanical environment of osteoporotic bone cells is not known. The objective of this research is to characterize the local mechanical environment of osteocytes and osteoblasts from healthy and osteoporotic bone in a rat model of osteoporosis. Using a custom-designed micromechanical loading device, we apply strains representative of a range of physical activity (up to 3000 με) to fluorescently stained femur samples from normal and ovariectomized rats. Confocal imaging was simultaneously performed, and digital image correlation techniques were applied to characterize cellular strains. In healthy bone tissue, osteocytes experience higher maximum strains (31,028 ± 4213 με) than osteoblasts (24,921 ± 3,832 με), whereas a larger proportion of the osteoblast experiences strains >10,000 με. Most interestingly, we show that osteoporotic bone cells experience similar or higher maximum strains than healthy bone cells after short durations of estrogen deficiency (5 weeks), and exceeded the osteogenic strain threshold (10,000 με) in a similar or significantly larger proportion of the cell (osteoblast, 12.68% vs. 13.68%; osteocyte, 15.74% vs. 5.37%). However, in long-term estrogen deficiency (34 weeks), there was no significant difference between bone cells in healthy and osteoporotic bone. These results suggest that the mechanical environment of bone cells is altered during early-stage osteoporosis, and that mechanobiological responses act to restore the mechanical environment of the bone tissue after it has been perturbed by ovariectomy.  相似文献   

2.
Rapid force production is critical to improve performance and prevent injuries. However, changes in rate of force/torque development caused by the repetition of maximal contractions have received little attention. The aim of this study was to determine the relative influence of rate of torque development (RTD) and peak torque (Tpeak) on the overall performance (i.e. mean torque, Tmean) decrease during repeated maximal contractions and to investigate the contribution of contractile and neural mechanisms to the alteration of the various mechanical variables. Eleven well-trained men performed 20 sets of 6-s isokinetic maximal knee extensions at 240°·s-1, beginning every 30 seconds. RTD, Tpeak and Tmean as well as the Rate of EMG Rise (RER), peak EMG (EMGpeak) and mean EMG (EMGmean) of the vastus lateralis were monitored for each contraction. A wavelet transform was also performed on raw EMG signal for instant mean frequency (ifmean) calculation. A neuromuscular testing procedure was carried out before and immediately after the fatiguing protocol including evoked RTD (eRTD) and maximal evoked torque (eTpeak) induced by high frequency doublet (100 Hz). Tmean decrease was correlated to RTD and Tpeak decrease (R²=0.62; p<0.001; respectively β=0.62 and β=0.19). RER, eRTD and initial ifmean (0-225 ms) decreased after 20 sets (respectively -21.1±14.1, -25±13%, and ~20%). RTD decrease was correlated to RER decrease (R²=0.36; p<0.05). The eTpeak decreased significantly after 20 sets (24±5%; p<0.05) contrary to EMGpeak (-3.2±19.5 %; p=0.71). Our results show that reductions of RTD explained part of the alterations of the overall performance during repeated moderate velocity maximal exercise. The reductions of RTD were associated to an impairment of the ability of the central nervous system to maximally activate the muscle in the first milliseconds of the contraction.  相似文献   

3.
Provision of supplemental oxygen to maintain soft tissue viability acutely following trauma in which vascularization has been compromised would be beneficial for limb and tissue salvage. For this application, an oxygen generating biomaterial that may be injected directly into the soft tissue could provide an unprecedented treatment in the acute trauma setting. The purpose of the current investigation was to determine if sodium percarbonate (SPO), an oxygen generating biomaterial, is capable of maintaining resting skeletal muscle homeostasis under otherwise hypoxic conditions. In the current studies, a biologically and physiologically compatible range of SPO (1–2 mg/mL) was shown to: 1) improve the maintenance of contractility and attenuate the accumulation of HIF1α, depletion of intramuscular glycogen, and oxidative stress (lipid peroxidation) that occurred following ∼30 minutes of hypoxia in primarily resting (duty cycle = 0.2 s train/120 s contraction interval <0.002) rat extensor digitorum longus (EDL) muscles in vitro (95% N2–5% CO2, 37°C); 2) attenuate elevations of rat EDL muscle resting tension that occurred during contractile fatigue testing (3 bouts of 25 100 Hz tetanic contractions; duty cycle = 0.2 s/2 s = 0.1) under oxygenated conditions in vitro (95% O2–5% CO2, 37°C); and 3) improve the maintenance of contractility (in vivo) and prevent glycogen depletion in rat tibialis anterior (TA) muscle in a hindlimb ischemia model (i.e., ligation of the iliac artery). Additionally, injection of a commercially available lipid oxygen-carrying compound or the components (sodium bicarbonate and hydrogen peroxide) of 1 mg/mL SPO did not improve EDL muscle contractility under hypoxic conditions in vitro. Collectively, these findings demonstrate that a biological and physiological concentration of SPO (1–2 mg/mL) injected directly into rat skeletal muscle (EDL or TA muscles) can partially preserve resting skeletal muscle homeostasis under hypoxic conditions.  相似文献   

4.
The aggregation of α-synuclein (α-Syn) is linked to Parkinson’s disease. The mechanism of early aggregation steps and the effect of pathogenic single-point mutations remain elusive. We report here a single-molecule fluorescence study of α-Syn dimerization and the effect of mutations. Specific interactions between tethered fluorophore-free α-Syn monomers on a substrate and fluorophore-labeled monomers diffusing freely in solution were observed using total internal reflection fluorescence microscopy. The results showed that wild-type (WT) α-Syn dimers adopt two types of dimers. The lifetimes of type 1 and type 2 dimers were determined to be 197 ± 3 ms and 3334 ± 145 ms, respectively. All three of the mutations used, A30P, E46K, and A53T, increased the lifetime of type 1 dimer and enhanced the relative population of type 2 dimer, with type 1 dimer constituting the major fraction. The kinetic stability of type 1 dimers (expressed in terms of lifetime) followed the order A30P (693 ± 14 ms) > E46K (292 ± 5 ms) > A53T (226 ± 6 ms) > WT (197 ± 3 ms). Type 2 dimers, which are more stable, had lifetimes in the range of several seconds. The strongest effect, observed for the A30P mutant, resulted in a lifetime 3.5 times higher than observed for the WT type 1 dimer. This mutation also doubled the relative fraction of type 2 dimer. These data show that single-point mutations promote dimerization, and they suggest that the structural heterogeneity of α-Syn dimers could lead to different aggregation pathways.  相似文献   

5.
αν and β1 integrins mediate Aβ–induced neurotoxicity in primary hippocampal neurons. We treated hippocampal neurons with 2.5 µg/mL 17E6 and 5 µg/mL ab58524, which are specific αν and β1 integrin antagonists, respectively, for 42 h prior to 10 µM Aβ treatment. Next, we employed small interfering RNA (siRNA) to silence focal adhesion kinase (FAK), a downstream target gene of integrins. The siRNAs were designed with a target sequence, an MOI of 10 and the addition of 5 µg/mL polybrene. Under these conditions, the neurons were transfected and the apoptosis of different cell types was detected. Moreover, we used real-time PCR and Western blotting analyses to detect the expression of FAK and ρFAK genes in different cell types and investigated the underlying mechanism and signal pathway by which αν and β1 integrins mediate Aβ-induced neurotoxicity in hippocampal neurons. An MTT assay showed that both 17E6 and ab58524 significantly increased cell viability compared with the Aβ-treated neurons (P<0.01 and P<0.05, respectively). However, this protective effect was markedly attenuated after transfection with silencing FAK (siFAK). Moreover, TUNEL immunostaining and flow cytometry indicated that both 17E6 and ab58524 significantly protected hippocampal neurons against apoptosis induced by Aβ (P<0.05) compared with the Aβ-treated cells. However, this protective effect was reversed with siFAK treatment. Both the gene and protein expression of FAK increased after Aβ treatment. Interestingly, as the gene and protein levels of FAK decreased, the ρFAK protein expression markedly increased. Furthermore, both the gene and protein expression of FAK and ρFAK were significantly diminished. Thus, we concluded that both αν and β1 integrins interfered with Aβ-induced neurotoxicity in hippocampal neurons and that this mechanism partially contributes to the activation of the Integrin-FAK signaling pathway.  相似文献   

6.
This study examined the effects of BMP7 gene transfer on corneal wound healing and fibrosis inhibition in vivo using a rabbit model. Corneal haze in rabbits was produced with the excimer laser performing -9 diopters photorefractive keratectomy. BMP7 gene was introduced into rabbit keratocytes by polyethylimine-conjugated gold nanoparticles (PEI2-GNPs) transfection solution single 5-minute topical application on the eye. Corneal haze and ocular health in live animals was gauged with stereo- and slit-lamp biomicroscopy. The levels of fibrosis [α-smooth muscle actin (αSMA), F-actin and fibronectin], immune reaction (CD11b and F4/80), keratocyte apoptosis (TUNEL), calcification (alizarin red, vonKossa and osteocalcin), and delivered-BMP7 gene expression in corneal tissues were quantified with immunofluorescence, western blotting and/or real-time PCR. Human corneal fibroblasts (HCF) and in vitro experiments were used to characterize the molecular mechanism mediating BMP7’s anti-fibrosis effects. PEI2-GNPs showed substantial BMP7 gene delivery into rabbit keratocytes in vivo (2×104 gene copies/ug DNA). Localized BMP7 gene therapy showed a significant corneal haze decrease (1.68±0.31 compared to 3.2±0.43 in control corneas; p<0.05) in Fantes grading scale. Immunostaining and immunoblot analyses detected significantly reduced levels of αSMA (46±5% p<0.001) and fibronectin proteins (48±5% p<0.01). TUNEL, CD11b, and F4/80 assays revealed that BMP7 gene therapy is nonimmunogenic and nontoxic for the cornea. Furthermore, alizarin red, vonKossa and osteocalcin analyses revealed that localized PEI2-GNP-mediated BMP7 gene transfer in rabbit cornea does not cause calcification or osteoblast recruitment. Immunofluorescence of BMP7-transefected HCFs showed significantly increased pSmad-1/5/8 nuclear localization (>88%; p<0.0001), and immunoblotting of BMP7-transefected HCFs grown in the presence of TGFβ demonstrated significantly enhanced pSmad-1/5/8 (95%; p<0.001) and Smad6 (53%, p<0.001), and decreased αSMA (78%; p<0.001) protein levels. These results suggest that localized BMP7 gene delivery in rabbit cornea modulates wound healing and inhibits fibrosis in vivo by counter balancing TGFβ1-mediated profibrotic Smad signaling.  相似文献   

7.
β-catenin is a key signaling molecule in the canonical Wnt pathway, which is involved in animal development. However, little information has been reported for β-catenin in bivalves. In the present study, we cloned a homolog of β-catenin from the scallop Chlamys farreri and determined its expression characteristics. The full-length cDNA of β-catenin was 3,353 bp, including a 2,511 bp open reading frame that encoded a predicted 836 amino acid protein. Level of the β-catenin mRNA increased significantly (P<0.05) with C. farreri gonadal development and presented a sexually dimorphic expression pattern in the gonads, which was significantly high in ovaries detected by quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis revealed that the β-catenin was mainly located in germ cells of the gonads, with obvious positive immune signals in the oogonia and oocytes of ovaries as well as in the spermatogonia and spermatocytes of testes, implying β-catenin might be involved in the gametogenesis of C. farreri. Furthermore, when 0.1 µg/mL and 0.2 µg/mL DKK-1 (an inhibitor of the canonical Wnt pathway) were added in vitro to culture medium containing testis cells of C. farreri, the expression of β-catenin decreased significantly detected by qRT-PCR (P<0.05), suggesting the canonical Wnt signal pathway exists in the scallop testis. Similarly, when 50 µM and 100 µM quercetin (an inhibitor of β-catenin) were added in vitro to the culture system, Dax1 expression was significantly down-regulated compared with controls (P<0.05), implying the β-catenin is an upstream gene of Dax1 and is involved in the regulation of C. farreri spermatogenesis.  相似文献   

8.
Muscle force is potentiated by countermovement; this phenomenon is called stretch-shortening cycle (SSC) effect. In this study, we examined the factors strongly related to SSC effect in vivo, focusing on tendon elongation, preactivation, and residual force enhancement. Twelve healthy men participated in this study. Ankle joint angle was passively moved by a dynamometer, with a range of motion from 15° dorsiflexion (DF) to 15° plantarflexion (PF). Muscle contraction was evoked by electrical stimulation, with stimulation timing adjusted to elicit three types of contraction: (1) concentric contraction without preliminary contraction (CON), (2) concentric contraction after preliminary eccentric contraction (ECC), and (3) concentric contraction after preliminary isometric contraction (ISO). Joint torque was recorded at DF5°, PF0°, and PF5°, respectively. SSC effect was calculated as the ratio of joint torque obtained in ECC or ISO with respect to that obtained in CON at the aforementioned three joint angles. SSC effect was prominent in the first half of movement in both ECC (DF5°, 329.3 ± 101.2%; PF0°, 159.2 ± 29.4%; PF5°, 125.5 ± 20.8%) and ISO (DF5°, 276.4 ± 87.0%; PF0°, 134.5 ± 24.5%; PF5°, 106.8 ± 18.0%) conditions. SSC effect was significantly larger in ECC than in ISO at all joint angles (P < 0.001). Even without preliminary eccentric contraction (i.e., ISO condition), SSC effect was clearly large, indicating that a significant part of SSC effect is derived from preactivation. However, the active lengthening-induced force potentiation mechanism (residual force enhancement) also contributes to SSC effect.  相似文献   

9.
The protozoan parasite, Trypanosoma cruzi, causes severe morbidity and mortality in afflicted individuals. Approximately 30% of T. cruzi infected individuals present with cardiac pathology. The invasive forms of the parasite are carried in the vascular system to infect other cells of the body. During transportation, the molecular mechanisms by which the parasite signals and interact with host endothelial cells (EC) especially heart endothelium is currently unknown. The parasite increases host thrombospondin-1 (TSP1) expression and activates the Wnt/β-catenin and hippo signaling pathways during the early phase of infection. The links between TSP1 and activation of the signaling pathways and their impact on parasite infectivity during the early phase of infection remain unknown. To elucidate the significance of TSP1 function in YAP/β-catenin colocalization and how they impact parasite infectivity during the early phase of infection, we challenged mouse heart endothelial cells (MHEC) from wild type (WT) and TSP1 knockout mice with T. cruzi and evaluated Wnt signaling, YAP/β-catenin crosstalk, and how they affect parasite infection. We found that in the absence of TSP1, the parasite induced the expression of Wnt-5a to a maximum at 2 h (1.73±0.13), P< 0.001 and enhanced the level of phosphorylated glycogen synthase kinase 3β at the same time point (2.99±0.24), P<0.001. In WT MHEC, the levels of Wnt-5a were toned down and the level of p-GSK-3β was lowest at 2 h (0.47±0.06), P< 0.01 compared to uninfected control. This was accompanied by a continuous significant increase in the nuclear colocalization of β-catenin/YAP in TSP1 KO MHEC with a maximum Pearson correlation coefficient of (0.67±0.02), P< 0.05 at 6 h. In WT MHEC, the nuclear colocalization of β-catenin/YAP remained steady and showed a reduction at 6 h (0.29±0.007), P< 0.05. These results indicate that TSP1 plays an important role in regulating β-catenin/YAP colocalization during the early phase of T. cruzi infection. Importantly, dysregulation of this crosstalk by pre-incubation of WT MHEC with a β-catenin inhibitor, endo-IWR 1, dramatically reduced the level of infection of WT MHEC. Parasite infectivity of inhibitor treated WT MHEC was similar to the level of infection of TSP1 KO MHEC. These results indicate that the β-catenin pathway induced by the parasite and regulated by TSP1 during the early phase of T. cruzi infection is an important potential therapeutic target, which can be explored for the prophylactic prevention of T. cruzi infection.  相似文献   

10.
The process of islet transplantation for treating type 1 diabetes has been limited by the high level of graft failure. This may be overcome by locally delivering trophic factors to enhance engraftment. Regenerating islet-derived protein 3α (Reg3α) is a pancreatic secretory protein which functions as an antimicrobial peptide in control of inflammation and cell proliferation. In this study, to investigate whether Reg3α could improve islet engraftment, a marginal mass of syngeneic islets pretransduced with adenoviruses expressing Reg3α or control EGFP were transplanted under the renal capsule of streptozotocin-induced diabetic mice. Mice receiving islets with elevated Reg3α production exhibited significantly lower blood glucose levels (9.057 ± 0.59 mmol/L versus 13.48 ± 0.35 mmol/L, P < 0.05) and improved glucose-stimulated insulin secretion (1.80 ± 0.17 ng/mL versus 1.16 ± 0.16 ng/mL, P < 0.05) compared with the control group. The decline of apoptotic events (0.57% ± 0.15% versus 1.06% ± 0.07%, P < 0.05) and increased β-cell proliferation (0.70% ± 0.10% versus 0.36% ± 0.14%, P < 0.05) were confirmed in islet grafts overexpressing Reg3α by morphometric analysis. Further experiments showed that Reg3α production dramatically protected cultured islets and pancreatic β cells from cytokine-induced apoptosis and the impairment of glucose-stimulated insulin secretion. Moreover, exposure to cytokines led to the activation of MAPKs in pancreatic β cells, which was reversed by Reg3α overexpression in contrast to control group. These results strongly suggest that Reg3α could enhance islet engraftments through its cytoprotective effect and advance the therapeutic efficacy of islet transplantation.  相似文献   

11.
The mammalian cranial vault largely consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Premature closure of the cranial sutures, craniosynostosis, can lead to serious clinical pathology unless there is surgical intervention. Research into the genetic basis of the disease has led to the development of various animal models that display this condition, e.g. mutant type Fgfr2C342Y/+ mice which display early fusion of the coronal suture (joining the parietal and frontal bones). However, whether the biomechanical properties of the mutant and wild type bones are affected has not been investigated before. Therefore, nanoindentation was used to compare the elastic modulus of cranial bone and sutures in wild type (WT) and Fgfr2C342Y/+mutant type (MT) mice during their postnatal development. Further, the variations in properties with indentation position and plane were assessed. No difference was observed in the elastic modulus of parietal bone between the WT and MT mice at postnatal (P) day 10 and 20. However, the modulus of frontal bone in the MT group was lower than the WT group at both P10 (1.39±0.30 vs. 5.32±0.68 GPa; p<0.05) and P20 (5.57±0.33 vs. 7.14±0.79 GPa; p<0.05). A wide range of values was measured along the coronal sutures for both the WT and MT samples, with no significant difference between the two groups. Findings of this study suggest that the inherent mechanical properties of the frontal bone in the mutant mice were different to the wild type mice from the same genetic background. These differences may reflect variations in the degree of biomechanical adaptation during skull growth, which could have implications for the surgical management of craniosynostosis patients.  相似文献   

12.
A novel, rapid and sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the evaluation of exemestane pharmacokinetics and its metabolites, 17β-dihydroexemestane (active metabolite) and 17β-dihydroexemestane-17-O-β-D-glucuronide (inactive metabolite) in human plasma. Their respective D3 isotopes were used as internal standards. Chromatographic separation of analytes was achieved using Thermo Fisher BDS Hypersil C18 analytic HPLC column (100 × 2.1 mm, 5 μm). The mobile phase was delivered at a rate of 0.5 mL/min by gradient elution with 0.1 % aqueous formic acid and acetonitrile. The column effluents were detected by API 4000 triple quadrupole mass spectrometer using electrospray ionisation (ESI) and monitored by multiple reaction monitoring (MRM) in positive mode. Mass transitions 297 > 121 m/z, 300 > 121 m/z, 299 > 135 m/z, 302 > 135 m/z, 475 > 281 m/z, and 478 > 284 m/z were monitored for exemestane, exemestane-d3, 17β-dihydroexemestane, 17β-dihydroexemestane-d3, 17β-dihydroexemestane-17-O-β-D-glucuronide, and 17β-dihydroexemestane-17-O-β-D-glucuronide-d3 respectively. The assay demonstrated linear ranges of 0.4 – 40.0 ng/mL, for exemestane; and 0.2 – 15.0 ng/mL, for 17β-dihydroexemestane and 17β-dihydroexemestane-17-O-β-D-glucuronide, with coefficient of determination (r2) of > 0.998. The precision (coefficient of variation) were ≤10.7%, 7.7% and 9.5% and the accuracies ranged from 88.8 to 103.1% for exemestane, 98.5 to 106.1% for 17β-dihydroexemestane and 92.0 to 103.2% for 17β-dihydroexemestane-17-O-β-D-glucuronide. The method was successfully applied to a pharmacokinetics/dynamics study in breast cancer patients receiving exemestane 25mg daily orally. For a representative patient, 20.7% of exemestane in plasma was converted into 17β-dihydroexemestane and 29.0% of 17β-dihydroexemestane was inactivated as 17β-dihydroexemestane-17-O-β-D-glucuronide 24 hours after ingestion of exemestane, suggesting that altered 17-dihydroexemestane glucuronidation may play an important role in determining effect of exemestane against breast cancer cells.  相似文献   

13.
The purpose of this study was to quantify the relationship between intramuscular pressure (IMP) and muscle force during isometric muscle contraction of the rabbit tibialis anterior (TA) absent the effect of either bone or fascia. To quantify this relationship, length-tension experiments were performed on the isolated TA of the New Zealand White rabbit (mass=2.5+/-0.5kg, n=12). The knee was fixed in a custom jig, the distal tendon of the TA was attached to a servomotor, and a 360 microm fiber optic pressure transducer was inserted into the TA. The peroneal nerve was stimulated to define optimal length (L(0)). The length-tension curve was created using 40Hz isometric contractions with 2-min rest intervals between each contraction. Measurements began at L(0)-50%L(f) and progressed to L(0)+50%L(f), changing the length-tension in 5% L(f) increments after each contraction. Qualitatively, the length-tension curve for isometric contractions was mimicked by the length-pressure curve for both active and passive conditions. Linear regression was performed individually for each animal for the ascending and descending limb of the length-tension curve and for active and passive conditions. Pressure-force coefficients of determination ranged from 0.138-0.963 for the active ascending limb and 0.343-0.947 for the active descending limb. Passive pressure coefficients of determination ranged from 0.045-0.842 for the ascending limb and 0.672-0.982 for the descending limb. These data indicate that IMP measurement provide a fairly accurate index of relative muscle force, especially at muscle lengths longer than optimal.  相似文献   

14.
The radial orientation of the myofilaments in the nematode esophagus raises interesting questions as to how such a structure can function as a pump. A physical model of the esophagus of Ascaris lumbricoides was developed and the membrane theory of shells applied in order to relate the observed dimensional changes to myofilament force, pressure stresses, and membrane elastic constants. By stressing the excised esophagus passively with osmotic pressure, the esophagus was shown to be elastically anisotropic with the ratio of circumferential to longitudinal elastic constants, Eψ/El 2.74. When this value was incorporated, the model predicted the ratio of the respective strains, εψl, to be 0.52 during an equilibrium contraction of the esophagus. This agreed with the experimental value, 0.46 ± 0.10, measured during occasional, prolonged muscle contractions. When measured during normal pumping, on the other hand, the value of εψl was 0 ± 0.10. This indicated that a nonequilibrium condition normally occurs in which a greater myofilament force per unit area of lumen membrane is not balanced by internal pressure and therefore acceleration of the lumen contents and negative intraluminal pressure occurs.

The pumping action of esophagi dissected from Ascaris was observed to be normally peristaltic and periodic. Contraction was initiated by a spontaneous depolarization that propagated at 4.0 ± 0.20 cm/s along the esophageal membrane. A wave of localized increases in the internal pressure of the muscle and localized changes in external dimensions was observed. A subsequent spontaneous repolarization, which propagated at 5.8 ± 0.23 cm/s, triggered relaxation of the muscle during which the localized pressure and dimensional changes returned to resting values. A mechanism was deduced in which fluid is drawn into and moved along the lumen by the wave of contraction. During the wave of relaxation, the lumen contents are pressurized and injected into the intestine by elastic restoring forces.

  相似文献   

15.
The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA– 18°C; warm acclimated WA– 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling.  相似文献   

16.

Background and Purpose

Thrombopoietin (TPO), a growth factor primarily involved in thrombopoiesis may also have a role in the pathophysiology of sepsis. In patients with sepsis, indeed, TPO levels are markedly increased, with disease severity being the major independent determinant of TPO concentrations. Moreover, TPO increases and correlates with ex vivo indices of platelet activation in patients with burn injury upon sepsis development, and may contribute to depress cardiac contractility in septic shock. Still, the role of TPO in sepsis pathophysiology remains controversial, given the protective role of TPO in other experimental disease models, for instance in doxorubicin-induced cardiotoxicity and myocardial ischemia/reperfusion injury. The aim of our study was to define the contribution of TPO in the development of organ damage induced by endotoxemia or sepsis, and to investigate the effects of inhibiting TPO in these conditions.

Methods

We synthesized a chimeric protein able to inhibit TPO, mTPOR-MBP, and studied its effect in two murine experimental models, acute endotoxemia and cecal ligation and puncture (CLP) model.

Results

In both models, TPO levels markedly increased, from 289.80±27.87 pg/mL to 465.60±45.92 pg/mL at 3 hours in the LPS model (P<0.01), and from 265.00±26.02 pg/mL to 373.70±26.20 pg/mL in the CLP model (P<0.05), respectively. Paralleling TPO levels, also platelet-monocyte aggregates increased, from 32.86±2.48% to 46.13±1.39% at 3 hours in the LPS model (P<0.01), and from 43.68±1.69% to 56.52±4.66% in the CLP model (P<0.05). Blockade of TPO by mTPOR-MBP administration reduced histological damage in target organs, namely lung, liver, and gut. In particular, neutrophil infiltration and lung septal thickening were reduced from a score of 1.86±0.34 to 0.60±0.27 (P<0.01) and from 1.43±0.37 to 0.40±0.16 (P<0.05), respectively, in the LPS model at 3 hours, and from a score of 1.75±0.37 to 0.38±0.18 (P<0.01) and from 1.25±0.31 to 0.13±0.13 (P<0.001), respectively, in the CLP model. Similarly, the number of hepatic microabscesses was decreased from 14.14±1.41 to 3.64±0.56 in the LPS model at 3 hours (P<0.001), and from 1.71±0.29 to 0.13±0.13 in the CLP model (P<0.001). Finally, the diameter of intestinal villi decreased from 90.69±3.95 μm to 70.74±3.60 μm in the LPS model at 3 hours (P<0.01), and from 74.29±4.29 μm to 57.50±1.89 μm in the CLP model (P<0.01). This protective effect was associated with the blunting of the increase in platelet-monocyte adhesion, and, on the contrary, with increased platelet-neutrophil aggregates in the circulation, which may be related to decreased neutrophil sequestration into the inflamed tissues. Conversely, circulating cytokine levels were not significantly changed, in both models, by mTPOR-MBP administration.

Conclusion

Our results demonstrate that TPO participates in the development of organ damage induced by experimental endotoxemia or polymicrobial sepsis via a mechanism involving increased platelet-leukocyte adhesion, but not cytokine release, and suggest that blocking TPO may be useful in preventing organ damage in patients affected by systemic inflammatory response or sepsis.  相似文献   

17.
We investigated in vivo changes in Schlemm’s canal and the trabecular meshwork in eyes with primary open angle glaucoma (POAG). Relationships between Schlemm’s canal diameter, trabecular meshwork thickness, and intraocular pressure (IOP) were examined. Forty POAG patients and 40 normal individuals underwent 80-MHz Ultrasound Biomicroscopy examinations. The Schlemm’s canal and trabecular meshwork were imaged in superior, inferior, nasal and temporal regions. Normal individuals had an observable Schlemm’s canal in 80.3% of sections, a meridional canal diameter of 233.0±34.5 μm, a coronal diameter of 44.5±12.6 μm and a trabecular meshwork thickness of 103.9±11.1 μm, in POAG patients, Schlemm’s canal was observable in 53.1% of sections, a meridional canal diameter of 195.6±31.3 μm, a coronal diameter of 35.7±8.0 μm, and a trabecular meshwork thickness of 88.3±13.2 μm, which significantly differed from normal (both p <0.001). Coronal canal diameter (r = -0.623, p < 0.001) and trabecular meshwork thickness (r = -0.663, p < 0.001) were negatively correlated with IOP, but meridional canal diameter was not (r = -0.160, p = 0.156). Schlemm’s canal was observable in 50.5% and 56.6% of POAG patients with normal (<21 mmHg) and elevated (>21 mmHg) IOP, respectively (χ = 1.159, p = 0.282). Coronal canal diameter was significantly lower in the elevated IOP group (32.6±4.9 μm) than in the normal IOP group (35.7±8.0 μm, p < 0.001). This was also true of trabecular meshwork thickness (81.9±10.0 μm vs. 97.1±12.0 μm, p < 0.001). In conclusion, eyes with POAG had fewer sections with an observable Schlemm’s canal. Canal diameter and trabecular meshwork thickness were also lower than normal in POAG patients. Schlemm’s canal coronal diameter and trabecular meshwork thickness were negatively correlated with IOP.  相似文献   

18.
Inflammation may be a major contributing factor to peripartum metabolic disorders in dairy cattle. We tested whether administering an inflammatory cytokine, recombinant bovine tumor necrosis factor-α (rbTNFα), affects milk production, metabolism, and health during this period. Thirty-three Holstein cows (9 primiparous and 24 multiparous) were randomly assigned to 1 of 3 treatments at parturition. Treatments were 0 (Control), 1.5, or 3.0 µg/kg body weight rbTNFα, which were administered once daily by subcutaneous injection for the first 7 days of lactation. Statistical contrasts were used to evaluate the treatment and dose effects of rbTNFα administration. Plasma TNFα concentrations at 16 h post-administration tended to be increased (P<0.10) by rbTNFα administration, but no dose effect (P>0.10) was detected; rbTNFα treatments increased (P<0.01) concentrations of plasma haptoglobin. Most plasma eicosanoids were not affected (P>0.10) by rbTNFα administration, but 6 out of 16 measured eicosanoids changed (P<0.05) over the first week of lactation, reflecting elevated inflammatory mediators in the days immediately following parturition. Dry matter and water intake, milk yield, and milk fat and protein yields were all decreased (P<0.05) by rbTNFα treatments by 15 to 18%. Concentrations of plasma glucose, insulin, β-hydroxybutyrate, non-esterified fatty acids, triglyceride, 3-methylhistidine, and liver triglyceride were unaffected (P>0.10) by rbTNFα treatment. Glucose turnover rate was unaffected (P = 0.18) by rbTNFα administration. The higher dose of rbTNFα tended to increase the risk of cows developing one or more health disorders (P = 0.08). Taken together, these results indicate that administration of rbTNFα daily for the first 7 days of lactation altered inflammatory responses, impaired milk production and health, but did not significantly affect liver triglyceride accumulation or nutrient metabolism in dairy cows.  相似文献   

19.
20.
This study aimed at determining the impact of intestinal helminths on malaria parasitaemia, anaemia and pyrexia considering the levels of IL-1β among outpatients in Bamenda. A cohort of 358 consented participants aged three (3) years and above, both males and females on malaria consultation were recruited in the study. At enrolment, patients’ axillary body temperatures were measured and recorded. Venous blood was collected for haemoglobin concentration and malaria parasitaemia determination. Blood plasma was used to measure human IL-1β levels using Human ELISA Kit. The Kato-Katz technique was used to process stool samples. Five species of intestinal helminths Ascaris lumbricoides (6.4%), Enterobius vermicularis (5.0%), Taenia species (4.2%), Trichuris trichiura (1.1%) and hookworms (0.8%) were identified. The overall prevalence of Plasmodium falciparum and intestinal helminths was 30.4% (109/358) and 17.6% (63/358) respectively. The prevalence of intestinal helminths in malaria patients was 17.4% (19/109). Higher Geometric mean parasite density (GMPD ±SD) (malaria parasitaemia) was significantly observed in patients co-infected with Enterobius vermicularis (5548 ± 2829/μL, p = 0.041) and with Taenia species (6799 ± 4584/μL, p = 0.020) than in Plasmodium falciparum infected patients alone (651 ± 6076/ μL). Higher parasitaemia of (1393 ± 3031/μL) and (3464 ± 2828/μL) were recorded in patients co-infected with Ascaris lumbricoides and with hookworms respectively but the differences were not significant (p > 0.05). Anaemia and pyrexia prevalence was 27.1% (97/358) and 33.5% (120/358) respectively. Malaria patients co-infected with Enterobius vermicularis and Ascaris lumbricoides had increased risk of anaemia (OR = 13.712, p = 0.002 and OR = 16.969, p = 0.014) respectively and pyrexia (OR = 18.07, p = 0.001 and OR = 22.560, p = 0.007) respectively than their counterparts. Increased levels of IL-1β were significantly observed in anaemic (148.884 ± 36.073 pg/mL, t = 7.411, p = 0.000) and pyretic (127.737 ± 50.322 pg/mL, t = 5.028, p = 0.000) patients than in non-anaemic (64.335 ± 38.995pg/mL) and apyretic patients (58.479 ± 36.194pg/mL). Malaria patients co-infected with each species of intestinal helminths recorded higher IL-1β levels (IL-1β > 121.68 ± 58.86 pg/mL) and the overall mean (139.63 ± 38.33pg/mL) was higher compared with levels in malaria (121.68 ± 58.86 pg/mL) and helminth (61.78 ± 31.69pg/mL) infected patients alone. Intestinal helminths exacerbated the clinical outcomes of malaria in the patients and increased levels of IL-1β were observed in co-infected patients with anaemia, pyrexia and higher parasitaemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号