首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
X W Hui  N Gresh    B Pullman 《Nucleic acids research》1989,17(11):4177-4187
An investigation of the intrinsically preferred binding modes of a steroid diamine, dipyrandium, to the double-stranded hexanucleotides d(TATATA)2, d(ATATAT)2, and d(CGCGCG)2 is carried out by the energy minimization procedure JUMNA. Several alternative binding modes are compared: groove binding in which the conformation of the oligonucleotide remains close to that of B-DNA, intercalation between base-pairs and interaction with variously kinked structures in which base pairs of dinucleoside steps open towards the groove in which the binding occurs. The favored binding configuration occurs at the d(TpA) step of the AT kinked nucleotides in which the kink opens the base pairs towards the minor groove. Thus, for the d(T1A2T3A4T5A6)2 sequences the preferred complexation involves the kink at the T3A4 step facing the cyclohexane rings A, B, and C of the ligand. For the d(A1T2A3T4A5T6)2 sequence, the kink occurs at the T2A3 step facing the cationic pyrrolidine ring linked to ring A. The binding of dipyrandium to d(CGCGCG)2 is found to be considerably less favourable than for either of the two (AT) sequences.  相似文献   

2.
The interaction of Hoechst 33258 with the minor groove of the adenine-tract DNA duplex d(CTTTTGCAAAAG)2 has been studied in both D2O and H2O solutions by 1D and 2D 1H NMR spectroscopy. Thirty-one nuclear Overhauser effects between drug and nucleotide protons within the minor groove of the duplex, together with ring-current induced perturbations to the chemical shifts of basepair and deoxyribose protons, define the position and orientation of the bound dye molecules. Two drug molecules bind cooperatively and in symmetry related orientations at the centre of the 5'-TTTT and 5'-AAAA sequences with the binding interactions spanning only the four A-T basepairs. The positively charged N-methylpiperazine moieties point towards the centre of the duplex while the phenol groups are disposed towards the 3'-ends of the sequence. Resonance averaging is apparent for both the D2/D6 and D3/D5 phenol protons and D2"'/D6"' and D3"'/D5"' of the N-methylpiperazine ring and is consistent with these groups being involved in rapid rotation or ring-flipping motions in the bound state. Interstrand NOEs between adenine H2s and deoxyribose H1' are consistent with a high degree of propeller twisting of the A-T basepairs at the binding site of the aromatic benzimidazole and phenol rings of Hoechst. The data imply that the minor groove is particularly narrow with many contacts between the complementary curved surfaces of the drug and DNA indicating that strong van der Waals interactions, involving the floor and the walls of the minor groove, stabilize the complex. In our model the NH groups of the benzimidazole rings are positioned to make a pair of bifurcated hydrogen bonds with the adenine N3 and thymine O2 on the floor of the minor groove.  相似文献   

3.
Solution structure of the nogalamycin-DNA complex   总被引:2,自引:0,他引:2  
X L Zhang  D J Patel 《Biochemistry》1990,29(40):9451-9466
The nogalamycin-d(A-G-C-A-T-G-C-T) complex (two drugs per duplex) has been generated in aqueous solution and its structure characterized by a combined application of two-dimensional NMR experiments and molecular dynamics calculations. Two equivalents of nogalamycin binds to the self-complementary octanucleotide duplex with retention of 2-fold symmetry in solution. We have assigned the proton resonances of nogalamycin and the d(A1-G2-C3-A4-T5-G6-C7-T8) duplex in the complex and identified the intermolecular proton-proton NOEs that define the alignment of the antitumor agent at its binding site on duplex DNA. The analysis was greatly aided by a large number of intermolecular NOEs involving exchangeable protons on both the nogalamycin and the DNA in the complex. The molecular dynamics calculations were guided by 274 intramolecular nucleic acid distance constraints, 90 intramolecular nogalamycin distance constraints, and 104 intermolecular distance constraints between nogalamycin and the nucleic acid protons in the complex. The aglycon chromophore intercalates at (C-A).(T-G) steps with the long axis of the aglycon approximately perpendicular to the long axis of the flanking C3.G6 and A4.T5 base pairs. The aglycon selectively stacks over T5 and G6 on the T5-G6-containing strand with the aglycon edge containing OH-4 and OH-6 substituents directed toward the C3-A4-containing strand. The C3.G6 and A4.T5 base pairs are intact but buckled at the intercalation site with a wedge-shaped alignment of C3 and A4 on the C3-A4 strand compared to the parallel alignment of T5 and G6 on the T5-G6 strand in the complex. The nogalose sugar in a chair conformation, the aglycon ring A in a half-chair conformation, and the COOCH3-10 side chain form a continuous domain that is sandwiched within the walls of the minor groove and spans the three base pair (G2-C3-A4).(T5-G6-C7) segment. The nogalose ring is positioned in the minor groove such that its nonpolar face is directed toward the G6-C7 sugar-phosphate backbone while its polar face containing OCH3 groups is directed toward the G2-C3 sugar-phosphate backbone in the complex. The intermolecular contacts include a nonpolar patch of aglycon (CH3-9) and nogalose (CH3-3') methyl groups forming van der Waals contacts with the base-sugar residues in the minor groove and intermolecular hydrogen bonds involving the amino groups of G2 and G6 with the ether oxygens OCH3-3' and O7, respectively, on the nogalose sugar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
E Trotta  M Paci 《Nucleic acids research》1998,26(20):4706-4713
The solution structure of the complex between 4', 6-diamidino-2-phenylindole (DAPI) and DNA oligomer [d(GCGATTCGC)]2, containing a central T.T mismatch, has been characterized by combined use of proton one- and two-dimensional NMR spectroscopy, molecular mechanics and molecular dynamics computations including relaxation matrix refinement. The results show that the DAPI molecule binds in the minor groove of the central region 5'-ATT-3' of the DNA oligomer, which predominantly adopts a duplex structure with a global right-handed B-like conformation. In the final models of the complex, the DAPI molecule is located nearly isohelical with its NH indole proton oriented towards the DNA helix axis and forming a bifurcated hydrogen bond with the carbonyl O2 groups of a mismatched T5 and the T6 residue of the opposite strand. Mismatched thymines adopt a wobble base pair conformation and are found stacked between the flanking base pairs, inducing only minor local conformational changes in global duplex structure. In addition, no other binding mechanisms were observed, showing that minor groove binding of DAPI to the mismatch-containing site is favoured in comparison with any other previously reported interaction with G.C sequences.  相似文献   

5.
Two nucleoside derivatives containing the base analogues 3-deazaadenine and 3-methyl-2-pyridone have been prepared as analogues of dA and dT, respectively. After conversion into the appropriately protected phosphoramidites, DNA sequences were prepared with site-specifically placed analogues. When present in a duplex DNA sequence, the analogues result in the deletion of one or both of the hydrogen bonding functional groups (the N3-nitrogen of dA and the O2-carbonyl of dT) present in the minor groove. Binding by two ligands, 4',6-diamidine-2-phenyl indole (DAPI) and Hoechst 33258 in the minor groove has been probed using a variety of DNA sequences. These sequences contain a d(GAATTC)2 core with analogue nucleosides substituted for one or more of the dA and dT residues. DAPI bound strongly to any sequence that contained both O2-carbonyls of the central two dT residues. The presence of a dc3A residue did in some cases enhance binding. With one of the central O2-carbonyls deleted, the binding was noticeably reduced, and with both absent, no significant binding could be detected. Similar although less dramatic results were observed with Hoechst 33258 binding to analogue sequences.  相似文献   

6.
The diastereomeric complexes Lambda- and Delta-[Ru(bpy)(2)(m-bpy-7p)]Cl(2), (bpy=2,2'-bipyridine, m-bpy-7p=4-methyl-4'-Arg-Gly-Asn-Ala-His-Glu-Arg-CONH(2)-2,2'-bipyridine) were synthesized and characterized and their binding properties to the deoxynucleotide duplexes d(5'-CGCGATCGCG-3')(2) and d(5'-GCGCTTAAGCGC-3')(2) were studied by means of (1)H NMR spectroscopy. 7p is part of the recognition loop of the restriction endonuclease MunI, a type II restriction enzyme from Mycoplasma unidentified which recognizes the palindromic hexanucleotide sequence C/AATTG and cleaves it as indicated by the slash. The Delta-isomer binds to the terminal CG/GC major groove of d(CGCGATCGCG)(2) decanucleotide, whereas the Lambda-isomer approaches the GCT/CGA sequence. On the other hand, weak binding of the Delta-isomer to the end of d(GCGCTTAAGCGC)(2) into two different orientations is observed. In the case of the Lambda-isomer, the bpy ligand(s) are located into the major groove of the central TT/AA sequence. The role of appended peptide sequences in sequence selectivity binding to DNA is being addressed.  相似文献   

7.
The thiazole orange dye 1,1'-(4,4,8,8-tetramethyl-4, 8-diazaundecamethylene)-bis-4-[(3-methyl-2,3-dihydro(benzo-1, 3-thiazolyl)-2-methylidene]quinolinium tetraiodide (TOTO) binds sequence selectively to double-stranded DNA (dsDNA) by bis-intercalation. Each chromophore is sandwiched between two base pairs in a d(5'-py-p-py-3'):d(5'-pu-p-pu-3') site, and the linker spans over two base pairs in the minor groove. We have examined the binding of TOTO to various dsDNA oligonucleotides containing variations of the 5'-CTAG-3' binding motif by introducing inosine (I = inosine, 2-desaminoguanosine) and 5-methylcytosine ((me)C). A one- and two-dimensional NMR spectroscopy characterization yielded detailed structural information on the binding mode and for the well-defined TOTO-complexes competition experiments allowed determination of the relative binding strengths resulting from the various structural alterations. The experimentally observed base pair preference of TOTO in the palindromic sequences investigated is (me)CG > CG > CI > TA for the flanking base pair and (me)CI > CI > TA > CG > UA for the central base pair. The best binding site observed so far is the d(5-C(me)CIG-3')(2) site. This site is much more favorable than the d(5'-CTAG-3')(2) site formerly believed to be the best binding site. The present paper discusses these results in terms of different contributions to the binding affinity and offers some explanations for the site selectivity of TOTO.  相似文献   

8.
Actinomycin D (ActD) is a DNA-binding antitumor antibiotic that appears to act in vivo by inhibiting RNA polymerase. The mechanism of DNA binding of ActD has attracted much attention because of its strong preference for 5'-dGpdC-3' sequences. Binding is thought to involve intercalation of the tricyclic aromatic phenoxazone ring into a GC step, with the two equivalent cyclic pentapeptide lactone substituents lying in the minor groove and making hydrogen bond contacts with the 2-amino groups of the nearest neighbor guanines. Recent studies have indicated, however, that binding is also influenced by next-nearest neighboring bases. We have examined this higher order specificity using 7-azido-actinomycin-D as a photoaffinity probe, and DNA sequencing techniques to quantitatively monitor sites of covalent photoaddition. We found that GC doublets were strongly preferred only if the 5'-flanking base was a pyrimidine and the 3'-flanking base was not cytosine. In addition we observed a previously unreported preference for binding at a GG doublet in the sequence 5'-TGGG-3'.  相似文献   

9.
K X Chen  N Gresh    B Pullman 《Nucleic acids research》1986,14(9):3799-3812
Theoretical computations are performed on the comparative binding energetics of mitoxantrone (MX), a newly synthesized intercalating anthraquinone antitumor drug, to six representative double-stranded tetranucleotides: d(GCGC)2, d(CGCG)2, d(ATAT)2, d(TATA)2, d(GTGT), d(ACAC), and d(CCGG)2. The computations are performed with the SIBFA procedure, which uses empirical formulas based on ab initio SCF computations. The best binding configuration of mitoxantrone locates its two side chains in the major groove. A considerable preference is elicited for intercalation of the chromophore ring in a pyrimidine (3'-5') purine sequence rather than the isomeric purine (3'-5') pyrimidine sequence. Contrary to the situation encountered with "simple" intercalators, in which this preference is generally attributed solely to differences in the energies of unstacking necessary to generate the intercalation sites, the preference is dictated in MX to a large extent by the intermolecular interaction energy term. This result is imposed by the interactions of the side chains of MX with the oligonucleotide.  相似文献   

10.
An analogue of the DNA-binding compound Hoechst 33258, in which the piperazine ring has been replaced by an imidazoline group, has been cocrystallized with the dodecanucleotide sequence d(CGCGAATTCGCG)2. The structure has been solved by X-ray diffraction analysis and has been refined to an R-factor of 19.7% at a resolution of 2.0 A. The ligand is found to bind in the minor groove, at the central four AATT base pairs of the B-DNA double helix, with the involvement of a number of van der Waals contacts and hydrogen bonds. There are significant differences in minor groove width for the two compounds, along much of the AATT region. In particular this structure shows a narrower groove at the 3' end of the binding site consistent with the narrower cross-section of the imidazole group compared with the piperazine ring of Hoechst 33258 and therefore a smaller perturbation in groove width. The higher binding affinity to DNA shown by this analogue compared with Hoechst 33258 itself, has been rationalised in terms of these differences.  相似文献   

11.
Sequence specificity of DNA cleavage by bis(1,10-phenanthroline)copper(I)   总被引:6,自引:0,他引:6  
J M Veal  R L Rill 《Biochemistry》1988,27(6):1822-1827
The bis(1,10-phenanthroline)copper(I) complex is a relatively simple molecule previously shown to cause DNA cleavage with a strong preference for gene control regions such as the Pribnow box. Sequence level mapping of sites of [(Phen)2CuI]+ cleavage in greater than 2000 bases in histone genes and the plasmid pUC9 showed that the specificity for control regions is related to a predominant preference for minor groove binding at TAT triplets, which were cleaved most strongly at the adenosine sugar ring. The related sequences TGT, TAAT, TAGPy, and CAGT (Py = pyrimidine) were moderately preferred, while CAT and TAC triplets, PyPuPuPu quartets, PuPuPuPy quartets, and CG-rich PyPuPuPy quartets were cleaved with low to average frequency. Polypurine and polypyrimidine sequences were cleaved with low frequency. The sequence preferences of [(Phen)2CuI]+ can be ascribed predominantly to (i) a requirement for binding in the minor groove at a pyrimidine 3'----5' step and (ii) stereoelectronic effects of the 2-amino group of guanine in the minor groove, which inhibit binding. Although the reagent appears primarily to recognize sequence features at the triplet or quartet level, lower than expected cleavage was observed for two TAT sequences adjacent to several other preferred sequences and higher than expected cleavage was observed at CAAGC sequences, suggesting that longer range sequence-dependent DNA conformational effects influence specificity in certain cases.  相似文献   

12.
The solution structure of the dodecamer duplex d(CTTTTGCAAAAG)2 and its 2:1 complex with the bis-benzimidazole Hoechst 33258 has been investigated by NMR and NOE-restrained molecular dynamics (rMD) simulations. Drug molecules are bound in each of the two A-tracts with the bulky N-methylpiperazine ring of each drug located close to the central TG (CA) step, binding essentially to the narrow minor groove of each A-tract. MD simulations over 1 ns, using an explicit solvation model, reveal time-averaged sequence-dependent narrowing of the minor groove from the 3′-end towards the 5′-end of each TTTT sequence. Distinct junctions at the TpG (CpA) steps, characterised by large positive roll, low helical and propeller twists and rapid AT base pair opening rates, add to the widening of the groove at these sites and appear to account for the bound orientation of the two drug molecules with the N-methylpiperazine ring binding in the wider part of the groove close to the junctions. Comparisons between the free DNA structure and the 2:1 complex (heavy atom RMSD 1.55 Å) reveal that these sequence-dependent features persist in both structures. NMR studies of the sequence d(GAAAAGCTTTTC)2, in which the A-tracts have been inverted with the elimination of the TpG junctions, results in loss of orientational specificity of Hoechst 33258 and formation of multiple bound species in solution, consistent with the drug binding in a number of different orientations.  相似文献   

13.
The thiazole orange dye TOTO binds to double-stranded DNA (dsDNA) by a sequence selective bis-intercalation. Each chromophore is sandwiched between two base pairs in a (5'-CpT-3'):(5'-ApG-3') site, and the linker spans two base pairs in the minor groove. We have used one- and two-dimensional NMR spectroscopy to examine the dsDNA binding of an analogue of TOTO in which the linker has been modified to contain a bipyridyl group (viologen) that has minor groove binding properties. We have investigated the binding of this analogue, called TOTOBIPY, to three different dsDNA sequences containing a 5'-CTAG-3', a 5'-CTTAG-3', and a 5'-CTATAG-3' sites, respectively, demonstrating that TOTOBIPY prefers to span three base pairs. The many intermolecular NOE connectivities between TOTOBIPY and the d(CGCTTAGCG):d(CGCTAAGCG) oligonucleotide in the complex shows that the bipyridyl-containing linker is positioned in the minor groove and spans three base pairs. Consequently, we have succeeded in designing and synthesizing a ligand that recognizes an extended recognition sequence of dsDNA as the result of a concerted intercalation and minor groove binding mode.  相似文献   

14.
Hedamycin, a member of the pluramycin family of drugs, displays a range of biological responses including antitumor and antimicrobial activity. The mechanism of action is via direct interaction with DNA through intercalation between the bases of the oligonucleotide and alkylation of a guanine residue at 5'-PyG-3' sites. There appears to be some minor structural differences between two earlier studies on the interaction of hedamycin with 5'-PyG-3' sites. In this study, a high-resolution NMR analysis of the hedamycin:d(ACCGGT)2 complex was undertaken in order to investigate the effect of replacing the thymine with a guanine at the preferred 5'-CGT-3' site. The resultant structure was compared with earlier work, with particular emphasis placed on the drug conformation. The structure of the hedamycin:d(ACCGGT)2 complex has many features in common with the two previous NMR structures of hedamycin:DNA complexes but differed in the conformation and orientation of the N,N-dimethylvancosamine saccharide of hedamycin in one of these structures. The preferential binding of hedamycin to 5'-CG-3' over 5'-TG-3' binding sites is explained in terms of the orientation and location of the N,N-dimethylvancosamine saccharide in the minor groove.  相似文献   

15.
The X-ray crystal structure of the complex between the synthetic antitumour and antiviral DNA binding ligand SN 7167 and the DNA oligonucleotide d(CGCGAATTCGCG)2 has been determined to an R factor of 18.3% at 2.6 A resolution. The ligand is located within the minor groove and covers almost 6 bp with the 1-methylpyridinium ring extending as far as the C9-G16 base pair and the 1-methylquinolinium ring lying between the G4-C21 and A5-T20 base pairs. The ligand interacts only weakly with the DNA, as evidenced by long range contacts and shallow penetration into the groove. This structure is compared with that of the complex between the parent compound SN 6999 and the alkylated DNA sequence d(CGC[e6G]AATTCGCG)2. There are significant differences between the two structures in the extent of DNA bending, ligand conformation and groove binding.  相似文献   

16.
DNA minor groove ligands provide a paradigm for double-stranded DNA recognition, where common structural motifs provide a crescent shape that matches the helix turn. Since minor groove ligands are useful in medicine, new ligands with improved binding properties based on the structural information about DNA-ligand complexes could be useful in developing new drugs. Here, two new synthetic analogues of AT specific Hoechst 33258 5-(4-methylpiperazin-1-yl)-2-[2'-(3,4-dimethoxyphenyl)-5'-benzimidazolyl] benzimidazole (DMA) and 5-(4-methylpiperazin-1-yl)-2-[2'[2'-(4-hydroxy-3-methoxyphenyl)-5' '-benzimidazolyl]-5'-benzimidazolyl] benzimidazole (TBZ) were evaluated for their DNA binding properties. Both analogues are bisubstituted on the phenyl ring. DMA contains two ortho positioned methoxy groups, and TBZ contains a phenolic group at C-4 and a methoxy group at C-3. Fluorescence yield upon DNA binding increased 100-fold for TBZ and 16-fold for DMA. Like the parent compound, the new ligands showed low affinity to GC-rich (K approximately 4 x 10(7) M(-1)) relative to AT-rich sequences (K approximately 5 x 10(8) M(-1)), and fluorescence lifetime and anisotropy studies suggest two distinct DNA-ligand complexes. Binding studies indicate expanded sequence recognition for TBZ (8-10 AT base pairs) and tighter binding (DeltaT(m) of 23 degrees C for d (GA(5)T(5)C). Finally, EMSA and equilibrium binding titration studies indicate that TBZ preferentially binds highly hydrated duplex domains with altered A-tract conformations d (GA(4)T(4)C)(2) (K= 3.55 x 10(9) M(-1)) and alters its structure over d (GT(4)A(4)C)(2) (K = 3.3 x 10(8) M(-1)) sequences. Altered DNA structure and higher fluorescence output for the bound fluorophore are consistent with adaptive binding and a constrained final complex. Therefore, the new ligands provide increased sequence and structure selective recognition and enhanced fluorescence upon minor groove binding, features that can be useful for further development as probes for chromatin structure stability.  相似文献   

17.
18.
A novel aryl-bis-benzimidazole amino acid analogue of the DNA-binding compound Hoechst 33258 has recently been designed for incorporation in peptide combinatorial libraries by replacing the N-methylpiperazine group with a carboxyl group and the hydroxy group with an amino-methyl group. The DNA-binding properties of the aryl-bis-benzimidazole monomer with the C-terminus derivatized with 3-(dimethylamino)-propylamine has been investigated in this paper by (1)H NMR studies of two different complexes with two different DNA sequences: A(5) d(5'-GCCA(5)CG-3'):d(5'-CGT(5)GGC-3') and A(3)T(3) d(5'-CGA(3)T(3)CG-3')(2). Chemical shift footprinting shows that the ligand binds at the center of the A(3)T(3) sequence but at the 3'-end of A(5). A large number of NOEs show a well-defined complex with the ligand situated at the center of the palindromic A(3)T(3) but with the asymmetric A(5) the ligand binds with an orientational preference with the bis-benzimidazole moiety displaced toward the 3'-end from the center of the duplex. Two families of models of the complexes with A(5) and A(3)T(3) were derived with restrained molecular dynamics based on a large set of 70 and 61, respectively, intermolecular ligand NOEs. Both models give a picture of a tightly fitting ligand with close van der Waals contacts with the walls of the minor groove and with the two benzimidazole and the amide hydrogens involved in bifurcated cross-strand hydrogen bonds to adenine N3 and thymine O2. The minor groove width of the models correlate well with the binding site of the ligand, and the orientational preference is argued to be a consequence of the minor groove width and hydrogen bonding.  相似文献   

19.
Mechanism of damage recognition by Escherichia coli DNA photolyase   总被引:11,自引:0,他引:11  
Escherichia coli DNA photolyase binds to DNA containing pyrimidine dimers with high affinity and then breaks the cyclobutane ring joining the two pyrimidines of the dimer in a light- (300-500 nm) dependent reaction. In order to determine the structural features important for this level of specificity, we have constructed a 43 base pair (bp) long DNA substrate that contains a thymine dimer at a unique location and studied its interaction with photolyase. We find that the enzyme protects a 12-16-bp region around the dimer from DNase I digestion and only a 6-bp region from methidium propyl-EDTA-Fe (II) digestion. Chemical footprinting experiments reveal that photolyase contacts the phosphodiester bond immediately 5' and the 3 phosphodiester bonds immediately 3' to the dimer but not the phosphodiester bond between the two thymines that make up the dimer. Methylation protection and interference experiments indicate that the enzyme makes major groove contacts with the first base 5' and the second base 3' to the dimer. These data are consistent with photolyase binding in the major groove over a 4-6-bp region. However, major groove contacts cannot be of major significance in substrate recognition as the enzyme binds equally well to a thymine dimer in a 44-base long single strand DNA and protects a 10-nucleotide long region around the dimer from DNase I digestion. It is therefore concluded that the unique configuration of the phosphodiester backbone in the strand containing the pyrimidine dimer, as well as the cyclobutane ring of the dimer itself are the important structural determinants of the substrate for recognition by photolyase.  相似文献   

20.
Intermolecular molecular mechanics energy calculations have been carried out for doxorubicin interacting with two dinucleotide dimer sequences. The preferred mode of intercalation is in the minor groove with the anthraquinone ring of the drug nearly perpendicular to the base pairs for the (CpG) sequence having alternate C3′ endo-C2′ endo sugar ring puckering. The preferred intercalation conformation of the drug is nearly identical to the N-bromacetyldaunomycin crystal structure. This prediction is qualitatively consistent with the recently reported crystal structure of a d(CpGpCpGpCpG) dimer-daunomycin complex. For the other dinucleotide sequence, (TpC-ApG), minor groove intercalation is also preferred, but the drug conformation can be changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号