首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to the “nectar protection” and “pollinator protection” hypotheses, ant repellents in flowers have evolved to prevent ants from exploiting floral nectar and chasing away pollinators, respectively. We used weaver ants, Oecophylla smaragdina, to determine the strength of ant repellence in 32 bee-pollinated plant species and used the comparative method to test whether nectar production, size of pollinating bees and plant growth form were related to floral repellence. Flowers were more likely to repel ants if they offered nectar as a reward and were pollinated by small bees than if they were nectarless and pollinated by large bees. Furthermore, tree flowers were more likely than shrub or vine flowers to repel ants. Our results validate the pollinator protection hypothesis and the nectar protection hypothesis. Depending on the ecological context, therefore, ant repellents can function as direct or indirect exploitation barriers: they can prevent ants from removing nectar without effecting pollination (direct barriers) and, when flowers are pollinated by large bees, the absence of ant repellents—or even the presence of ant attractants—can result in ants chasing small ineffective pollinators away (indirect barriers).  相似文献   

2.
With plants whose flowers open at night and stay open during the day, nocturnal pollinators may exploit floral resources before diurnal competitors. Moths, bats, and beetles are the most familiar nocturnal pollinators, whereas nocturnal bees as pollinators remain poorly understood. The common Cerrado tree Machaerium opacum (Fabaceae) has white and strongly scented melittophilous flowers, which first open at the night and remain open during the day and, thus, have the potential to be visited by both nocturnal and diurnal bees. We asked: (1) what is the plant’s breeding system? (2) when during the night do the flowers open? (3) what are the visual and olfactory floral cues? and (4) which nocturnal/diurnal bees visit and pollinate the flowers? We show that M. opacum is self-incompatible. Its flowers open synchronously at 03:30 h, produce nectar exclusively at night, and have an explosive mechanism of pollen presentation. The flowers have pure white petals, release strong scents during anthesis, and are pollinated by nocturnal and diurnal bees. We recorded four nocturnal and 17 diurnal species as flower visitors, with females of nocturnal species of Ptiloglossa (Colletidae) being the most abundant. After an initial pollen-releasing visit, only a minor amount of pollen remains in a flower. Several floral traits favor visits by nocturnal bees: (1) night-time flower opening, (2) nectar production at night, (3) almost complete pollen release during the first flower visit, and (4) pure white petals and strong odor production prior to sunrise, facilitating visual and olfactory detection of flowers when light is dim.  相似文献   

3.
We report on flowering phenology, floral morphology, pollinators, and nectar for eight species and a putative natural hybrid belonging to Agarista, Gaultheria and Gaylussacia that occur syntopically in a montane area. The campanulate to tubular flowers of eight out of nine Ericaceae taxa are primarily pollinated by either hummingbirds or bees. Flowering overlaps in all species but slight differences of floral shape, colour, and nectar characterize pollination by each pollinator group. Differences in floral traits are not large enough to exclude secondary pollinators. Thus, either the main pollinators of a species belonging to its syndrome, or secondary pollinators of a species belonging to different syndromes, may allow for inter-specific crosses.  相似文献   

4.
Inga species present brush‐type flower morphology allowing them to be visited by distinct groups of pollinators. Nectar features in relation to the main pollinators have seldom been studied in this genus. To test the hypothesis of floral adaptation to both diurnal and nocturnal pollinators, we studied the pollination ecology of Inga sessilis, with emphasis on the nectar secretion patterns, effects of sequential removals on nectar production, sugar composition and the role of diurnal and nocturnal pollinators in its reproductive success. Inga sessilis is self‐incompatible and pollinated by hummingbirds, hawkmoths and bats. Fruit set under natural conditions is very low despite the fact that most stigmas receive polyads with sufficient pollen to fertilise all ovules in a flower. Nectar secretion starts in the bud stage and flowers continually secreting nectar for a period of 8 h. Flowers actively reabsorbed the nectar a few hours before senescence. Sugar production increased after nectar removal, especially when flowers were drained during the night. Nectar sugar composition changed over flower life span, from sucrose‐dominant (just after flower opening, when hummingbirds were the main visitors) to hexose‐rich (throughout the night, when bats and hawkmoths were the main visitors). Diurnal pollinators contributed less than nocturnal ones to fruit production, but the former were more constant and reliable visitors through time. Our results indicate I. sessilis has floral adaptations, beyond the morphology, that encompass both diurnal and nocturnal pollinator requirements, suggesting a complementary and mixed pollination system.  相似文献   

5.
We investigated the reproductive biology, including the floral biology, pollination biology, breeding system and reproductive success, of Pachira aquatica, a native and dominant tropical tree of fresh water wetlands, throughout the coastal plain of the Gulf of Mexico. The flowers present nocturnal anthesis, copious nectar production and sugar concentration (range 18–23%) suitable for nocturnal visitors such as bats and sphingid moths. The main nocturnal visitors were bats and sphingid moths while bees were the main diurnal visitors. There were no differences in legitimate visitation rates among bats, moths and honey bees. Bats and honey bees fed mainly on pollen while moths fed on nectar, suggesting resource partitioning. Eight species of bats carried pollen but Leptonycteris yerbabuenae is probably the most effective pollinator due to its higher pollen loads. The sphingid moths Manduca rustica, Cocytius duponchel and Eumorpha satellitia were recorded visiting flowers. Hand pollination experiments indicated a predominant outcrossing breeding system. Open pollination experiments resulted in a null fruit set, indicating pollen limitation; however, mean reproductive success, according to a seasonal census, was 17 ± 3%; these contrasting results could be explained by the seasonal availability of pollinators. We conclude that P. aquatica is an outcrossing species with a pollination system originally specialized for bats and sphingid moths, which could be driven to a multimodal pollination system due to the introduction of honey bees to tropical America.  相似文献   

6.
BACKGROUND AND AIMS: Of the set of syndromes displayed by specialized (euphilic) flowers, adaptation to pollination by bats (chiropterophily) is the least known. Accumulated new evidence reveals that this pollination mode plays a considerable role in tropical communities, especially in the neotropics. One family in which bat-pollinated species are known in several genera is the Bignoniaceae. Here is reported, for the first time, bat pollination and floral ecology in Adenocalymna dichilum (tribe Bignonieae). METHODS: Floral features of this species growing in Bahia (north-east Brazil) indicated possible chiropterophily, which was subsequently confirmed by direct observation and from photographs of bat visits. Timing of anthesis and nectar parameters were monitored in the field, and floral morphology was investigated with fixed flowers. KEY RESULTS: One to two flowers open per night on the upright, simple racemes of A. dichilum during several weeks in a 'steady state' mode. The bilabiate, cream-coloured corollas are functional for only a single night and wilt during the following day. A stout corolla, with a musky odour, and a large nectary disc with large quantities of watery nectar also conform to the syndrome. Glossophaga soricina (Glossophaginae) visited and pollinated the flowers in a trap-lining manner. Whilst hovering, the bats put their heads into the corolla mouth for less than 1 s to feed, thereby effecting the transfer of pollen which is deposited on their backs. CONCLUSIONS: Adenocalymna, a New World genus comprising approx. 50 species, exhibits floral adaptive radiation including species pollinated by bees, birds and possibly moths. The discovery of chiropterophily in A. dichilum adds another facet to the array of floral syndromes represented in the genus.  相似文献   

7.
Morning floral heat as a reward to the pollinators of the Oncocyclus irises   总被引:2,自引:0,他引:2  
Sapir Y  Shmida A  Ne'eman G 《Oecologia》2006,147(1):53-59
Relationships between flowering plants and their pollinators are usually affected by the amount of reward, mainly pollen or nectar, offered to pollinators by flowers, with these amounts usually positively correlated with floral display. The large Oncocyclus iris flowers, despite being the largest flowers in the East Mediterranean flora, are nectarless and have hidden pollen. No pollinators visit the flowers during daytime, and these flowers are pollinated only by night-sheltering solitary male bees. These iris flowers are partially or fully dark-colored, suggesting that they gather heat by absorbing solar radiation. Here we test the hypothesis that the dark-colored flowers of the Oncocyclus irises offer heat reward to their male solitary bee pollinators. Floral temperature was higher by 2.5°C than ambient air after sunrise. Solitary male bees emerged earlier after sheltering in Oncocyclus flowers than from other experimental shelter types. Pollination tunnels facing east towards the rising sun hosted more male bees than other aspects. We suggest that floral heat reward can explain the evolution of dark floral colors in Oncocyclus irises, mediated by the pollinators’ behavior.  相似文献   

8.
Solitary bees often form specialised mutualisms with particular plant species, while honeybees are considered to be relatively opportunistic foragers. Thus, it may be expected that solitary bees are more effective pollinators than honeybees when foraging on the same floral resource. To test this, we studied two Wahlenbergia species (Campanulaceae) in South Africa that are visited by both social honeybees and solitary bees, and which are shown here to be genetically self-incompatible and thus reliant on pollinator visits for seed production. Contrary to expectation, the solitary bee Lipotriches sp. (Halictidae) and social bee Apis mellifera (Apidae), which were the two most frequent visitors to flowers of the study species, were equally effective pollinators in terms of the consequences of single visits for fruit and seed set. Both bee species preferentially visited female phase flowers, which contain more nectar than male phase flowers. Male solitary bees of several genera frequently shelter overnight in flowers of both Wahlenbergia species, but temporal exclusion experiments showed that this behaviour makes little contribution to either seed production or pollen dispersal (estimated using a dye particle analogue). Manipulation of flower colour using a sunscreen that removed UV reflectance strongly reduced visits by both bee groups, while neither group responded to Wahlenbergia floral odour cues in choice tests. This study indicates that while flowers of Wahlenbergia cuspidata and W. krebsii are pollinated exclusively by bees, they are not under strong selection to specialise for pollination by any particular group of bees.  相似文献   

9.
The aim of this study was to analyse the reproductive biology of Echinopsis terscheckii, a species endemic to northwest Argentina that has nocturnal flowers. We expected that this species had a generalised pollination system, with moths and diurnal visitors as the primary pollinators. To test this, we studied the floral biology, breeding system and floral visitors of this species and the effectiveness of nocturnal and diurnal visitors. Floral biology was defined based on floral morphology, floral cycle and nectar production of the flowers. The breeding system and relative contributions of diurnal and nocturnal visitors to fruit and seed set were analysed through field experiments. E.?terscheckii flowers opened at sunset and closed the following day. The peak of nectar production occurred at midnight. Flowers were determined to be self-incompatible. Moths, bees and birds were identified as floral visitors. Moths were the most frequent visitors at night, whereas bees were the most frequent visitors during the day. Fruit production by diurnal pollinators was less than that by nocturnal pollinators; among all floral visitors, moths were the most effective pollinators. We have demonstrated for the first time that moths are the primary pollinators of columnar cacti of the genus Echinopsis. Our results suggest that moths might be important pollinators of columnar cactus species with nocturnal flowers in the extra-tropical deserts of South America.  相似文献   

10.
During the past several decades, the pollination biology of Old World plant species pollinated by flying foxes and of New World plants pollinated by highly specialized nectar-feeding glossophagine bats has been studied in detail. However, little is known about Neotropical plants that are pollinated by less specialized phyllostomid bats. Therefore, we studied the pollination biology of Parkia pendula , a tree pollinated by Phyllostomus . Flowers of P. pendula are arranged in capitula, and a capitulum is composed of approximately 800 hermaphrodite flowers and 260 sterile flowers. The sterile flowers produced a total of 7.4 ml nectar per night, with a sugar concentration of 14.95%, and proline as the dominant amino acid. Nectar production is highest at dusk and ends at 03:00 h. The floral scent is dominated by monoterpenoids (97.9%), with ( E )-β-ocimene being the dominant (84.0%) compound. No sulfur compounds were detected. The capitula are heavily visited by four species of phyllostomid bats, of which Phyllostomus discolor is the most abundant (98.9%). Nectar production per capitulum is within the reported range of nectar produced by this pantropical genus (5.0–8.0 ml). This genus-wide range seems to be optimal for attracting non-specialized nectar-feeding bats and forces them to visit capitula of several trees to satisfy their dietary needs, thus increasing the probability of cross-pollination for this plant.  相似文献   

11.
Many columnar cacti are bat pollinated. It has been suggested that this kind of pollination would be more important in tropical than in temperate regions where flowers are open only one night. Thrichocereus pasacana produces big and resistant white flowers. We analyzed flower characteristics, floral cycle, stigmatic receptivity, nectar production, pollen presence and floral visitors in a T. pasacana population at National Park Los Cardones (Salta, Argentina) in November 1997. Flower features were constant between individuals of the population. Flowers start opening at evening and anthesis time is from 18 to 40 hs. The estigma was receptive throughout the floral cycle. Anther dehiscence occurs with flower opening. Nectar production was highest between 18 to 24 hs. Although T. pasacana are open during the night, floral visitors are diurnal. The most frequent was Xylocopa sp. In the study area, nectarivorous bats were not detected. The morphological features of T. pasacana flowers were similar but bigger compared to other columnar cacti. Anthesis time was also longer while nectar production was lower. T. pasacana pollination at National Park Los Cardones is done by bees.  相似文献   

12.

Background and Aims

Pollen-collecting bees are among the most important pollinators globally, but are also the most common pollen thieves and can significantly reduce plant reproduction. The pollination efficiency of pollen collectors depends on the frequency of their visits to female(-phase) flowers, contact with stigmas and deposition of pollen of sufficient quantity and quality to fertilize ovules. Here we investigate the relative importance of these components, and the hypothesis that floral and inflorescence characteristics mediate the pollination role of pollen collection by bees.

Methods

For ten Aloe species that differ extensively in floral and inflorescence traits, we experimentally excluded potential bird pollinators to quantify the contributions of insect visitors to pollen removal, pollen deposition and seed production. We measured corolla width and depth to determine nectar accessibility, and the phenology of anther dehiscence and stigma receptivity to quantify herkogamy and dichogamy. Further, we compiled all published bird-exclusion studies of aloes, and compared insect pollination success with floral morphology.

Key Results

Species varied from exclusively insect pollinated, to exclusively bird pollinated but subject to extensive pollen theft by insects. Nectar inaccessibility and strong dichogamy inhibited pollination by pollen-collecting bees by discouraging visits to female-phase (i.e. pollenless) flowers. For species with large inflorescences of pollen-rich flowers, pollen collectors successfully deposited pollen, but of such low quality (probably self-pollen) that they made almost no contribution to seed set. Indeed, considering all published bird-exclusion studies (17 species in total), insect pollination efficiency varied significantly with floral shape.

Conclusions

Species-specific floral and inflorescence characteristics, especially nectar accessibility and dichogamy, control the efficiency of pollen-collecting bees as pollinators of aloes.  相似文献   

13.
一些被子植物能够分泌有气味的花蜜,但这一自然现象很少被关注.作为嗅觉信号线索,有气味的花蜜可能是将访花者和气味信号结合在一起的特征,它与传粉者及盗蜜者的关系值得探索.本研究以常春油麻藤(Mucuna sempervirens)为对象,研究了其开花动态及泊氏长吻松鼠(Dremomys pernyi)和赤腹松鼠(Callosciurus erythraeus)的访花行为,采用顶空固相微萃取和气相色谱-质谱法收集并分析了花蜜的挥发物成分,探讨了花蜜对中华蜜蜂(Apis cerana cerana)的吸引作用及对酸臭蚁(Tapinoma sp.)的毒杀作用.结果表明:常春油麻藤花蜜释放的挥发物以脂肪族化合物为主(87.2%),其中酮类占56.1%,无含硫挥发性成分,这和该属其他蝙蝠传粉种类花蜜释放含硫化合物的结果不一致.此外,常春油麻藤的花蜜对酸臭蚁有慢性毒杀作用,而对中华蜜蜂则有吸引作用.未发现蝙蝠访花,但观察到泊氏长吻松鼠和赤腹松鼠可能为常春油麻藤传粉.因此,常春油麻藤可能不属于蝙蝠传粉的种类.希望本研究能为该属亚洲类群的传粉机制提供数据,并为其他植物类群花蜜成分及功能研究提供新的视角.  相似文献   

14.
The majority of bromeliad species are pollinated by vertebrates, mainly hummingbirds and bats. However, bees are among the most frequent visitors in some short-corolla species with ornithophilous features, but only few studies identified insects as pollinators of these bromeliads. The importance of visitors for pollination success in Aechmea caudata (Bromeliaceae) was determined through the frequency and pollination effectiveness (measured as seed set/single visit) of its visitors in a secondary Atlantic forest area in southern Brazil. Aechmea caudata is self-incompatible and therefore pollinator-dependent. A total of 16 species were recorded visiting their flowers. Bees were the most rich and frequent taxon (91% of 647 visits). Bombus morio was the most frequent species (41%). Although the floral features of A. caudata, such as scentless, tubular corollas, yellow and red flowers, and nectar secretion during the whole diurnal anthesis, are related to ornithophily, the single hummingbird species Thalurania glaucopis failed to pollinate the flowers. Its low frequency (2.5%) apparently did not promote the pollen flux between conspecific bromeliads. Pollination tests showed that no seeds developed after hummingbird visits. Seeds were formed only at flowers visited by B. morio. We discuss our findings by contrasting them with the results on the similar and sympatric A. lindenii and by emphasizing the importance of bees for pollination of bromeliads with short corolla. Our results show that pollination effectiveness together with frequency data are necessary to analyze the complex interactions between plants and their flower visitors.  相似文献   

15.
The pollination biology and breeding systems ofEriotheca pubescens andE. gracilipes have been studied. These two species occur as trees in cerrado vegetation, the neotropical savannas of Central Brazil, with partially sympatric distributions. They have similar phenology and floral structure, although the flowers ofE. pubescens are larger. Both species have nectar flowers pollinated by largeAnthophoridae bees but the main pollinators of each species differ in size. The species have markedly different breeding systems: late-acting self-incompatibility inE. gracilipes and apomixis stimulated by pollination inE. pubescens.  相似文献   

16.
Field studies of 13 of the estimated 17 species of the southern African geophytic genus Ferraria (Iridaceae: Iridoideae) identified four distinct pollination systems. Ferraria flowers are radially symmetric and cupped with a large, mostly pale or dull-colored perianth. Perigonal nectaries secrete hexose dominant (fructose and glucose) nectar. Most species are pollinated by Diptera of four families, apparently attracted by strong floral odors, mostly putrid or fermenting, but sometimes apparently sweet, and a large perianth mottled and edged with dark color. Concentrated sugary secretions are produced on the tepal claws that form a shallow floral cup. In contrast, flowers of F. ferrariola have a deep, narrow floral cup, a pale blue or yellow perianth, and a spicy scent and are pollinated by bees in the family Apidae, rewarded by nectar of moderate sugar concentration. Ferraria divaricata and F. variabilis have dull-colored, darkly speckled or streaked perianths and produce ample, highly dilute nectar pooled at the base of the floral cup and are pollinated by eumenid and masarine wasps (Vespidae). Lastly, F. uncinata has flowers with a narrow floral cup and dull violet tepals with brown margins. They are visited only by meloid and melyrid beetles. All pollen transfers from the anther of a Ferraria flower to an insect’s body are passive, regardless of pollinator. Pollen load analyses suggests that all pollinators show a high degree of faithfulness to Ferraria flowers.  相似文献   

17.
The floral nectar sugar compositions of 20 New World species from 10 genera and of five interspecific hybrids in tribe Antirrhineae have been analyzed using high-performance liquid chromatography. Species are pollinated by short-tongued bees, long-tongued bees, and hummingbirds. Ornithophily represents the derived condition in the tribe and has arisen independently in subtribes Maurandyinae and Gambeliinae. All nectars analyzed are sucrose-dominant or -rich, except for the hexose-rich nectar of Mohavea breviflora. Despite the predominance of sucrose, floral nectar sugars from species pollinated by different pollen vectors have characteristic constituents. Nectar sugars from flowers visited by hummingbirds average 76.2% sucrose and have compositions remarkably similar to hummingbird nectars analyzed in previous studies of unrelated species. Long-tongued bee nectars average 87% sucrose and differ from shorttongued bee nectars which have the lowest mean sucrose percentage (40.2%). The association of sugar constituent types and principal pollinators is concordant with previous data and supports hypotheses concerning pollinator preferences and the adaptive significance of certain nectar sugar compositions. Within this adaptive framework, phylogenetic constraint is also operative and may explain the predominance of sucrose in nectar sugars, similarities in sugar composition among hummingbird nectars in subtribes Maurandyinae and Gambeliinae, and the similarity of nectar from Galvezia leucantha (long-tongued bee-pollinated) to hummingbird-pollinated species also in subtribe Gambeliinae.  相似文献   

18.
Large floral displays favour pollinator attraction and the import and export of pollen. However, large floral displays also have negative effects, such as increased geitonogamy, pollen discounting and nectar/pollen robber attraction. The size of the floral display can be measured at different scales (e.g. the flower, inflorescence or entire plant) and variations in one of these scales may affect the behaviour of flower visitors in different ways. Moreover, the fragmentation of natural forests may affect flower visitation rates and flower visitor behaviour. In the present study, video recordings of the inflorescences of a tree species (Tabebuia aurea) from the tropical savannah of central Brazil were used to examine the effect of floral display size at the inflorescence and tree scales on the visitation rate of pollinators and nectar robbers to the inflorescence, the number of flowers approached per visit, the number of visits per flower of potential pollinators and nectar robbers, and the interaction of these variables with the degree of landscape disturbance. Nectar production was quantified with respect to flower age. Although large bees are responsible for most of the pollination, a great diversity of flower insects visit the inflorescences of T. aurea. Other bee and hummingbird species are highly active nectar robbers. Increases in inflorescence size increase the visitation rate of pollinators to inflorescences, whereas increases in the number of inflorescences on the tree decrease visitation rates to inflorescences and flowers. This effect has been strongly correlated with urban environments in which trees with the largest floral displays are observed. Pollinating bees (and nectar robbers) visit few flowers per inflorescence and concentrate visits to a fraction of available flowers, generating an overdispersed distribution of the number of visits per inflorescence and per flower. This behaviour reflects preferential visits to young flowers (including flower buds) with a greater nectar supply.  相似文献   

19.
Inga species are characterised by generalist or mixed pollination system. However, this feature does not enhance reproductive rates in species with very low fruit set under natural conditions. Some ecological and genetic factors are associated with this feature, and to test the effect of massive visits on pollination success in Inga subnuda subsp. luschnathiana, we studied the efficacy of polyads deposited on stigmas of flowers isolated from visitors and polyads exposed to visitors. The proportion of polyads fixed in stigmas decreased after exposure to visitors (24 h) in comparison to stigmas isolated from visitors (hummingbirds, bees, wasps, hawkmoths and bats), and fruit set was very low. Furthermore, nectar production, sugar composition and other floral biology traits were evaluated. Increased nectar production, sugar availability and sucrose dominance during the night indicates adaptation to nocturnal visitors and supports their role as main pollinators; although the brush‐flower morphology, time of anthesis, nectar dynamics and chemical composition also allow daytime visitors. Thus the species is an important resource for a diverse group of floral visitors. We conclude that excess visits (diurnal and nocturnal) are responsible for the decrease in fixed polyads in stigmas of I. subnuda subsp. luschnathiana flowers, thus contributing, with others factors, to its low fruit set. Therefore, the generalist pollination system does not result in reproductive advantages because the low fruit set in natural conditions could be the result of a negative effect of visitors/pollinators.  相似文献   

20.
Floral variation among closely related species is thought to often reflect differences in pollination systems. Flowers of the large genus Impatiens are characterized by extensive variation in colour, shape and size and in anther and stigma positioning, but studies of their pollination ecology are scarce and most lack a comparative context. Consequently, the function of floral diversity in Impatiens remains enigmatic. This study documents floral variation and pollination of seven co‐occurring Impatiens spp. in the Southeast Asian diversity hotspot. To assess whether floral trait variation reflects specialization for different pollination systems, we tested whether species depend on pollinators for reproduction, identified animals that visit flowers, determined whether these visitors play a role in pollination and quantified and compared key floral traits, including floral dimensions and nectar characteristics. Experimental exclusion of insects decreased fruit and seed set significantly for all species except I. muscicola, which also received almost no visits from animals. Most species received visits from several animals, including bees, birds, butterflies and hawkmoths, only a subset of which were effective pollinators. Impatiens psittacina, I. kerriae, I. racemosa and I. daraneenae were pollinated by bees, primarily Bombus haemorrhoidalis. Impatiens chiangdaoensis and I. santisukii had bimodal pollination systems which combined bee and lepidopteran pollination. Floral traits differed significantly among species with different pollination systems. Autogamous flowers were small and spurless, and did not produce nectar; bee‐pollinated flowers had short spurs and large floral chambers with a wide entrance; and bimodally bee‐ and lepidopteran‐pollinated species had long spurs and a small floral chamber with a narrow entrance. Nectar‐producing species with different pollination systems did not differ in nectar volume and sugar concentration. Despite the high frequency of bee pollination in co‐occurring species, individuals with a morphology suggestive of hybrid origin were rare. Variation in floral architecture, including various forms of corolla asymmetry, facilitates distinct, species‐specific pollen‐placement on visiting bees. Our results show that floral morphological diversity among Impatiens spp. is associated with both differences in functional pollinator groups and divergent use of the same pollinator. Non‐homologous mechanisms of floral asymmetry are consistent with repeated independent evolution, suggesting that competitive interactions among species with the same pollination system have been an important driver of floral variation among Impatiens spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号