首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Creatine kinase (CK, EC 2.7.3.2) isoforms play important role in energy homeostasis and together with easily diffusible compounds like creatine and phosphocreatine maintain a cellular energy buffer and intracellular energy transport system. The CK activity in spermatozoa is the highest from all studied tissues in herring. It was detected that the two CK isoforms, CK1 and CK2, are characteristic only for spermatozoa and are not expressed in other herring tissues. Isolation and purification procedures allowed obtaining purified enzymes with specific activity of the 345 micromol/min/mg for CK1 and 511 micromol/min/mg for CK2. Native Mr's of the CK1 and CK2 determined by gel permeation chromatography were about 330,000 and 90,000, respectively. These results indicate that CK1 form has octameric structure and CK2 is a dimer mostly characteristic for cytosolic CK enzymes. In immunoblotting studies with antisera against CK2, the response was observed for CK2 and there was no response for CK1 and two other isoforms from herring skeletal muscle. These findings make the herring isoforms an interesting model for studies on the fish CK biochemical properties.  相似文献   

2.
3.
Mitochondrial Creatine Kinase (MtCK) is responsible for the transfer of high energy phosphate from mitochondria to the cytosolic carrier, creatine, and exists in mammals as two isoenzymes encoded by separate genes. In rats and humans, sarcomere-specific MtCK (sMtCK) is expressed only in skeletal and heart muscle, and has 87% nucleotide identity across the 1257 bp coding region. The ubiquitous isoenzyme of MtCK (uMtCK) is expressed in many tissues with highest levels in brain, gut, and kidney, and has 92% nucleotide identity between the 1254 bp coding regions of rat and human. Both genes are highly regulated developmentally in a tissue-specific manner. There is virtually no expression of sMtCK mRNA prior to birth. Unlike cytosolic muscle CK (MCK) and brain CK (BCK), there is no developmental isoenzyme switch between the MtCKs. Cell culture models representing the tissue-specific expression of either sMtCK or uMtCK are available, but there are no adequate developmental models to examine their regulation. Several animal models are available to examine the coordinate regulation of the CK gene family and include 1) Cardiac Stress by coarctation (sMtCK, BCK, and MCK), 2) Uterus and placenta during pregnancy (uMtCK and BCK), and 3) Diabetes and mitochondrial myopathy (sMtCK, BCK, and MCK). We report the details of these findings, and discuss the coordinate regulation of the genes necessary for high-energy transduction.  相似文献   

4.
The kinetic properties of the cytoplasmic and the mitochondrial iso-enzymes of creatine kinase from striated muscle were studied in vitro and in vivo. The creatine kinase (CK) iso-enzyme family has a multi-faceted role in cellular energy metabolism and is characterized by a complex pattern of tissue-specific expression and subcellular distribution. In mammalian tissues, there is always co-expression of at least two different CK isoforms. As a result, previous studies into the role of CK in energy metabolism have not been able to directly differentiate between the individual CK species. Here, we describe experiments which were directed at achieving this goal. First, we studied the kinetic properties of the muscle-specific cytoplasmic and mitochondrial CK isoforms in purified form under in vitro conditions, using a combination of P-31 NMR and spectrophotometry. Secondly, P-31 NMR measurements of the flux through the CK reaction were carried out on intact skeletal and heart muscle from wild-type mice and from transgenic mice, homozygous for a complete deficiency of the muscle-type cytoplasmic CK isoform. Skeletal muscle and heart were compared because they differ strongly in the relative abundance of the CK isoforms. The present data indicate that the kinetic properties of cytoplasmic and mitochondrial CK are substantially different, both in vitro and in vivo. This finding particularly has implications for the interpretation of in vivo studies with P-31 NMR. (Mol Cell Biochem 174: 33–42, 1997)  相似文献   

5.
Creatine kinase (CK; EC 2.7.3.2) isoenzymes play prominent roles in energy metabolism. Nuclear genes encode three known CK subunits: cytoplasmic muscle (MCK), cytoplasmic brain (BCK), and mitochondrial (MtCK). We have isolated the gene and cDNA encoding human placental MtCK. By using a dog heart MCK cDNA-derived probe, the 7.0-kb EcoRI fragment from one cross-hybridizing genomic clone was isolated and its complete nucleotide sequence determined. A region of this clone encoded predicted amino acid sequence identical to residues 15-26 of the human heart MtCK NH2-terminal protein sequence. The human placental MtCK cDNA was isolated by hybridization to a genomic fragment encoding this region. The human placental MtCK gene contains 9 exons encoding 416 amino acids, including a 38-amino acid transit peptide, presumably essential for mitochondrial import. Residues 1-14 of human placental MtCK cDNA-derived NH2-terminal sequence differ from the human heart MtCK protein sequence, suggesting that tissue-specific MtCK mRNAs are derived from multiple MtCK genes. RNA blot analysis demonstrated abundant MtCK mRNA in adult human ventricle and skeletal muscle, low amounts in placenta and small intestine, and a dramatic increase during in vitro differentiation induced by serum-deprivation in the non-fusing mouse smooth muscle cell line, BC3H1. These findings demonstrate coordinate regulation of MtCK and cytosolic CK gene expression and support the phosphocreatine shuttle hypothesis.  相似文献   

6.
7.
Creatine kinase (CK) was isolated from the white muscle of the Antarctic icefish Chaenocephalus aceratus, which is deficient in glycolytic capacity. C. aceratus white myotomal creatine kinase (MMCK) displayed an apparent Km at 0.5 °C of 0.06 mM for ADP and 17 mM for Phosphocreatine. These Km values are similar to those reported for other vertebrate MMCKs at their physiologically relevant body temperatures. C. aceratus MMCK exhibited optimal activity at pH of 7.6–7.7 at 0.5 °C, in contrast to rabbit MMCK which had optimum activity at pH 6.2 at 30 °C. The apparent Vmax of C. aceratus MMCK at 0.5 °C is 94±4 S.D. (n=9) μmol ATP/min/mg (i.e. U/mg), which is comparable to rabbit MMCK assayed at 20 °C and 8-fold greater than rabbit MMCK measured at 0.5 °C. DEAE chromatography of C. aceratus white muscle CK resolved two distinct activity peaks. Cloning and sequencing of C. aceratus CK cDNAs confirmed that two muscle-specific isoforms of CK were expressed that were distinct from the mitochondrial and brain isoforms. Icefish MMCK was sensitive to transient temperature elevation, and the DEAE-fractionated forms were highly unstable. These results indicate that C. aceratus MMCK displays significant activity at physiological temperature and intracellular pH of icefish muscle that could contribute to sustaining energy charge during burst-swimming.  相似文献   

8.
Creatine kinase (CK; EC 2.7.3.2) isoenzymes play prominent roles in energy transduction. Mitochondrial CK (MtCK) reversibly catalyzes the transfer of high energy phosphate to creatine and exists, in the human, as two isoenzymes encoded by separate genes. We report here the cDNA sequences of the two isoenzymes of MtCK in the rat. Rat sarcomeric MtCK has 87% nucleotide identity in the 1257 bp coding region and 82% in the 154 bp 3' untranslated region as compared with human sarcomeric MtCK. Rat ubiquitous MtCK has 92% nucleotide identity over the 1254 bp coding region with human ubiquitous MtCK and 81% identity of the 148 by 3' untranslated region. Nucleotide identity between the rat sarcomeric and ubiquitous MtCK coding regions is 70%, with no conservation of their 3' untranslated regions. Thus, MtCK sequence is conserved in a tissue-specific, rather than species-specific, manner. Conservation of the 3' untranslated regions is highly unusual and suggests a regulatory function for this region. The NH2-terminal transit peptide sequences share 82% amino acid homology between rat and human sarcomeric MtCKs and 92% homology between rat and human ubiquitous MtCKs, but have only 41% homology to each other. This tissue-specific conservation of the transit peptides suggests receptor specificity in mitochondrial uptake. Rat sarcomeric MtCK mRNA is expressed only in skeletal muscle and heart, but rat ubiquitous MtCK mRNA is expressed in many tissues, with highest levels in brain, gut and kidney. Ubiquitous MtCK mRNA levels are dramatically regulated in uterus and placenta during pregnancy. Coexpression of sarcomeric and ubiquitous MtCK with their cytosolic counterparts, MCK and BCK, respectively, supports the creatine phosphate shuttle hypothesis and suggests that expression of these genes is coordinately regulated.  相似文献   

9.
Mitochondrial creatine kinase in human health and disease   总被引:18,自引:0,他引:18  
Mitochondrial creatine kinase (MtCK), together with cytosolic creatine kinase isoenzymes and the highly diffusible CK reaction product, phosphocreatine, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. Mitochondrial proteolipid complexes containing MtCK form microcompartments that are involved in channeling energy in form of phosphocreatine rather than ATP into the cytosol. Under situations of compromised cellular energy state, which are often linked to ischemia, oxidative stress and calcium overload, two characteristics of mitochondrial creatine kinase are particularly relevant: its exquisite susceptibility to oxidative modifications and the compensatory up-regulation of its gene expression, in some cases leading to accumulation of crystalline MtCK inclusion bodies in mitochondria that are the clinical hallmarks for mitochondrial cytopathies. Both of these events may either impair or reinforce, respectively, the functions of mitochondrial MtCK complexes in cellular energy supply and protection of mitochondria form the so-called permeability transition leading to apoptosis or necrosis.  相似文献   

10.
P-31 nuclear magnetic resonance (NMR) is uniquely suited to measure the kinetics of the phosphoryl-exchange reaction catalyzed by creatine kinase in intact mammalian tissue, especially striated muscle. Recently developed transgenic mouse models of the creatine kinase iso-enzyme system open novel opportunities to assess the functional importance of the individual iso-enzymes and their relative contribution to the total in situ flux through the CK reaction. This chapter reviews the most recent findings from NMR flux measurements on such genetic models of CK function. Findings in intact mouse skeletal and cardiac muscle in vivo are compared to data from purified mitochondrial and cytosolic creatine kinase in vitro. The relevance of findings in transgenic animals for the function of CK in wild-type tissue is described and the perspectives of transgenic techniques in future quantitative studies on the creatine kinase iso-enzyme system are indicated.  相似文献   

11.
Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single- and double CK-knock-out mice strains (cytosolic (M-CK-/-), mitochondrial (Mi-CK-/-) and double knock-out (MiM-CK-/-), respectively). Maximal ADP-stimulated oxygen consumption flux (State3 Vmax; nmol O2 x mg mitochondrial protein(-1) x min(-1)) and ADP affinity (K50ADP; microM) were determined by respirometry. State 3 Vmax and of M-CK-/- and MiM-CK-/- gastrocnemius mitochondria were twofold higher than those of WT, but were unchanged for Mi-CK-/-. For mutant cardiac mitochondria, only the of mitochondria isolated from the MiM-CK-/- phenotype was different (i.e. twofold higher) than that of WT. The implications of these adaptations for striated muscle function were explored by constructing force-flow relations of skeletal muscle respiration. It was found that the identified shift in affinity towards higher ADP concentrations in MiM-CK-/- muscle genotypes may contribute to linear mitochondrial control of the reduced cytosolic ATP free energy potentials in these phenotypes.  相似文献   

12.
We have blocked creatine kinase (CK) mediated phosphocreatine (PCr) ATP transphosphorylation in mitochondria and cytosol of skeletal muscle by knocking out the genes for the mitochondrial (ScCKmit) and the cytosolic (M-CK) CK isoforms in mice. Animals which carry single or double mutations, if kept and tested under standard laboratory conditions, have surprisingly mild changes in muscle physiology. Strenuous ex vivo conditions were necessary to reveal that MM-CK absence in single and double mutants leads to a partial loss of tetanic force output. Single ScCKmit deficiency has no noticeable effects but in combination the mutations cause slowing of the relaxation rate. Importantly, our studies revealed that there is metabolic and cytoarchitectural adaptation to CK defects in energy metabolism. The effects involve mutation type-dependent alterations in the levels of AMP, IMP, glycogen and phosphomonoesters, changes in activity of metabolic enzymes like AMP-deaminase, alterations in mitochondrial volume and contractile protein (MHC isoform) profiles, and a hyperproliferation of the terminal cysternae of the SR (in tubular aggregates). This suggests that there is a compensatory resiliency of loss-of-function and redirection of flux distributions in the metabolic network for cellular energy in our mutants.  相似文献   

13.
Creatine kinase (CK, ATP creatine phosphotransferase, EC 2.7.3.2) is an enzyme participating in ATP regeneration, which is the primary source of energy in living organisms. We demonstrated that CK from herring spermatozoa has high activity ( approximately 452 micromol/min/g of fresh semen) and has a different electrophoretic mobility from isoenzymes present in skeletal muscle. In our study, we investigated toxic effect of tributyltin (TBT) on herring spermatozoa using a specific sperm viability kit to observe live and dead sperm cells with a confocal microscope. Treatment of herring spermatozoa with TBT caused a time-dependent decrease of viability: 35% nonviable cells with 5 microM TBT and more than 90% nonviable cells with 10 microM TBT after 6 h exposure. We also monitored CK release from damaged spermatozoa into surrounding medium containing different concentrations of TBT. The higher concentration of TBT was used the more CK release from spermatozoa was observed. We suggest that CK could be a good biomarker of sperm cell membranes degradation in the case when lactate dehydrogenase release from permeabilized cells is not possible for rapid determination of the effect of TBT.  相似文献   

14.
Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an inherited metabolic disorder biochemically characterized by tissue accumulation of predominantly ethylmalonic acid (EMA) and clinically by neurological dysfunction. In the present study we investigated the in vitro effects of EMA on the activity of the mitochondrial (Mi-CK) and cytosolic (Cy-CK) creatine kinase isoforms from cerebral cortex, skeletal muscle, and cardiac muscle of young rats. CK activities were measured in the mitochondrial and cytosolic fractions prepared from whole-tissue homogenates of 30-day-old Wistar rats. The acid was added to the incubation medium at concentrations ranging from 0.5 to 2.5 mM. EMA had no effect on Cy-CK activity, but significantly inhibited the activity of Mi-CK at 1.0 mM and higher concentrations in the brain. In contrast, both Mi-CK and Cy-CK from skeletal muscle and cardiac muscle were not affected by the metabolite. We also evaluated the effect of the antioxidants glutathione (GSH), ascorbic acid, and a-tocopherol and the nitric oxide synthase inhibitor L-NAME on the inhibitory action of EMA on cerebral cortex Mi-CK activity. We observed that the drugs did not modify Mi-CK activity per se, but GSH and ascorbic acid prevented the inhibitory effect of EMA when co-incubated with the acid. In contrast, L-NAME and -tocopherol could not revert the inhibition provoked by EMA on Mi-CK activity. Considering the importance of CK for brain energy homeostasis, it is proposed that the inhibition of Mi-CK activity may be associated to the neurological symptoms characteristic of SCAD deficiency.  相似文献   

15.
In vertebrates, phosphocreatine and ATP are continuously interconverted by the reversible reaction of creatine kinase in accordance with cellular energy needs. Sarcoma tissue and its normal counterpart, creatine-rich skeletal muscle, are good source materials to study the status of creatine and creatine kinase with the progression of malignancy. We experimentally induced sarcoma in mouse leg muscle by injecting either 3-methylcholanthrene or live sarcoma 180 cells into one hind leg. Creatine, phosphocreatine and creatine kinase isoform levels decreased as malignancy progressed and reached very low levels in the final stage of sarcoma development; all these parameters remained unaltered in the unaffected contralateral leg muscle of the same animal. Creatine and creatine kinase levels were also reduced significantly in frank malignant portions of human sarcoma and gastric and colonic adenocarcinoma compared with the distal nonmalignant portions of the same samples. In mice, immunoblotting with antibodies against cytosolic muscle-type creatine kinase and sarcomeric mitochondrial creatine kinase showed that both of these isoforms decreased as malignancy progressed. Expressions of mRNA of muscle-type creatine kinase and sarcomeric mitochondrial creatine kinase were also severely downregulated. In human sarcoma these two isoforms were undetectable also. In human gastric and colonic adenocarcinoma, brain-type creatine kinase was found to be downregulated, whereas ubiquitous mitochondrial creatine kinase was upregulated. These significantly decreased levels of creatine and creatine kinase isoforms in sarcoma suggest that: (a) the genuine muscle phenotype is lost during sarcoma progression, and (b) these parameters may be used as diagnostic marker and prognostic indicator of malignancy in this tissue.  相似文献   

16.
Tubular aggregates are specific subcellular structures that appear in skeletal muscle fibres under different pathological conditions. The origin of the tubular aggregates is generally ascribed to proliferating membranes of sarcoplasmic reticulum. There are, however, histochemical indications for the presence of mitochondrial enzymes in tubular aggregates suggesting contribution of mitochondria to the genesis of tubular aggregates. In this study we used an immunocytochemical detection technique to assess participation of mitochondria and of sarcoplasmic reticulum in derivation of tubular aggregates. The fast skeletal muscle fibres (m. gastrocnemius) of mice bearing the double invalidation for both the mitochondrial and the cytosolic isoforms of creatine kinase (CK), an enzyme involved in energetics of muscle cells, were employed as a model muscle with tubular aggregates (Steeghs et al., Cell 89, 93-103, 1997). Immunogold labelling of the bc1 complex, a specific integral protein of the inner mitochondrial membrane, provided strong signals in both the mitochondria and tubular aggregates but not in other ultrastructural components of muscle fibres. A similar strong immunogold signal was obtained when labelling for SERCA1, a specific enzyme of the sarcoplasmic reticulum membrane, in regions of typical occurrence of the sarcoplasmic reticulum and in tubular aggregates. In double labelling experiments, we found simultaneous labelling of tubular aggregates with both the bc1 and SERCA1 antibodies. It is concluded, that in CK-/- mouse both the inner mitochondrial membrane and the membrane of the sarcoplasmic reticulum participate in the formation of tubular aggregates.  相似文献   

17.
The creatine/phosphocreatine circuit provides an efficient energy buffering and transport system in a variety of cells with high and fluctuating energy requirements. It connects sites of energy production (mitochondria, glycolysis) with sites of energy consumption (various cellular ATPases). The cellular creatine/phosphocreatine pool is linked to the ATP/ADP pool by the action of different isoforms of creatine kinase located at distinct subcellular compartments. Octameric mitochondrial creatine kinase (MtCK), together with porin and adenine nucleotide translocase, forms a microcompartment at contact sites between inner and outer mitochondrial membranes and facilitates the production and export into the cytosol of phosphocreatine. MtCK is probably in direct protein-protein contact with outer membrane porin, whereas interaction with inner membrane adenine nucleotide translocase is rather mediated by acidic phopholipids (like cardiolipin) present in significant amounts in the inner membrane. Octamer-dimer transitions of MtCK as well as different creatine kinase substrates have a profound influence on controlling mitochondrial permeability transition (MPT). Inactivation by reactive oxygen species of MtCK and destabilization of its octameric structure are factors that contribute to impairment of energy homeostasis and facilitated opening of the MPT pore, which eventually lead to tissue damage during periods of ischemia/reperfusion.  相似文献   

18.
Creatine kinase (EC 2.7.3.2) isoenzymes play a central role in energy transduction. Nuclear genes encode creatine kinase subunits from muscle, brain, and mitochondria (MtCK). We have recently isolated a cDNA clone encoding MtCK from a human placental library which is expressed in many human tissues (Haas, R. C., Korenfeld, C., Zhang, Z., Perryman, B., Roman, D., and Strauss, A. W. (1989) J. Biol. Chem. 264, 2890-2897). With nontranslated and coding region probes, we demonstrated by RNA blot analysis that the MtCK mRNA in sarcomeric muscle is distinct from this placenta-derived, ubiquitous MtCK cDNA. To compare these different mRNAs, a MtCK cDNA clone was isolated from a human heart library and characterized by complete nucleotide sequence analysis. The chemically determined NH2-terminal 26 residues of purified human heart MtCK protein are identical to those predicted from this sarcomeric MtCK cDNA. The human sarcomeric and ubiquitous cDNAs share 73% nucleotide and 80% predicted amino acid sequence identities, but have less than 66% identity with the cytosolic creatine kinases. The sarcomeric MtCK cDNA encodes a 419-amino acid protein which contains a 39-residue transit peptide essential for mitochondrial import. Primer extension analysis predicts a 348-base pair 5'-nontranslated region. RNA blot analysis demonstrates that heart-derived MtCK is sarcomere-specific, but the ubiquitous MtCK mRNA is expressed in most tissues. Thus, separate nuclear genes encode two closely related, tissue-specific isoenzymes of MtCK. Our finding that multiple genes encode different mitochondrial protein isoenzymes is rare.  相似文献   

19.
The M lines are structural landmarks in striated muscles, necessary for sarcomeric stability and as anchoring sites for the M isoform of creatine kinase (CK-M). These structures, especially prominent in fast skeletal muscles, are missing in rodent extraocular muscle, a particularly fast and active muscle group. In this study, we tested the hypotheses that 1). myomesin and M protein (cytoskeletal components of the M lines) and CK-M are downregulated in mouse extraocular muscle compared with the leg muscles, gastrocnemius and soleus; and 2). the expression of other cytosolic and mitochondrial CK isoforms is correspondingly increased. As expected, mouse extraocular muscles expressed lower levels of myomesin, M protein, and CK-M mRNA than the leg muscles. Immunocytochemically, myomesin and M protein were not detected in the banding pattern typically seen in other skeletal muscles. Surprisingly, message abundance for the other known CK isoforms was also lower in the extraocular muscles. Moreover, total CK activity was significantly decreased compared with that in the leg muscles. Based on these data, we reject our second hypothesis and propose that other energy-buffering systems may be more important in the extraocular muscles. The downregulation of major structural and metabolic elements and relative overexpression of two adenylate kinase isoforms suggest that the extraocular muscle group copes with its functional requirements by using strategies not seen in typical skeletal muscles.  相似文献   

20.
Previous studies indicate that ATP formation by the electron transport chain is impaired in sepsis. However, it is not known whether sepsis affects the mitochondrial ATP transport system. We hypothesized that sepsis inactivates the mitochondrial creatine kinase (MtCK)-high energy phosphate transport system. To examine this issue, we assessed the effects of endotoxin administration on mitochondrial membrane-bound creatine kinase, an important trans-mitochondrial ATP transport system. Diaphragms and hearts were isolated from control (n = 12) and endotoxin-treated (8 mg.kg(-1).day(-1); n = 13) rats after pentobarbital anesthesia. We isolated mitochondria using techniques that allow evaluation of the functional coupling of mitochondrial creatine kinase MtCK activity to oxidative phosphorylation. MtCK functional activity was established by 1) determining ATP/creatine-stimulated oxygen consumption and 2) assessing total creatine kinase activity in mitochondria using an enzyme-linked assay. We examined MtCK protein content using Western blots. Endotoxin markedly reduced diaphragm and cardiac MtCK activity, as determined both by ATP/creatine-stimulated oxygen consumption and by the enzyme-linked assay (e.g., ATP/creatine-stimulated mitochondrial respiration was 173.8 +/- 7.3, 60.5 +/- 9.3, 210.7 +/- 18.9, was 67.9 +/- 7.3 natoms O.min(-1).mg(-1) in diaphragm control, diaphragm septic, cardiac control, and cardiac septic samples, respectively; P < 0.001 for each tissue comparison). Endotoxin also reduced diaphragm and cardiac MtCK protein levels (e.g., protein levels declined by 39.5% in diaphragm mitochondria and by 44.2% in cardiac mitochondria; P < 0.001 and P = 0.009, respectively, comparing sepsis to control conditions). Our data indicate that endotoxin markedly impairs the MtCK-ATP transporter system; this phenomenon may have significant effects on diaphragm and cardiac function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号