首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

The optimization of ligninolytic enzyme (LE) activities in a novel fungal co-culture between Pycnoporus sanguineus and Beauveria brongniartii were studied using a Plackett–Burman experimental design (PBED) and a central composite design (CCD). In addition, H2O2 role was analyzed. Laccase (EC. 1.10.3.2) and MnP (EC 1.11.1.14) activities of P. sanguineus increased 6.0- and 2.3-fold, respectively, in the co-culture with B. brongniartii. The H2O2 content was higher in the co-culture (0.33–7.12-fold) than in the P. sanguineus monoculture. The PBED revealed that yeast extract (YE), FeSO4, and inoculum amount were significant factors for laccase and MnP activities and H2O2 production in the co-culture, which increased by 8.2-, 5.2- and 1.03-fold, respectively. The YE and FeSO4 were studied using a CCD to optimize the studied response variables. Laccase activity was enhanced 1.5-fold by CCD, the optimal amount of YE was 0.366?g L?1. Quadratic term of FeSO4 modulated MnP activity and was associated with a 4.28-fold increase compared to the PBED. Both YE and its quadratic term significantly affected H2O2 production; however, the CCD did not enable an increase in H2O2 production. Pearson correlation indicated an increase in laccase (r2=0.4411, p?=?0.0436) and MnP (r2=0.5186, p?=?0.0198) activities following increases in H2O2 in the co-culture system.  相似文献   

2.
Whether long interspersed nuclear element‐1 (LINE‐1) hypomethylation induced by reactive oxygen species (ROS) was mediated through the depletion of S‐adenosylmethionine (SAM) was investigated. Bladder cancer (UM‐UC‐3 and TCCSUP) and human kidney (HK‐2) cell lines were exposed to 20 μM H2O2 for 72 h to induce oxidative stress. Level of LINE‐1 methylation, SAM and homocysteine (Hcy) was measured in the H2O2‐exposed cells. Effects of α‐tocopheryl acetate (TA), N‐acetylcysteine (NAC), methionine, SAM and folic acid on oxidative stress and LINE‐1 methylation in the H2O2‐treated cells were explored. Viabilities of cells treated with H2O2 were not significantly changed. Intracellular ROS production and protein carbonyl content were significantly increased, but LINE‐1 methylation was significantly decreased in the H2O2‐treated cells. LINE‐1 methylation was restored by TA, NAC, methionine, SAM and folic acid. SAM level in H2O2‐treated cells was significantly decreased, while total glutathione was significantly increased. SAM level in H2O2‐treated cells was restored by NAC, methionine, SAM and folic acid; while, total glutathione level was normalized by TA and NAC. Hcy was significantly decreased in the H2O2‐treated cells and subsequently restored by NAC. In conclusion, in bladder cancer and normal kidney cells exposed to H2O2, SAM and Hcy were decreased, but total glutathione was increased. Treatments with antioxidants (TA and NAC) and one‐carbon metabolites (SAM, methionine and folic acid) restored these changes. This pioneer finding suggests that exposure of cells to ROS activates glutathione synthesis via the transsulfuration pathway leading to deficiency of Hcy, which consequently causes SAM depletion and eventual hypomethylation of LINE‐1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Although reactive oxygen species (ROS) are well-established mediators of oxidative damage and cell demise, the mechanisms by which they trigger specific cell death modalities and the temporal/spatial requirements underlying this phenomenon are largely unknown. Yet, it is well established that most anticancer therapies depend on ROS production for efficient tumor eradication. Using several non-small-cell lung cancer cell lines, we have dissected how the site of ROS production and accumulation in various cell compartments affect cell fate. We demonstrate that high levels of exogenously generated H2O2 induce extensive DNA damage, ATP depletion, and severe cytotoxicity. Although these effects were independent of caspase activity, they could—at least in part—be prevented by RIP1 kinase inhibition. In contrast, low levels of exogenously produced H2O2 triggered a modest drop in ATP level, delayed toxicity, G2/M arrest, and cell senescence. Mitochondrially produced H2O2 induced a reversible ATP drop without affecting cell viability. Instead, the cells accumulated in the G1/S phase of the cell cycle and became senescent. Concomitant inhibition of glycolysis was found to markedly sensitize cells to death in the presence of otherwise nontoxic concentrations of H2O2, presumably by the inhibition of ATP-restoring mechanisms. Combined, our data provide evidence that ROS might dictate different cellular consequences depending on their overall concentration at steady-state levels and on their site of generation.  相似文献   

4.
Transient receptor potential melastatin 7 (TRPM7) is a Ca2+- and Mg2+-permeable nonselective cation channel that contains a unique carboxyl-terminal serine/threonine protein kinase domain. It has been reported that reactive oxygen species associated with hypoxia or ischemia activate TRPM7 current and then induce Ca2+ overload resulting in neuronal cell death in the brain. In this study, we aimed to investigate the molecular mechanisms of TRPM7 regulation by hydrogen peroxide (H2O2) using murine TRPM7 expressed in HEK293 cells. Using the whole-cell patch-clamp technique, it was revealed that the TRPM7 current was inhibited, not activated, by the application of H2O2 to the extracellular solution. This inhibition was not reversed after washout or treatment with dithiothreitol, suggesting irreversible oxidation of TRPM7 or its regulatory factors by H2O2 under whole-cell recording. Application of an electrophile, N-methylmaleimide (NMM), which covalently modifies cysteine residues in proteins, also inhibited TRPM7 current irreversibly. The effects of H2O2 and NMM were dependent on free [Mg2+]i; the inhibition was stronger when cells were perfused with higher free [Mg2+]i solutions via pipette. In addition, TRPM7 current was not inhibited by H2O2 when millimolar ATP was included in the intracellular solution, even in the presence of substantial free [Mg2+]i, which is sufficient for TRPM7 inhibition by H2O2 in the absence of ATP. Moreover, a kinase-deficient mutant of TRPM7 (K1645R) was similarly inhibited by H2O2 just like the wild-type TRPM7 in a [Mg2+]i- and [ATP]i-dependent manner, indicating no involvement of the kinase activity of TRPM7. Thus, these data suggest that oxidative stress inhibits TRPM7 current under pathological conditions that accompany intracellular ATP depletion and free [Mg2+]i elevation.  相似文献   

5.
Following oxidative stress, modifications of several biologically important macromolecules have been demonstrated. In this study we investigated the effect of a natural extract from Mangifera indica L (Vimang), its main ingredient mangiferin and epigallocatechin gallate (EGCG) on energy metabolism, energy state and malondialdehyde (MDA) production in a red blood cell system. Analysis of MDA, high energy phosphates and ascorbate was carried out by high performance liquid chromatography (HPLC). Under the experimental conditions, concentrations of MDA and ATP catabolites were affected in a dose-dependent way by H2O2. Incubation with Vimang (0.1, 1, 10, 50 and 100 μg/mL), mangiferin (1, 10, 100 μg/mL) and EGCG (0.01, 0.1, 1, 10 μM) significantly enhances erythrocyte resistance to H2O2-induced reactive oxygen species production. In particular, we demonstrate the protective activity of these compounds on ATP, GTP and total nucleotides (NT) depletion after H2O2-induced damage and a reduction of NAD and ADP, which both increase because of the energy consumption following H2O2 addition. Energy charge potential, decreased in H2O2-treated erythrocytes, was also restored in a dose-dependent way by these substances. Their protective effects might be related to the strong free radical scavenging ability described for polyphenols.  相似文献   

6.
Oxidative stress has been demonstrated to be involved in the etiology of several neurobiological disorders. Sonic hedgehog (Shh), a secreted glycoprotein factor, has been implicated in promoting several aspects of brain remodeling process. Mitochondria may play an important role in controlling fundamental processes in neuroplasticity. However, little evidence is available about the effect and the potential mechanism of Shh on neurite outgrowth in primary cortical neurons under oxidative stress. Here, we revealed that Shh treatment significantly increased the viability of cortical neurons in a dose-dependent manner, which was damaged by hydrogen peroxide (H2O2). Shh alleviated the apoptosis rate of H2O2-induced neurons. Shh also increased neuritogenesis injuried by H2O2 in primary cortical neurons. Moreover, Shh reduced the generation of reactive oxygen species (ROS), increased the activities of SOD and and decreased the productions of MDA. In addition, Shh protected mitochondrial functions, elevated the cellular ATP levels and amelioratesd the impairment of mitochondrial complex II activities of cortical neurons induced by H2O2. In conclusion, all these results suggest that Shh acts as a prosurvival factor playing an essential role to neurite outgrowth of cortical neuron under H2O2 -induced oxidative stress, possibly through counteracting ROS release and preventing mitochondrial dysfunction and ATP as well as mitochondrial complex II activities against oxidative stress.  相似文献   

7.
There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2.  相似文献   

8.
Photodynamic therapy (PDT) is generally based on the generation of highly reactive singlet oxygen (1O2) through interactions of photosensitizer, light, and oxygen (3O2). These three components are highly interdependent and dynamic, resulting in variable temporal and spatial 1O2 dose deposition. Robust dosimetry that accounts for this complexity could improve treatment outcomes. Although the 1270 nm luminescence emission from 1O2 provides a direct and predictive PDT dose metric, it may not be clinically practical. We used 1O2 luminescence (or singlet oxygen luminescence (SOL)) as a gold-standard metric to evaluate potentially more clinically feasible dosimetry based on photosensitizer bleaching. We performed in vitro dose-response studies with simultaneous SOL and photosensitizer fluorescence measurements under various conditions, including variable 3O2, using the photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC). The results show that SOL was always predictive of cytotoxicity and immune to PDT's complex dynamics, whereas photobleaching-based dosimetry failed under hypoxic conditions. However, we identified a previously unreported 613 nm emission from mTHPC that indicates critically low 3O2 levels and can be used to salvage photobleaching-based dosimetry. These studies improve our understanding of PDT processes, demonstrate that SOL is a valuable gold-standard dose metric, and show that when used judiciously, photobleaching can serve as a surrogate for 1O2 dose.  相似文献   

9.
Yan G  Hua Z  Du G  Chen J 《Current microbiology》2006,52(3):238-242
The adaptive and cross-protection responses to oxidants were investigated in Bacillus sp. F26. The cells were treated with sublethal concentrations of either H2O2 or menadione (a superoxide-generating agent) to induce an adaptive response. The results showed that the cells treated with menadione exhibited cross-protection against, but in another case, those cells treated with H2O2 did not show significant resistance to menadione. It suggests that Bacillus sp. F26 possesses two separate adaptive responses that respond to the two different kinds of oxidants. The adaptability is regarded as that which is accompanied by the inductions of some antioxidant enzymes. It was found that catalase (CAT) production was increased about 1.6-fold after treatment with 600 μM H2O2, whereas the presence of 50 μM menadione induced CAT, superoxide dismutase (SOD), glucose-6-phosphate dehydrogenase (G6PD), and glutathione reductase (GR) by 2-, 2-, 2-, and 1.6-fold, respectively. The results can be used to explain why menadione-treated cells have higher adaptability to lethal concentrations of oxidants than that of those H2O2-treated. In addition, it was found that growing Bacillus sp. F26 in high-salinity media causes it to become more resistant to H2O2 and menadione stress, which may be partially due to the induction of CAT and SOD production under high NaCl concentration.  相似文献   

10.
H2O2 is a widespread molecule in many biological systems. It is created enzymatically in living cells during various oxidation reactions and by leakage of electrons from the electron transport chains. Depending on the concentration H2O2 can induce cell protective responses, programmed cell death, or necrosis. Here we provide evidence that H2O2 may function as a developmental signal in the differentiation of secondary walls in cotton (Gossypium hirsutum) fibers. Three lines of evidence support this conclusion: (a) the period of H2O2 generation coincided with the onset of secondary wall deposition, (b) inhibition of H2O2 production or scavenging the available H2O2 from the system prevented the wall differentiation process, and (c) exogenous addition of H2O2 prematurely promoted secondary wall formation in young fibers. Furthermore, we provide support for the concept that H2O2 generation could be mediated by the expression of the small GTPase Rac, the accumulation of which was shown previously to be strongly induced during the onset of secondary wall differentiation. In support of Rac's role in the activation of NADPH oxidase and the generation of reactive oxygen species, we transformed soybean (Glycine max) and Arabidopsis cells with mutated Rac genes. Transformation with a dominantly activated cotton Rac13 gene resulted in constitutively higher levels of H2O2, whereas transformation with the antisense and especially with dominant-negative Rac constructs decreased the levels of H2O2.  相似文献   

11.
Agmatine, at concentrations of 10 μM or 100 μM, is able to induce oxidative stress in rat liver mitochondria (RLM), as evidenced by increased oxygen uptake, H2O2 generation, and oxidation of sulfhydryl groups and glutathione. One proposal for the production of H2O2 and, most probably, other reactive oxygen species (ROS), is that they are the reaction products of agmatine oxidation by an unknown mitochondrial amine oxidase. Alternatively, by interacting with an iron-sulfur center of the respiratory chain, agmatine can produce an imino radical and subsequently the superoxide anion and other ROS. The observed oxidative stress causes a drop in ATP synthesis and amplification of the mitochondrial permeability transition (MPT) induced by Ca2+. Instead, 1 mM agmatine generates larger amounts of H2O2 than the lower concentrations, but does not affect RLM respiration or redox levels of thiols and glutathione. Indeed, it maintains the normal level of ATP synthesis and prevents Ca2+-induced MPT in the presence of phosphate. The self-scavenging effect against ROS production by agmatine at higher concentrations is also proposed.  相似文献   

12.
This study aimed to compare the effects of 8-week self-paced high-intensity interval training (HIIT) vs. self-paced moderate-intensity continuous training (MICT) on the physical performance and psychophysiological responses of young adults. Twenty-eight recreationally active young adults (age: 21.1 ± 1.6 years) were randomly assigned to either the self-paced HIIT (n = 14) or the MICT (n = 14) group training protocol. The HIIT consisted of two 12–24 x 30 seconds of high-intensity runs interspersed by 30 seconds of recovery. The MICT completed 24–48 minutes of continuous running. Before and after the 8-week interventions the following tests were completed: maximum oxygen consumption (V̇O2max) estimated from the Yo-Yo Intermittent Recovery Test level 1 (YYIRTL-1), repeated sprint ability (RSA), 10–30-m sprint test, change of direction test (T-drill), countermovement jump (CMJ) and squat jump (SJ), and triple hop distance test (THD). Training rating of perceived exertion (RPE) and physical activity enjoyment scale (PACES) were assessed during the training programme. The HIIT resulted in greater improvement in YYIRTL-1, V̇O2max, RSA and T-drill performances compared to the MICT. Furthermore, RPE and PACES values were higher in the HIIT than the MICT. This study suggested that self-paced HIIT may be a more effective training regime to improve aerobic fitness with greater physical enjoyment in recreationally active young adults.  相似文献   

13.
Coronatine [COR] is a novel type of plant growth regulator with similarities in structure and property to jasmonate. The objective of this study was to examine the relationship between increased root vitality induced by 10nM COR and reactive oxygen species scavenging under potassium (K)-replete (2.5mM) and K-deficient (0.05mM) conditions in hydroponic cultured cotton seedlings. K-replete and K-deficient conditions increased root vitality by 2.7- and 3.5-fold, respectively. COR treatment significantly decreased lipid peroxidation in cotton seedlings determined by reduction in MDA levels. These results suggest that COR improves the functioning of both enzymatic and non-enzymatic antioxidant systems. Under K-replete and K-deficient conditions, COR significantly increased the activities of antioxidant enzymes SOD (only for K-repletion), CAT, GPX, and APX comparing; COR also significantly increased DPPH-radical scavenging activity. However, COR led to 1.6- and 1.7-fold increases in superoxide anion (O2•-) concentrations, and 5.7- and 2.1-fold increases in hydrogen peroxide (H2O2) levels, respectively. Additionally, COR intensified the DAB staining of H2O2 and the NBT staining of O2•-. Therefore, our results reveal that COR-induced ROS accumulation stimulates the activities of most antioxidant enzymes but does not induce oxidative stress in cotton roots.  相似文献   

14.
Unbalanced endoplasmic reticulum (ER) homeostasis (ER stress) leads to increased generation of reactive oxygen species (ROS). Disulfide-bond formation in the ER by Ero1 family oxidases produces hydrogen peroxide (H2O2) and thereby constitutes one potential source of ER-stress-induced ROS. However, we demonstrate that Ero1α-derived H2O2 is rapidly cleared by glutathione peroxidase (GPx) 8. In 293 cells, GPx8 and reduced/activated forms of Ero1α co-reside in the rough ER subdomain. Loss of GPx8 causes ER stress, leakage of Ero1α-derived H2O2 to the cytosol, and cell death. In contrast, peroxiredoxin (Prx) IV, another H2O2-detoxifying rough ER enzyme, does not protect from Ero1α-mediated toxicity, as is currently proposed. Only when Ero1α-catalyzed H2O2 production is artificially maximized can PrxIV participate in its reduction. We conclude that the peroxidase activity of the described Ero1α–GPx8 complex prevents diffusion of Ero1α-derived H2O2 within and out of the rough ER. Along with the induction of GPX8 in ER-stressed cells, these findings question a ubiquitous role of Ero1α as a producer of cytoplasmic ROS under ER stress.  相似文献   

15.
Epithelia express oxidative antimicrobial protection that uses lactoperoxidase (LPO), hydrogen peroxide (H2O2), and thiocyanate to generate the reactive hypothiocyanite. Duox1 and Duox2, found in epithelia, are hypothesized to provide H2O2 for use by LPO. To investigate the regulation of oxidative LPO-mediated host defense by bacterial and inflammatory stimuli, LPO and Duox mRNA were followed in differentiated primary human airway epithelial cells challenged with Pseudomonas aeruginosa flagellin or IFN-γ. Flagellin upregulated Duox2 mRNA 20-fold, but upregulated LPO mRNA only 2.5-fold. IFN-γ increased Duox2 mRNA 127-fold and upregulated LPO mRNA 10-fold. DuoxA2, needed for Duox2 activity, was also upregulated by flagellin and IFN-γ. Both stimuli increased H2O2 synthesis and LPO-dependent killing of P. aeruginosa. Reduction of Duox1 by siRNA showed little effect on basal H2O2 production, whereas Duox2 siRNA markedly reduced basal H2O2 production and resulted in an 8-fold increase in Nox4 mRNA. In conclusion, large increases in Duox2-mediated H2O2 production seem to be coordinated with increases in LPO mRNA and, without increased LPO, H2O2 levels in airway secretion are expected to increase substantially. The data suggest that Duox2 is the major contributor to basal H2O2 synthesis despite the presence of greater amounts of Duox1.  相似文献   

16.
The redox dye methylene blue (MB) is proven to have beneficial effects in various models of neurodegenerative diseases. Here we investigated the effects of MB (100 nM, 300 nM, and 1 μM) on key bioenergetic parameters and on H2O2 production/elimination in isolated guinea pig brain mitochondria under normal as well as respiration-impaired conditions. As measured by high-resolution Oxygraph the rate of resting oxygen consumption was increased, but the ADP-stimulated respiration was unaffected by MB with any of the substrates (glutamate malate, succinate, or α-glycerophosphate) used for supporting mitochondrial respiration. In mitochondria treated with inhibitors of complex I or complex III MB moderately but significantly increased the rate of ATP production, restored ΔΨm, and increased the rate of Ca2+ uptake. The effects of MB are consistent with transferring electrons from upstream components of the electron transport chain to cytochrome c, which is energetically favorable when the flow of electrons in the respiratory chain is compromised. On the other hand, MB significantly increased the production of H2O2 measured by Amplex UltraRed fluorimetry under all conditions, in resting, ATP-synthesizing, and respiration-impaired mitochondria, with each substrate combination supporting respiration. Furthermore, it also decreased the elimination of H2O2. Generation of H2O2 without superoxide formation, observed in the presence of MB, is interpreted as a result of reduction of molecular oxygen to H2O2 by the reduced MB. The elevated generation and impaired elimination of H2O2 should be considered for the overall oxidative state of mitochondria treated with MB.  相似文献   

17.
In this paper a few calcium-manganese oxides and calcium-manganese minerals are studied as catalysts for water oxidation. The natural mineral marokite is also studied as a catalyst for water oxidation for the first time. Marokite is made up of edge-sharing Mn3+ in a distorted octahedral environment and eight-coordinate Ca2+ centered polyhedral layers. The structure is similar to recent models of the oxygen evolving complex in photosystem II. Thus, the oxygen evolving complex in photosystem II does not have an unusual structure and could be synthesized hydrothermally. Also in this paper, oxygen evolution is studied with marokite (CaMn2O4), pyrolusite (MnO2) and compared with hollandite (Ba0.2Ca0.15K0.3Mn6.9Al0.2Si0.3O16), hausmannite (Mn3O4), Mn2O3.H2O, CaMn3O6.H2O, CaMn4O8.H2O, CaMn2O4.H2O and synthetic marokite (CaMn2O4). I propose that the origin of the oxygen evolving complex in photosystem II resulted from absorption of calcium and manganese ions that were precipitated together in the archean oceans by protocyanobacteria because of changing pH from ~5 to ~8-10. As reported in this paper, amorphous calcium-manganese oxides with different ratios of manganese and calcium are effective catalysts for water oxidation. The bond types and lengths of the calcium and manganese ions in the calcium-manganese oxides are directly comparable to those in the OEC. This primitive structure of these amorphous calcium-manganese compounds could be changed and modified by environmental groups (amino acids) to form the oxygen evolving complex in photosystem II.  相似文献   

18.
Reactive oxygen species (ROS) are produced in response to many environmental stresses, such as UV, chilling, salt and pathogen attack. These stresses also accompany leaf abscission in some plants, however, the relationship between these stresses and abscission is poorly understood. In our recent report, we developed an in vitro abscission system that reproduces stress-induced pepper leaf abscission in planta. Using this system, we demonstrated that continuous production of hydrogen peroxide (H2O2) is involved in leaf abscission signaling. Continuous H2O2 production is required to induce expression of the cell wall-degrading enzyme, cellulase and functions downstream of ethylene in abscission signaling. Furthermore, enhanced production of H2O2 occurs at the execution phase of abscission, suggesting that H2O2 also plays a role in the cell-wall degradation process. These data suggest that H2O2 has several roles in leaf abscission signaling. Here, we propose a model for these roles.Key words: leaf abscission, reactive oxygen species, H2O2, in vitro, ethylene, auxin, pepper, NADPH oxidase  相似文献   

19.
Both the wild type and an isogenic hydrogenase-negative mutant of Azorhizobium caulinodans growing ex planta on N2 as the N source were studied in succinate-limited steady-state chemostat cultures under 0.2 to 3.0% dissolved O2 tension. Production or consumption of O2, H2, and CO2 was measured with an on-line-connected mass spectrometer. In the range of 0.2 to 3.0%, growth of both the wild type and the mutant was equally dependent on the dissolved O2 tension: the growth yield decreased, and the specific O2 consumption and CO2 production increased. A similar dependency on the dissolved O2 tension was found for the mutant with 2.5% H2 in the influent gas. The H2/N2 ratio (moles of H2 evolved per mole of N2 consumed via nitrogenase) of the mutant, growing with or without 2.5% H2, increased with increasing dissolved O2 tensions. This increase in the H2/N2 ratio was small but significant. The dependencies of the ATP/N2 ratio (moles of ATP consumed per mole of N2 fixed) and the ATP/2e- ratio [moles of ATP consumed per mole of electron pairs transferred from NAD(P)H to nitrogenase] on the dissolved O2 tension were estimated. These dependencies were interpreted in terms of the physiological concepts of respiratory protection and autoprotection.  相似文献   

20.
Abstract: Oxidative insult elicited by hydrogen peroxide (H2O2) was previously shown to increase the basal intracellular Ca2+ concentration in synaptosomes. In the present study, the effect of H2O2 on the depolarization-evoked [Ca2+] signal was investigated. Pretreatment of synaptosomes with H2O2 (0.1–1 mM) augmented the [Ca2+] rise elicited by high K+ depolarization with essentially two alterations, the sudden sharp rise of [Ca2+]i due to K+ depolarization is enhanced and, instead of a decrease to a stable plateau, a slow, steady rise of [Ca2+]i follows the peak [Ca2+]i. H2O2 in the same concentration range lowered the ATP level and the [ATP]/[ADP] ratio. When carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) (1 µM) or rotenone (2 µM)/oligomycin (10 µM) was applied initially to block mitochondrial ATP production, the lowered [ATP]/[ADP] ratio was further reduced by subsequent addition of 0.5 mM H2O2. The decline of the [ATP]/[ADP] ratio was parallel with but could not explain the enhanced K+-evoked [Ca2+]i signal, indicated by experiments in which the [ATP]/[ADP] ratio was decreased by FCCP (0.1 µM) or rotenone (2 µM) to a similar value as by H2O2 without causing any alteration in the [Ca2+]i signal. These results indicate that H2O2-evoked oxidative stress, in its early phase, gives rise to a complex dysfunction in the Ca2+ homeostasis and, parallel with it, to an impaired energy status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号