首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This study aimed to assess mutations in GJB2 gene (connexin 26), as well as A1555G mitochondrial mutation in both the patients with profound genetic nonsyndromic hearing loss and healthy controls. Ninety-five patients with profound hearing loss (>90 dB) and 67 healthy controls were included. All patients had genetic nonsyndromic hearing loss. Molecular analyses were performed for connexin 26 (35delG, M34T, L90P, R184P, delE120, 167delT, 235delC and IVS1+1 A-->G) mutations, and for mitochondrial A1555G mutation. Twenty-two connexin 26 mutations were found in 14.7% of the patients, which were 35delG, R184P, del120E and IVS1+1 A-->G. Mitochondrial A1555G mutation was not encountered. The most common GJB2 gene mutation was 35delG, which was followed by del120E, IVS1+1 A-->G and R184P, and 14.3% of the patients segregated with DFNB1. In consanguineous marriages, the most common mutation was 35delG. The carrier frequency for 35delG mutation was 1.4% in the controls. 35delG and del120E populations, seems the most common connexin 26 mutations that cause genetic nonsyndromic hearing loss in this country. Nonsyndromic hearing loss mostly shows DFNB1 form of segregation.  相似文献   

2.
Mutations in the GJB2 (connexin 26-Cx26) gene are responsible for 20-50% of cases with prelingual non-syndromic deafness in a large part of the world including Turkey. Although most of the cases with Cx26 deafness have a recessive mode of inheritance, a small group of families demonstrated dominant or pseudodominant inheritance. In this report we present a Turkish family in which the proband had congenital profound deafness and was found to be homozygous for the 35delG mutation, whereas the father and a paternal uncle who had milder, late-onset sensorineural hearing loss had compound heterozygous 35delG and L90P mutations. This family and previous reports with the L90P mutation demonstrate that the hearing loss associated with the L90P/35delG genotype is consistently milder than that of 35delG homozygotes. GJB2 gene screening should be considered in families with seemingly dominant inheritance and late-onset moderate hearing loss.  相似文献   

3.
Mutations in the GJB2 (Connexin 26) gene are responsible for more than half of all cases of prelingual, recessive, inherited, nonsyndromic deafness in Europe. This paper presents a mutation analysis of the GJB2 and GJB6 (Connexin 30) genes in 30 Greek Cypriot patients with sensorineural nonsyndromic hearing loss compatible with recessive inheritance. Ten of the patients (33.3%) had the 35delG mutation in the GJB2 gene. Moreover, 9 of these were homozygous for the 35delG mutation, whereas 1 patient was in the compound heterozygous state with the disease causing E47X nonsense mutation. Another patient with severe sensorineural hearing loss was heterozygous for the V153I missense mutation. Finally, no GJB6 mutations or the known del(GJB6-D13S1830) were identified in any of the investigated Greek Cypriot nonsyndromic hearing loss patients. This work confirms that the GJB2 35delG mutation is an important pathogenic mutation for hearing loss in the Greek Cypriot population. This finding will be used toward the effective diagnosis of nonsyndromic hearing loss, improve genetic counseling, and serve as a potential therapeutic platform in the future for the affected patients in Cyprus.  相似文献   

4.
GJB2 mutations and degree of hearing loss: a multicenter study   总被引:2,自引:0,他引:2       下载免费PDF全文
Hearing impairment (HI) affects 1 in 650 newborns, which makes it the most common congenital sensory impairment. Despite extraordinary genetic heterogeneity, mutations in one gene, GJB2, which encodes the connexin 26 protein and is involved in inner ear homeostasis, are found in up to 50% of patients with autosomal recessive nonsyndromic hearing loss. Because of the high frequency of GJB2 mutations, mutation analysis of this gene is widely available as a diagnostic test. In this study, we assessed the association between genotype and degree of hearing loss in persons with HI and biallelic GJB2 mutations. We performed cross-sectional analyses of GJB2 genotype and audiometric data from 1,531 persons, from 16 different countries, with autosomal recessive, mild-to-profound nonsyndromic HI. The median age of all participants was 8 years; 90% of persons were within the age range of 0-26 years. Of the 83 different mutations identified, 47 were classified as nontruncating, and 36 as truncating. A total of 153 different genotypes were found, of which 56 were homozygous truncating (T/T), 30 were homozygous nontruncating (NT/NT), and 67 were compound heterozygous truncating/nontruncating (T/NT). The degree of HI associated with biallelic truncating mutations was significantly more severe than the HI associated with biallelic nontruncating mutations (P<.0001). The HI of 48 different genotypes was less severe than that of 35delG homozygotes. Several common mutations (M34T, V37I, and L90P) were associated with mild-to-moderate HI (median 25-40 dB). Two genotypes--35delG/R143W (median 105 dB) and 35delG/dela(GJB6-D13S1830) (median 108 dB)--had significantly more-severe HI than that of 35delG homozygotes.  相似文献   

5.
A total of 111 unrelated probands and their 8 sibs from Grodno oblast (Belarus) with bilateral isolated sensorineural hearing impairment were studied for the presence of mutations in the connexin 26 (GJB2) gene. Mutations were detected in 51 probands (46% of the sample). A significantly higher frequency of the GJB2 gene mutations was observed in familial cases of the disease with the autosomal recessive mode of inheritance (in 78% of families). Detected characteristics of the GJB2 gene mutation spectrum demonstrated that the using the algorithm, which was designed for Russian patients, is optimal for the molecular study of patients from Belarus. In the sample of patients with hearing loss, the highest (among other similar samples studied in the world) allele frequency of c.313_326del14 mutation (7% of all pathological GJB2 alleles) was registered; Polish origin of this deletion was suggested. It was demonstrated that detection of the GJB2 gene mutation on one patient’s chromosome only is insufficient to confirm a molecular genetic diagnosis of hearing loss of the DFNB1 genetic type (autosomal recessive hearing loss caused by the GJB2 gene mutations). Pilot screening for the GJB2 gene mutations in newborns from Grodno oblast was performed. The material from 235 children was studied during the screening; nine heterozygous carriers of the mutation were found. The c.35delG mutation was detected in a homozygous state in a single newborn (hearing loss of moderate severity was subsequently audiologically confirmed in this child).  相似文献   

6.
Hereditary hearing loss is a genetically heterogeneous disorder. Mutations in connexin 26 (CX26), are a major cause in many countries and are largely dependent on ethnic groups. The purpose of our study was to evaluate the prevalence of GJB2 mutations among affected individuals from south of Iran. Fifty patients presenting with autosomal recessive non-syndromic hearing loss from Fars, province in south of Iran, were studied for mutations in GJB2 gene and screened by direct sequencing. Mutations were detected in 15 out of 50 patients (30?%). Eight different mutations were identified; six of them were previously identified (35delG, V27I M34V, V153I, A149T, V198M). The remaining two alleles, L28I and N169T, were novel variants. The most common mutations were 35delG followed by V153I with an allele frequency of 7 and 6?%, respectively. In this study, 30?% of our subjects were found to have the causative variants or polymorphisms in GJB2 and the c.35delG mutation was the most common cause in our patients. However, more study with larger sample size as well as in vitro functional study for these new variants in Xenopus oocytes is required.  相似文献   

7.
Thirty-two genes causing non-syndromic hearing impairment (NSHI) have been cloned, including GJB2 and GJB6 encoding the gap junction subunits connexin 26 and connexin 30, respectively. One mutation in GJB2, 35delG, accounts for a large percentage of GJB2 hearing impairment in Southern Europe whereas a considerably lower frequency has been reported from Northern European populations. Recently, a 342-kb deletion implicating GJB6 was found in 22 out of 44 NSHI patients of Spanish origin with only one mutated allele of GJB2. We report the first study of GJB2 and GJB6 mutations in Danish patients with NSHI. We tested 165 individuals and found GJB2 mutations in 16 individuals. The deletion implicating GJB6 was found in two individuals out of 9 heterozygous for GJB2 mutation. Furthermore, we screened 509 unselected samples from the Danish newborn population for the 35delG mutation in GJB2. We found 9 samples heterozygous for 35delG and 11 samples heterozygous for mutations leading to amino acid variants in GJB2 protein. In conclusion, our data are in accordance with results from other Northern European populations. Furthermore, our data on the GJB6 deletion suggest that routine screening for this deletion could help to explain hearing impairment in some Northern European NSHI patients heterozygous for a mutation in GJB2.  相似文献   

8.
The prevalence of connexin 26 ( GJB2) mutations in the Chinese population   总被引:35,自引:0,他引:35  
Mutations in GJB2, encoding gap junction beta 2 protein (connexin 26), are responsible for the commonest form of non-syndromic recessive deafness in many populations. It has been reported recently that the most common 35delG mutation in GJB2 is exceptionally low in Japanese and Korean populations, but another deletion, 235delC, is relatively frequent. Since the Chinese constitute approximately one fifth of the global population, the frequency of GJB2 mutations in the population has important implications for understanding worldwide causes of genetic deafness. To determine whether GJB2 mutations are an important cause of deafness in Chinese, we conducted mutation screening for GJB2 in 118 deaf Chinese probands, including 60 from simplex and 58 from multiplex families with non-syndromic deafness, and 150 normal hearing Chinese controls. Four mutations, including 235delC, 299-300delAT, V37I, and 35delG, were found in the patients. Thirty-nine percent of the probands had a GJB2mutation. Of the 118 probands, 19 carried two definitely pathogenic mutations: three among the 58 multiplex cases (5.2%) and 16 among the 60 simplex cases (26.7%). Twenty-seven probands (22.9%) were found to carry only single GJB2 mutations. None of them had mutations in exon 1 of GJB2 and or the 342-kb deletion of GJB6. The 235delC mutation was the most prevalent mutation (20.3% of alleles), accounting for 81% of the pathologic alleles in multiplex cases and 67% in simplex cases. Analysis of the affected haplotypes in the patients with the homozygous 235delC mutation yielded evidence for a single origin of the mutation. The carrier frequency of the 235delC mutation in control subjects with normal hearing was 1.3%. The 35delG mutation was only noted as a heterozygous change in two simplex cases (1.2% of alleles). These results indicated that mutations in GJB2 are a major cause of inherited and sporadic congenital deafness in the Chinese population. The 235delC mutation, rather than 35delG, is the most common mutation found in the Chinese deaf population. Our data support the view that specific combinations of GJB2 mutation exist in different populations.  相似文献   

9.
In some Palestinian communities, the prevalence of inherited prelingual deafness is among the highest in the world. As an initial step towards understanding the genetic causes of hearing loss in the Palestinian population, 48 independently ascertained probands with non-syndromic hearing loss were evaluated for mutations in the connexin 26 gene. Of the 48 deaf probands, 11 (23%) were homozygous or compound heterozygous for mutations in GJB2. Five different mutations were identified: ivs1(+1) G-->A, 35delG, 167delT, T229C, 235delC. Nine deaf probands were homozygous and only two compound heterozygous. Among 400 hearing Palestinian controls, one carrier was observed (for 167delT). We show that GJB2 ivs1(+1) G-->A disrupts splicing, yielding no detectable message. Linkage disequilibrium analysis suggests, in the Palestinian and Israeli populations, a common origin of the 35delG mutation, which is worldwide, and of 167delT, which appears specific to Israeli Ashkenazi and Palestinian populations. A high prevalence of deafness, high frequency of homozygosity rather than compound heterozygosity among deaf, and low mutation carrier frequency together reflect the high levels of consanguinity of many extended Palestinian families. Some of the 25 families with multiple cases of inherited prelingual deafness and wildtype GJB2 sequences may represent as-yet-unknown genes for inherited hearing loss.  相似文献   

10.
Mutations of GJB2 (encoding connexin 26) are the most common cause of hearing loss (HL) in different populations, and a broad spectrum of GJB2 mutations has been identified. We screened 204 consecutive patients with non-syndromic sensorineural hearing loss for GJB2 mutations. Causative GJB2mutations were identified in 31 (15.2%) patients, and two common mutations, c.35delG and L90P (c.269T>C), accounted for 72.1% and 9.8% of GJB2 disease alleles. In four additional patients (2.0%) only one recessive GJB2 mutation was identified, making genetic counselling difficult. No genotype-phenotype correlation was established. We found, however, that homozygotes for truncating mutations were more likely to have a more severe degree of HL compared with other genotypes. Moreover, we showed by co-segregation studies that L90P is a GJB2 disease allele, and that compound heterozygotes for L90P and any recessive mutation share a mild to moderate phenotype. GJB2-associated HL was linked with progressive HL or with recurrent sudden sensorineural hearing loss (SSNHL) in three of 15 cases being analysed retrospectively. We extended the phenotypic spectrum of GJB2-related disease and recommend GJB2 mutation screening also in cases of progressive HL, and recurrent SSNHL. In addition, a carrier frequency of 1/110 (0.9%) for the most common Caucasian mutation in this gene, c.35delG, was determined in 1,212 blood donors from West-Austria, supporting the prevailing hypothesis of a Mediterranean founder mutation. Based on population and patient data, an overall GJB2 mutation carrier frequency of 1.3% was estimated for West-Austria.  相似文献   

11.
Mutations in the GJB2 gene are the most common cause of nonsyndromic autosomal recessive sensorineural hearing loss (HL). A few mutations in GJB2 have also been reported to cause dominant nonsyndromic HL. Here we report a large inbred family including two individuals with nonsyndromic sensorineural hearing loss. A dominant GJB2 mutation, c.551G>A (p.R184Q), was detected in the proband, yet his parents were negative for the mutation. The second affected person had heterozygous c.35delG mutation, which was inherited from his father. Large deletions of the GJB6 gene were not detected in this family. This study highlights the importance of mutation analysis in all affected cases within a pedigree.  相似文献   

12.
The hearing loss caused by GJB2 mutations is usually congenital in onset, moderate to profound in degree, and non-progressive. The objective of this study was to study genotype/phenotype correlations and to document 14 children with biallelic GJB2 mutations who passed newborn hearing screening (NHS). Genetic testing for GJB2 mutations by direct sequencing was performed on 924 individuals (810 families) with hearing loss, and 204 patients (175 families) were found to carry biallelic GJB2 mutations. NHS results were obtained through medical records. A total of 18 pathological mutations were identified, which were subclassified as eight inactivating and 10 non-inactivating mutations. p.I128M and p.H73Y were identified as novel missense GJB2 mutations. Of the 14 children with biallelic GJB2 mutations who passed NHS, eight were compound heterozygotes and 3 were homozygous for the c.235delC mutation in GJB2, and the other three combinations of non-c.235delC mutations identified were p.Y136X-p.G45E/p.V37I heterozygous, c.512ins4/p.R143W heterozygous, and p.V37I/p.R143W heterozygous. These 14 cases demonstrate that the current NHS does not identify all infants with biallelic GJB2 mutations. They suggest that the frequency of non-penetrance at birth is approximately 6.9% or higher in DFNB1 patients and provide further evidence that GJB2 hearing loss may not always be congenital in onset.  相似文献   

13.
Mutations in the GJB2 gene (connexin 26) represent a major cause of autosomal recessive non-syndromic hearing loss (NSHL) worldwide. In most Caucasian populations, the 35delG mutation in this gene was found to account for up to 50% of cases of the genetic non-syndromic childhood deafness. In populations of non-European ethnic background, other GJB2 gene mutations are occasionally common, e.g. 167delT in Ashkenazi Jews, R143W in Africaans and 235delC in Koreans. In this work, DNA samples from 54 unrelated NSHL patients from endogamous and inbred population of Slovak Roms (Gypsies) from Eastern Slovakia were screened for GJB2 mutations. The coding region of the GJB2 gene of patients was sequenced and mutations W24X, R127H, V153I, L90P and V37I were found. In Slovak Romany population, mutation W24X accounts for 23.2%, R127H for 19.4%, 35delG for 8.3%, V153I for 3.7%, L90P for 3.7% and V37I for 0.9% of screened chromosomes. As the W24X mutation was previously found in India and Pakistan, were from the European Romanies originate, it was brought by the European Romnanies from their Indian homeland. The carrier frequency of 35delG was estimated for Slovak non-Romany population to be 3.3%, and for Slovak Romany population to 0.88%. The carrier frequency of W24X varied in different Slovak Romany subpopulations from 0.0% up to 26.1%.  相似文献   

14.
Genetic analysis of hereditary deafness (HD) has been performed in the city of Kirov and ten rural districts of Kirov oblast (administrative region). The analysis employed the methods used in audiology, medical genetic counseling, and DNA diagnosis. Deafness has been established to be hereditary in 143 children from 100 unrelated families. The incidence rates of isolated and syndromic HDs in the period studied (1995-2001) have been estimated at 1.25 and 0.36 per 1000 newborns, respectively, the total incidence rate of all HD forms being 1.61 per 1000 newborns (1 case per 621 newborns). DNA analysis for the detection of seven frequent mutations in the genes GJB2 (the 35delG, 167delT, 235delC, and M34T mutations), GJB6 (the del(GJB6-D13S1854) and del(GJB6-D13S1830) mutations), and TMC1 (the R34X mutation) has been performed in families with isolated neurosensory deafness. Molecular genetic analysis has detected mutations in 51 children (48.6%); in 54 children (51.4%), no mutations have been found. The following genotypes have been identified in children with HD: 35delG/35delG in 32 probands (30.5%), 35delG/+ in 16 probands (15.2%), 35delG/235delC in 1 proband (0.95%), M34T/+ in 1 proband (0.95%), and M34T/35delG in 1 proband (0.95%). The 167delT mutation has not been found. The frequency of the 35delG mutation in the GJB2 gene has been estimated to be 39.05%. In the group with a family history of HD, mutations have been found in 66.7% of patients; in the group without a family history of HD, in 37.5% of patients. No mutation has been found in the GJB6 or TMC1 gene. Molecular genetic analysis has been performed in a family with clinically diagnosed Treacher Collins-Franceschetti syndrome. Sequencing has been used to find the 748-69C>T polymorphism in intron 6 (in the homozygous state) and the 3635C>G mutation in exon 23 leading to the substitution of glycine for alanine at position 1176 of the amino acid sequence (Ala1176Gly, in the heterozygous state), which have not been described before.  相似文献   

15.
Hearing loss is the most frequent sensory disorder. It affects 3 in 1000 newborns. It is genetically heterogeneous with 60 causally-related genes identified to date. Mutations in GJB2 gene account for half of all cases of non-syndromic deafness. The aim of this study was to determine the relative frequency of GJB2 allele variants in Tunisia. In this study, we screened 138 patients with congenital hearing loss belonging to 131 families originating from different parts of Tunisia for mutations in GJB2 gene. GJB2 mutations were found in 39% of families (51/131). The most common mutation was c.35delG accounting for 35% of all cases (46/131). The second most frequent mutation was p.E47X present in 3.8% of families. Four identified mutations in our cohort have not been reported in Tunisia; p.V37I, c.235delC, p.G130A and the splice site mutation IVS1+1G>A (0.76%). These previously described mutations were detected only in families originating from Northern and not from other geographical regions in Tunisia. In conclusion we have confirmed the high frequency of c.35delG in Tunisia which represents 85.4% of all GJB2 mutant alleles. We have also extended the mutational spectrum of GJB2 gene in Tunisia and revealed a more pronounced allelic heterogeneity in the North compared to the rest of the country.  相似文献   

16.
The most common cause of nonsyndromic autosomal recessive hearing loss is mutations in GJB2. The mutation spectrum and prevalence of mutations vary significantly among ethnic groups, and the relationship between p.V37I mutation in GJB2 and the hearing phenotype is controversial. Among the 3,864 patients in this study, 106 (2.74%) had a homozygous p.V37I variation or a compound p.V37I plus other GJB2 pathogenic mutation, a frequency that was significantly higher than that in the control group (600 individuals, 0%). The hearing loss phenotype ranged from mild to profound in all patients with the homozygous p.V37I variation or compound p.V37I plus other GJB2 pathogenic mutation. There was no difference in the distribution of the hearing level in the group with the homozygous p.V37I variation and the group with the compound p.V37I variation plus pathogenic mutation. Most patients (66.04%) with the V37I-homozygous variation or p.V37I plus other pathogenic mutation had a mild or moderate hearing level. This study found a definite relationship between p.V37I and deafness, and most patients who carried the pathogenic combination with p.V37I mutation had mild or moderate hearing loss. Therefore, otolaryngologists should consider that the milder phenotype might be caused by the GJB2 p.V37I mutation.  相似文献   

17.
Genetic analysis of hereditary deafness (HD) has been performed in the city of Kirov and ten rural districts of Kirov oblast (administrative region). The analysis employed the methods used in audiology, medical genetic counseling, and DNA diagnosis. Deafness has been established to be hereditary in 143 children from 100 unrelated families. The incidence rates of isolated and syndromic HDs in the period studied (1995–2001) have been estimated at 1.25 and 0.36 per 1000 newborns, respectively, the total incidence rate of all HD forms being 1.61 per 1000 newborns (1 case per 621 newborns). DNA analysis for the detection of seven frequent mutations in the genes GJB2 (the 35delG, 167delT, 235delC, and M34T mutations), GJB6 (the del(GJB6-D13S1854) and del(GJB6-D13S1830) mutations), and TMC1 (the R34X mutation) has been performed in families with isolated neurosensory deafness. Molecular genetic analysis has detected mutations in 51 children (48.6%); in 54 children (51.4%), no mutations have been found. The following genotypes have been identified in children with HD: 35delG/35delG in 32 probands (30.5%), 35delG/+ in 16 probands (15.2%), 35delG/235delC in 1 proband (0.95%), M34T/+ in 1 proband (0.95%), and M34T/35delG in 1 proband (0.95%). The 167delT mutation has not been found. The frequency of the 35delG mutation in the GJB2 gene has been estimated to be 39.05%. In the group with a family history of HD, mutations have been found in 66.7% of patients; in the group without a family history of HD, in 37.5% of patients. No mutation has been found in the GJB6 or TMC1 gene. Molecular genetic analysis has been performed in a family with clinically diagnosed Treacher Collins-Franceschetti syndrome. Sequencing has been used to find the 748–69C>T polymorphism in intron 6 (in the homozygous state) and the 3635C>G mutation in exon 23 leading to the substitution of glycine for alanine at position 1176 of the amino acid sequence (Ala1176Gly, in the heterozygous state), which have not been described before.  相似文献   

18.
Hearing loss is the most frequent sensory defect in human being. The 13q11-q12 region contains the GJB2 and GJB6 genes, which code connexin 26 (CX26) and connexin 30 (CX30) proteins, respectively. The 35delG, 167delT, and 235delC mutations in the Cx26 gene are the main cause for sporadic nonsyndromic hearing loss (NSHL) in many populations. The 342-kb deletion [del(GJB6-D13S1830)] of the Cx30 gene is the second most common connexin mutation after the 35delG mutation in some NSHL populations. In our study 47 hearing-impaired students were included. The Cx26 gene and the Cx30 gene were analyzed for presence of the 35delG, 167delT, and 342-kb deletion [del(GJB6-D13S1830)]. Genotyping were performed for detecting 35delG, 167delT, and del(GJB6-D13S1830) mutations using the PCR-ELISA techniques. According to the results obtained from 47 cases, the 35delG mutation was detected in 7 cases ( approximately 14.9%). Four of these mutations were determined as homozygote mutant ( approximately 8.5%), and three were determined as heterozygote mutant ( approximately 6.4%). However, 167delT and del(GJB6-D13S1830) mutations were not detected in the study group. These results support the overwhelming majority of 35delG in our study group from deafness school in our study. In conclusion, the 35delG mutation was determined as the most frequently shown mutation that leads to congenital hearing loss as in previous studies from Turkey.  相似文献   

19.
Mutations of GJB2, which encodes connexin 26, are the most common cause of hereditary hearing loss in many human populations. This study was initiated to determine the prevalence of GJB2 mutations in individuals with hearing loss from the Hazara Division in Pakistan. We recruited 70 participants with nonsyndromic deafness segregating as an apparently recessive trait and directly sequenced the GJB2 coding region from their DNA. The homozygous mutations c.71 G→A (p.W24X), c.104 T→G (p.I35S), and c.35delG (p.G12VfsX1) were identified as the cause of hearing loss in three participants (4.28%); in populations from other areas of Pakistan, frequencies of 6–7% have been observed. The mutations c.104 T→G and c.35delG were identified in Pakistan for the first time. These results confirm the low prevalence of GJB2 mutations in Hazara and suggest that mutations in other genes may play a significant role in the etiology of deafness in this population.  相似文献   

20.
Mitochondrial DNA mutations are undoubtedly a factor that contributes to sensorineural, non-syndromic deafness. One specific mutation, the A1555G, is associated with both aminoglycoside-induced and non-syndromic hearing impairment. The mutation is considered to be the most common of all mitochondrial DNA deafness-causing mutations but its frequency varies between different populations. Here we report on the first large screening of the A1555G mitochondrial DNA mutation in the Greek population. The aim of this study was to determine the frequency of the A1555G mutation in Greek sensorineural, non-syndromic deafness patients, with childhood onset. We screened 478 unrelated Greek patients with hearing loss of any degree and found two individuals harboring the A1555G mutation (0.42%). Both cases had been subjected to aminoglycosides. They were prelingual, familial and homoplasmic for the A1555G mutation. One of the cases was also found heterozygous for the frequent GJB2 35delG mutation, while the other case was negative. The A1555G mutation seems to be less common than in other European populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号