首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
Genetic variation within and among six populations of Juniperus excelsa M. Bieb., in a common garden in Lakes District of Turkey, was analyzed using four nuclear microsatellite primer pairs originally developed for J. communis. A total of five loci were observed as Jc037 amplified two distinct size ranges. The number of alleles observed for the species varied from 2 to 13, with an average of 4.5 alleles per locus. The mean expected heterozygosity (H e) of populations was 0.584, after correction for null alleles. The mean F IS value (?0.014) was close to zero showing no significant deviation from Hardy–Weinberg equilibrium. A low level of genetic differentiation was observed among populations (F ST = 0.028; p < 0.001) and Nei’s genetic distance ranged from 0.014 to 0.120 between population pairs. Furthermore, there was no significant correlation between genetic distances on the one hand and geographic distances and trait differentiation on the other hand. However, the eastern populations Bey?ehir and Sorgun showed very similar genotypic structures and were differentiated from all other populations. A continuous monitoring of phenotypic traits and the association between nucleotide variation in functional genes and adaptive traits such as drought and frost tolerance of J. excelsa populations in common gardens will be useful to design effective conservation strategies in the future.  相似文献   

2.
Cattle are the most important livestock in India and play a pivotal role in agrarian economy. There are 34 recognized breeds of cattle and number of unexplored lesser known populations. The present study is a contribution towards determining genetic Variation and understanding the relationship among four lesser known populations. A total of 194 unrelated DNA samples from three cattle populations of Orissa (Binjharpuri, Ghumsuri, Motu) and Hill cattle of Kumaun (Kumauni) were collected from respective breeding tracts. Genotyping was done with 23 bovine microsatellite markers as suggested by International Society for Animal Genetics (ISAG) and FAO (DAD-IS) on automated sequencer. The average observed heterozygosity in the four populations lie within the narrow range of 0.623 ± 0.04 in Binjharpuri to 0.664 ± 0.03 in Kumauni. Mean estimates of observed and expected heterozygosity over all loci and breeds were 0.651 ± 0.02 and 0.720 ± 0.01, respectively. In the overall population, the homozygote excess (F IT) of 0.132 ± 0.03, was partly due to the genetic differentiation among breeds (F ST = 0.044 ± 0.01) and, to a larger extent, to a significant homozygote excess within breeds (F IS = 0.094 ± 0.03). The phylogenetic reconstruction from a UPGMA clustering based on Nei??s Standard genetic distance yielded a tree with Binjharpuri and Ghumsuri on a single node and Motu and Kumauni on separate nodes. The most probable clustering detected by STRUCTURE in population was three. Binjharpuri and Ghumsuri animals were assigned to one cluster with high proportion of membership.  相似文献   

3.
Anopheles darlingi Root is a primary vector of malaria in the neotropic region, a species not just highly anthropophilic but very efficient in transmitting Plasmodium species and considered the most important vector in the Amazon region. The main goal of this study was to determine the genetic structure of the A. darlingi populations using microsatellites (STR) in western and eastern regions of Colombia. DNA extraction was done with the cited protocol of band using the Genomic Prep? cell and tissue isolation commercial kits. We used the STR reported by Conn et al (Mol Ecol Notes 1: 223-225, 2001). The analysis with STR proved there was a high genetic diversity and significant alterations of the Hardy-Weinberg equilibrium. The greatest genetic diversity was recorded in Mitu (Vaupes) (Na = 14, Ho = 0.520). The lowest was in Pueblo Nuevo (Cordoba) (Na = 12, Ho = 0.457). The eastern region and the Mitu (Vaupes) populations presented the highest number of primer alleles (Ap = 30; Ap = 13; Ap = 9), with variations between 0.010 and 0.097. The AMOVA revealed that the whole population underwent moderate genetic differentiation (F ST = 0.063, p < 0.05). The same differentiation was noticed (0.06 < F ST > 0.06, p < 0.05) with five of the six populations included in this job, and there was a low differentiation in the Las Margaritas (Santander) area (F ST = 0.02s3, p < 0.05). Our results suggest a slight positive correlation, which does not show a statistical significance between the geographic and genetic distances, probably suggesting that the moderate genetic differentiation found between pairs of populations does not need to be explained for the hypothesis of separation by distance.  相似文献   

4.
5.
The aim of the present study was to estimate the genetic intra-breed variability of Churra tensina and Churra lebrijana endangered breeds and to establish genetic relationships with Churra, Latxa and Merino breeds, as well as Spanish mouflon, by using 28 microsatellite markers, to provide useful information for their conservation. Allele frequencies and heterozygosity revealed high genetic variation in the two endangered breeds despite their small population size. Estimates of inbreeding coefficient (FIS) were significant for all breeds studied, except for Churra lebrijana breed. The highest inbreeding coefficient (FIS = 0.143) was found in the Spanish mouflon. Genetic differentiation tests (FST = 0.121) and assignment of individuals to populations indicated the existence of defined breed populations, and low genetic flow between these breeds. The highest pairwise Reynolds distance (DR) values were observed between Mouflon and the domestic sheep breeds. Considering only domestic sheep breeds, the Churra lebrijana breed showed the highest pairwise DR values. The lowest values were found between Latxa and the other domestic sheep, except for Churra lebrijana. Results of pairwise DR values, as well as phylogenetic tree and bottleneck analysis showed an important genetic isolation of the Churra lebrijana breed from the other Churra types, and genetic signatures of a demographic bottleneck. Finally, structure analysis of populations detected a population subdivision in the Latxa sheep breed. In conclusion, this study presents valuable insight into the existing genetic variability of two Spanish endangered breeds, as well as the first study in Spanish mouflon based on microsatellite analysis. The high degree of variability demonstrated in Churra tensina and Churra lebrijana implies that these populations are rich reservoirs of genetic diversity.  相似文献   

6.
Domestic animals are unique in that they have been organised into managed populations called breeds. The strength of genetic divergence between breeds may vary dependent on the age of the breed, the scenario under which it emerged and the strength of reproductive isolation it has from other breeds. In this study, we investigated the Gulf Coast Native breed of sheep to determine if it contains lines of animals that are sufficiently divergent to be considered separate breeds. Allele sharing and principal component analysis (PCA) using nearly 50,000 SNP loci revealed a clear genetic division that corresponded with membership of either the Florida or Louisiana Native lines. Subsequent analysis aimed to determine if the strength of the divergence exceeded that found between recognised breed pairs. Genotypes from 14 breeds sampled from Europe and Asia were used to obtain estimates of pair-wise population divergence measured as F ST. The divergence separating the Florida and Louisiana Native (F ST = 6.2%) was approximately 50% higher than the average divergence separating breeds developed within the same region of Europe (F ST = 4.2%). This strongly indicated that the two Gulf Coast Native lines are sufficiently different to be considered separate breeds. PCA using small SNP sets successfully distinguished between the Florida and Louisiana Native animals, suggesting that allele frequency differences have accumulated across the genome. This is consistent with a population history involving geographic separation and genetic drift. Suggestive evidence was detected for divergence at the poll locus on sheep chromosome 10; however drift at neutral markers has been the largest contributor to the genetic separation observed. These results document the emergence of populations that can be considered separate breeds, with practical consequences for bio-conservation priorities, animal registration and the establishment of separate breed societies.  相似文献   

7.
Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.  相似文献   

8.
Primula apennina Widmer is endemic to the North Apennines (Italy). ISSR were used to detect the genetic diversity within and among six populations representative of the species distribution range. High levels of genetic diversity were revealed both at population percentage of polymorphic band (PPB = 75.92%, H S = 0.204, H pop = 0.319) and at species level (PPB = 96.95%, H T = 0.242, H sp = 0.381). Nei gene diversity statistics (15.7%), Shannon diversity index (16.3%) and AMOVA (14%) detected a moderate level of interpopulation diversity. Principal coordinate and Bayesian analyses clustered the populations in three major groups along a geographic gradient. The correlation between genetic and geographic distances was positive (Mantel test, r = 0.232). All together, these analyses revealed a weak but significant spatial genetic structure in P. apennina, with gene flow acting as a homogenizing force that prevents a stronger differentiation of populations. Conservation measures are suggested based on the observed pattern of genetic variability.  相似文献   

9.
Understanding existing levels of genetic variability of camel populations is capital for conservation activities. This study aims to provide information on the genetic diversity of four dromedary populations, including Guerzni, Harcha, Khouari and Marmouri. Blood samples from 227 individuals belonging to the aforementioned populations were obtained and genotyped by 16 microsatellite markers. A total of 215 alleles were observed, with the mean number of alleles per locus being 13.4 ± 6.26. All loci were polymorphic in the studied populations. The average expected heterozygosity varied from a maximum of 0.748 ± 0.122 in Guerzni population to a minimum of 0.702 ± 0.128 in Harcha population; Guerzni population showed the highest value of observed heterozygosity (0.699 ± 0.088), whereas Harcha population the lowest (0.646 ± 0.130). Mean estimates of F-statistics obtained over loci were FIS = 0.0726, FIT = 0.0876 and FST = 0.0162. The lowest genetic distance was obtained between Guerzni and Khouari (0.023), and the highest genetic distance between Harcha and Marmouri (0.251). The neighbour-joining phylogenetic tree showed two groups of populations indicating a cluster of Guerzni, Khouari and Marmouri, and a clear isolation of Harcha. The genetic distances, the factorial correspondence analysis, the analysis of genetic structure and the phylogenetic tree between populations revealed significant differences between Harcha and other populations, and a high similarity between Guerzni, Khouari and Marmouri. It is concluded from this study that the camel genetic resources studied are well diversified. However, the herd management, especially the random selection of breeding animals, can increase the level of genetic mixing between different populations, mainly among Guerzni, Khouari and Marmouri, that live in the same habitat and grazing area.  相似文献   

10.
Abstract

We used inter-simple sequence repeat (ISSR) markers to investigate genetic variation in eight natural populations of Elephantopus scaber from South China, including Guangdong, Hainan and Hong Kong. Eleven primers produced 247 bands across all 184 individuals, of which 243 (98.4%) were polymorphic. The average genetic diversity at the species and population levels was estimated to be 0.283 and 0.103, respectively, using mean expected heterozygosity. The average gene differentiation (F ST) among populations was 0.725. AMOVA analysis showed that the partition of molecular variation between and within populations was 72.5% and 27.5%, respectively. The effective number of migrants among populations based on the F ST was relatively low (N m = 0.095). Cluster analysis based on Nei's genetic distance and the neighbour-joining method revealed the genetic relationships among the populations of E. scaber. The Mantel test indicated that there was no significant correlation between population genetic and geographic distances. The results obtained from the AMOVA analysis, the cluster analysis, and the Mantel test all suggested that fragmented local environments and human disturbance might play important roles in shaping the population structure of E. scaber.  相似文献   

11.
Tricholoma matsutake, a wild edible ectomycorrhizal mushroom, is revered for its distinguished flavor and iconic significance. Here, we test for landscape effects on T. matsutake gene flow and population structure in the Eastern Himalayas. Using single-nucleotide polymorphic (SNP) DNA markers, isolation by distance patterns were tested on eight populations within and between watersheds. We find that high, treeless ridgelines are effective barriers to gene flow, even at distances less than 65 km, whereas populations located within watersheds are structured at greater distances. Mantel tests demonstrated a significant positive correlation between F st and a “landscape distance” measured as the shortest distance between population pairs below treeline r = 0.574, P = 0.002, whereas strict euclidian distances do not correlate. AMOVA analysis revealed significant partitioning with 91% of the genetic variance found within populations and 7% found between watersheds, indicative of sexually recombining populations with limited gene flow between watersheds. We show that landscape is an important determinant of air-dispersed ectomycorrhizal species population structure in heterogeneous landscapes.  相似文献   

12.
Saruma henryi Oliv., the only representative of the monotypic genus Saruma Oliv. (Aristolochiaceae), is an endangered perennial herb endemic to China. It is a phylogenetically, ecologically, and medicinally important species. In the present study, inter-simple sequence repeat (ISSR) markers were employed to investigate the genetic diversity and differentiation of 14 populations. A total of 16 selected primers yielded 175 bright and discernible bands, with an average of 10.94 per primer. POPGENE analysis showed that the genetic diversity was quite low at the population level (h = 0.0447–0.1243; I = 0.0642–0.1853; PPB = 10.29–36.57%), but pretty high at the species level (h = 0.2603; I = 0.3857; PPB = 73.71%). The hierarchical analysis of molecular variance (AMOVA) revealed a high level of genetic differentiation among populations (67.18% of total variance components, P < 0.001), in line with the gene differentiation coefficient (G ST = 0.6903) and the limited among-population gene flow (N m = 0.2243). Both Principal Coordinates Analysis (PCoA) and UPGMA cluster analysis supported the grouping of all 14 populations into three geographic groups, among which there occurred a moderate level of genetic differentiation (33.18% of total variance components, P < 0.001) as shown by AMOVA analysis. In addition, Mantel test revealed a significant correlation between genetic and geographic distances among populations (r = 0.7792, P = 0.001), indicating the role of geographic isolation in shaping its present population genetic structure. The present levels and patterns of genetic diversity of S. henryi were assumed to result largely from its breeding system, geographic isolation, clonal growth, its unique biological traits and evolutionary history. The high genetic differentiation among populations implies that the conservation efforts should aim to preserve all the extant populations of this endangered herb.  相似文献   

13.
When habitat becomes fragmented, populations of species may become increasingly isolated. In the absence of habitat corridors, genetic structure may develop and populations risk reductions in genetic diversity from increased genetic drift and inbreeding. Deforestation of the Cerrado biome of Brazil, particularly of the dry forests within the Paranã River Basin, has incrementally occurred since the 1970s and increased forest fragmentation within the region. We performed landscape genetic analyses of Pfrimer’s parakeet (Pyrrhura pfrimeri), a globally endangered endemic to the region, to determine if forest fragmentation patterns were associated with genetic structuring in this species. We used previously generated satellite imagery that identified the locations of Paranã River Basin forest fragments in 1977, 1993/94, and 2008. Behavioral data quantifying the affinity of Pfrimer’s parakeet for forest habitat was used to parameterize empirically derived landscape conductance surfaces. Though genetic structure was observed among Pfrimer’s parakeet populations, no association between genetic and geographic distance was detected. Likewise, least cost path lengths, circuit theory-based resistance distances, and a new measure of least cost path length complexity could not be conclusively associated with genetic structure patterns. Instead, a new quantity that encapsulated connection redundancy from the 1977 forest fragmentation data provided the clearest associations with pairwise genetic differentiation patterns (Jost’s D: r = 0.72, P = 0.006; FST: r = 0.741, P = 0.001). Our analyses suggest a 35-year or more lag between deforestation and its effect on genetic structure. Because 66 % of the Paranã River Basin has been deforested since 1977, we expect that genetic structure will increase substantially among Pfrimer’s Parakeet populations in the future, especially if fragmentation continues at its current pace.  相似文献   

14.
Wallachian and Sumava sheep are autochthonous breeds that have undergone a significant bottleneck effect and subsequent restoration efforts. The first objective of this study was to evaluate the degree of genetic variability of both breeds and, therefore, the current management of the breeding. The second was to determine whether these two breeds still retain their genetic uniqueness in relation to each other and other breeds, despite regenerative interventions. Our data consisted of 48 individuals of Sumava and 37 individuals of Wallachian sheep. The comparison data contained 25 other breeds (primarily European) from the HapMap dataset generated by the International Sheep Genomics Consortium. When comparing all 27 breeds, the Czech breeds clustered with 15 other breeds and formed a single branch with them according to Nei's distances. At the same time, however, the clusters of both breeds were integral and easily distinguishable from the others when displayed with principal component analysis (PCA). Population substructure analysis did not show any common genetic ancestry of the Czech national breeds and breeds used for regeneration or, eventually, breeds whose ancestral population was used for regeneration. The average values of FST were higher in Wallachian sheep (FST = 0.14) than in Sumava sheep (FST = 0.08). The linkage disequilibrium (LD) extension per autosome was higher in Wallachian than in Sumava sheep. Consequently, the Ne estimates five generations ago were 68 for Sumava versus 34 for Wallachian sheep. Both native Czech breeds exhibit a wide range of inbreeding based on the excess of homozygosity (FHOM) among individuals, from ?0.04 to 0.16 in Sumava and from ?0.13 to 0.12 in Wallachian. Average inbreeding based on runs of homozygosity was 0.21 in Sumava and 0.27 in Wallachian. Most detected runs of homozygosity (ROH) were less than 5 Mb long for both breeds. ROH segments longer than 15 Mb were absent in Wallachian sheep. Concerning putative selection signatures, a total of 471 candidate genes in Wallachian sheep within 11 hotspots and 653 genes within 13 hotspots in Sumava sheep were identified. Czech breeds appear to be well differentiated from each other and other European breeds. Their genetic diversity is low, especially in the case of the Wallachian breed. Sumava is not so threatened by low diversity but has a larger share of the non-native gene pool.  相似文献   

15.
Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat‐tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7–22) and by the high within‐breed expected heterozygosity (average 0.75, range 0.72–0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between‐population component, and by the small fixation index (FST = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within‐breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes, are discussed.  相似文献   

16.
In the present study, we characterized nucleotide variations of the Pinus monticola class IV endochitinase (PmCh4) family. Using primers targeting at conserved amino acid motifs of plant class IV endochitinases, genomic DNA was amplified. Sequence data analysis identified five novel genes in the PmCh4 family with one pseudogene. Single nucleotide polymorphisms of the PmCh4 family were surveyed in seven open-pollinated seed lots representing diverse geographical distribution. Variable levels of average pairwise nucleotide diversity (π = 0.00422–0.02079) and relatively high levels of haplotype diversity (H d = 0.85–0.96) were revealed at PmCh4 loci. Based on nucleotide variation, P. monticola populations were clustered into two main groups by phylogenetic analysis based on Nei’s genetic distance. The Mantel test revealed no correlation between geographical and genetic distances (r = ?0.11, P = 0.59). A further SNP genetic diversity study on more P. monticola populations throughout Western North America may help the design of sampling regimes for tree breeding, genetic conservation and assisted migration under climate change.  相似文献   

17.
Indigenous Chinese goat mtDNA is highly diverse but lacks geographic specificity; however, whether gene flow or gene exchange contributed to this remains unknown. We reanalyzed a consensus fragment of 481 bp in the D-loop region from 339 individuals. The network and neighbor-joining tree revealed three divergent maternal haplogroups (A, B1, and B2) in 17 local breeds. Although high polymorphism resulting in 198 different haplotypes was observed (h = 0.984 ± 0.002; π = 0.0336 ± 0.0008), neither the distribution of haplotypes nor PCA analysis revealed any obvious geographic structure in the local breeds. Extensive gene flow was widely detected among breeds from southwest China. High levels of gene exchange were detected between Qianbei Brown goats and the other breeds, indicating either more contribution or introgression to their gene pools. This study will be helpful in understanding the phylogeography and gene flow among the goat breeds of southwest China.  相似文献   

18.
Studies linking genetic structure in amphibian species with ecological characteristics have focused on large differences in dispersal capabilities. Here, we test whether two species with similar dispersal potential but subtle differences in other ecological characteristics also exhibit strong differences in genetic structure in the same landscape. We examined eight microsatellites in marbled salamanders (Ambystoma opacum) from 29 seasonal ponds and spotted salamanders (Ambystoma maculatum) from 19 seasonal ponds in a single geographic region in west-central Massachusetts. Despite overall similarity in ecological characteristics of spotted and marbled salamanders, we observed clear differences in the genetic structure of these two species. For marbled salamanders, we observed strong overall genetic differentiation (F ST = 0.091, F′ ST = 0.375), three population-level clusters of populations (K = 3), a strong pattern of isolation by distance (r = 0.58), and marked variation in family-level structure (from 1 to 23 full-sibling families per site). For spotted salamanders, overall genetic differentiation was weaker (F ST = 0.025, F′ ST = 0.102), there was no evidence of population-level clustering (K = 1), the pattern of isolation by distance (r = 0.17) was much weaker compared to marbled salamanders, and there was less variation in family-level structure (from 10 to 36 full-sibling families per site). We suspect that a combination of breeding site fidelity, effective population size, and generation interval is responsible for these marked differences. Our results suggest that marbled salamanders, compared to spotted salamanders, are more sensitive to fragmentation from various land-use activities and would be less likely to recolonize extirpated sites on an ecologically and conservation-relevant time frame.  相似文献   

19.
Raddia brasiliensis forms a species complex with the recently segregated R. megaphylla, R. lancifolia, R. soderstromii and R. stolonifera, occurring in the Atlantic rainforest, Brazil. Allozymic markers were used in 272 individuals of 14 populations of this group to investigate its genetic variability, correlating this with morphological variability, and testing the proposed taxonomy based on multivariate morphometrics. Genetic variability was low in almost all populations (P = 22.2–66.7, = 1.3–2.0, H e=0.04–0.17). R. brasiliensis showed a very high endogamy (F IS = 0.329). Values for genetic and morphological structuring were very high to high (F ST = 0.43, A MRPP = 0.22; F ST = 0.19, A MRPP = 0.10 and F ST = 0.18, A MRPP = 0.39), respectively, for R. brasiliensis, R. soderstromii and R. megaphylla. The lowest genetic identity between populations was also found in R. brasiliensis, and the highest morphological differentiation was found between populations of R. megaphylla. Allozymic and morphological data were congruent and complementary, and confirm that we are dealing with five distinct species as previously circumscribed.  相似文献   

20.
Assessment of genetic diversity in indigenous animals is an important and essential task for animal genetic improvement studies as well as conservation decision-making. The genetic diversity and evolutionary relationships among geographically and phenotypically distinct three pig breeds/types native to Indo-Burma and Eastern Himalayan global biodiversity hotspots were determined by genotyping with a panel of 22 ISAG recommended microsatellite loci as well as sequencing partial MTRNR1gene. The mean number of alleles per locus, effective number of alleles and observed heterozygosity were found to be 11.27 ± 0.85, 5.29 ± 0.34, and 0.795 ± 0.01, respectively. The moderate FST value (0.115 ± 0.01) indicated a fair degree of genetic differentiation among the native breeds. The Nei’s unbiased genetic identity estimates indicated less genetic distance (0.2909) between Niang Megha and Tenyi Vo pigs than the both individually with Ghoongroo breed. The divergence time was also estimated from the microsatellite analysis. Analysis of MTRNR1gene revealed distinct clustering of native Indian pigs with Chinese pigs over European pigs. The study revealed the abundance of genetic variation within native Indian pigs and their relationships as well as genetic distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号