首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The inclusion of protein contaminants into crystals of turkey egg white lysozyme (TEWL) was investigated by electrospray mass spectrometry of the dissolved crystals. The results show that significant amounts of the structurally related contaminant hen egg white lysozyme (HEWL) are included in the crystals of TEWL. The structurally unrelated contaminant RNAse A, on the other hand, is not included. The X-ray diffraction data statistics of a hybrid TEWL/HEWL crystal and an uncontaminated TEWL crystal were of similar quality. This indicates that, even though the crystals contain much higher levels of the contaminant than one would have expected after a recrystallization experiment, they are still suitable for X-ray diffraction experiments. However, attempts to detect the presence of the contaminant in the crystal by crystallographic structure refinement did not yield conclusive results.  相似文献   

2.
Li B  Huang Y  Paskewitz SM 《FEBS letters》2006,580(7):1877-1882
We report a kinetics study on hen egg white lysozyme's (HEWL) inhibitory effect on mushroom tyrosinase catalysis of 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA) or L-tyrosine. For the first time, we demonstrate HEWL as a robust inhibitor against mushroom tyrosinase in catalysis of both substrates. The kinetics pattern matches a mixed (mostly non-competitive) partial inhibition. Ki and ID50 value of HEWL are more than 20-fold lower than that of kojic acid, a well-known chemical inhibitor of mushroom tyrosinase. Ki, alpha value and beta value, are almost identical in both experiments (L-DOPA and L-tyrosine as substrates, respectively), which suggests this common inhibition mechanism affects both steps. The inhibitory effect increases as both proteins were mixed and pre-incubated for less than 1 h. HEWL-depletion only removed about half of the inhibitory effect. Here we propose a novel function of HEWL, which combines the reversible inhibition and the irreversible inactivation toward mushroom tyrosinase. Discovery of HEWL as an inhibitor to mushroom tyrosinase catalysis may be commercially valuable in the food, medical and cosmetic industries.  相似文献   

3.
The present study details the binding process of clofazimine to hen egg white lysozyme (HEWL) using spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), and molecular docking techniques. Clofazimine binds to the protein with binding constant (Kb) in the order of 1.57?×?104 at 298 K. Binding process is spontaneous and exothermic. Molecular docking results suggested the involvement of hydrogen bonding and hydrophobic interactions in the binding process. Bacterial cell lytic activity in the presence of clofazimine increased to more than 40% of the value obtained with HEWL only. Interaction of the drug with HEWL induced ordered secondary structure in the protein and molecular compaction. Clofazimine also effectively inhibited the sodium dodecyl sulfate (SDS) induced amyloid formation in HEWL and caused disaggregation of preformed fibrils, reinforcing the notion that there is involvement of hydrophobic interactions and hydrogen bonding in the binding process of clofazimine with HEWL and clofazimine destabilizes the mature fibrils. Further, TEM images confirmed that fibrillar species were absent in the samples where amyloid induction was performed in the presence of clofazimine. As clofazimine is a drug less explored for the inhibition of fibril formation of the proteins, this study reports the inhibition of SDS-induced amyloid formation of HEWL by clofazimine, which will help in the development of clofazimine-related molecules for the treatment of amyloidosis.  相似文献   

4.
Prediction and understanding of the folding and stability of the 3D structure of proteins is still a challenge. The different atomic interactions, such as non polar contacts and hydrogen bonding, are known but their exact relative weights and roles when contributing to protein folding and stability are not identified. Initiated by a previous molecular dynamics simulation of fully ester-linked hen egg white lysozyme (HEWL), which showed a more compact fold of the ester-linked molecule compared to the native one, three variants of this protein are analyzed in the present study. These are 129-residue native HEWL, partly ester-linked HEWL, in which only 34 peptide linkages that are not involved in the helical or β-strand parts of native HEWL were replaced by ester linkages, and fully (126 residues) ester-linked HEWL. Native and partly ester-linked HEWL showed comparable behaviour, whereas fully ester-linked HEWL could not maintain the native secondary structure of HEWL in the simulation and adopted a more compact fold. The conformational changes were analyzed by comparing simulation averaged values of quantities that can be measured by NMR, such as (1)H-(15)N backbone order parameters, residual dipolar couplings, proton-proton NOE distances and (3)J-couplings with the corresponding values derived from experimental NMR data for native HEWL. The information content of the latter appeared to be insufficient to detect the local conformational rearrangements upon esterification of the loop regions of the protein. For fully ester-linked HEWL, a significantly reduced agreement was observed. Upon esterification, the backbone-side chain and side chain-side chain hydrogen-bonding pattern of HEWL changes to maintain its compactness and thus the structural stability of the ester-linked lysozymes.  相似文献   

5.
Sarkar N  Kumar M  Dubey VK 《Biochimie》2011,93(5):962-968
Tissue deposition of fibrillar protein aggregates called amyloid is the root cause of several degenerative diseases. Thus identification of compounds which can prevent or reduce protein aggregation can serve as a potential therapeutic target. In the present study we have shown inhibitory effect of sodium tetrathionate toward Hen egg white lysozyme (HEWL) amyloidogenesis at pH 2.0. Our study reveals that without sulfonation, sodium tetrathionate prevents amyloid fibril progression. Moreover, it shows that formation of disulfide bonds rather than exposure of hydrophobic surface in protein plays a critical role in initiating fibrillation process. Inhibitory effect of reducing agent β-mercaptoethanol toward fibrillation process also confirms the involvement of disulfide bond in initiating HEWL amyloidogenesis. These results provide important information toward understanding key interactions that guide amyloidogenesis, which may facilitate development of potential therapeutics.  相似文献   

6.
It is known that bacteria contain inhibitors of lysozyme activity. The recently discovered Escherichia coli inhibitor of vertebrate lysozyme (Ivy) and its potential interactions with several goose-type (g-type) lysozymes from fish were studied using functional enzyme assays, comparative homology modelling, protein–protein docking, and molecular dynamics simulations. Enzyme assays carried out on salmon g-type lysozyme revealed a lack of inhibition by Ivy. Detailed analysis of the complexes formed between Ivy and both hen egg white lysozyme (HEWL) and goose egg white lysozyme (GEWL) suggests that electrostatic interactions make a dominant contribution to inhibition. Comparison of three dimensional models of aquatic g-type lysozymes revealed important insertions in the β domain, and specific sequence substitutions yielding altered electrostatic surface properties and surface curvature at the protein–protein interface. Thus, based on structural homology models, we propose that Ivy is not effective against any of the known fish g-type lysozymes. Docking studies suggest a weaker binding mode between Ivy and GEWL compared to that with HEWL, and our models explain the mechanistic necessity for conservation of a set of residues in g-type lysozymes as a prerequisite for inhibition by Ivy.  相似文献   

7.
In this study, the fibrillation of hen egg‐white lysozyme (HEWL) in the absence and presence of different concentrations of silybin was studied by thioflavin T spectroscopy, Congo red binding assays, 8‐anilino‐1‐naphthalenesulfonic acid (ANS) fluorescence assay, circular dichroism, and transmission electron microscopy. The experimental results indicated that not only the fibrillation of HEWL at high temperature (65°C) and low pH (pH = 2.0) could be inhibited effectively by silybin but also the inhibition of HEWL by silybin followed a dose‐dependent manner. Molecular docking studies indicated that 2 possible binding modes could be found in the interaction between silybin and HEWL via van der Waals forces and electrostatic forces as well as hydrogen bonding. One of these 2 conformations was directly entered into the cavity of HEWL (binding site I); the other was bound to the surface of HEWL (binding site II). In this way, silybin could not only increase the hydrophobicity of the cavity or the surface of HEWL but also influence the microenvironment of the binding site, which was able to stabilize the structure of HEWL and delay the process of HEWL fibrosis.  相似文献   

8.
The structure of lysozyme from guinea hen egg white (GEWL), which differs from hen egg white lysozyme (HEWL) by ten amino acid substitutions, was investigated by nuclear magnetic resonance (NMR) spectroscopy. GEWL and HEWL were very similar to each other in their tertiary structure as judged from the profile of 1H-NMR spectra, pH titration, and an N-acetylglucosamine trisaccharide [(GlcNAc)3 binding experiment. However, we have noticed several characteristics which distinguish GEWL from HEWL. The signal of Trp 108 indole N1H of GEWL was shifted upfield by about 0.3 ppm when compared with that of HEWL, and its hydrogen exchange was faster than that of HEWL. The pKa values of Glu 35 estimated from the pH titration curve of Trp 108 indole N1H were different between GEWL and HEWL. From a careful examination of spectral changes caused by (GlcNAc)3 binding, the changes in the chemical shift values of Trp 28 C5H and Asn 59 alpha CH of GEWL were found to be slightly larger than those of HEWL. Ile 55 of HEWL is replaced by valine in GEWL. Such a replacement may affect the neighboring hydrogen bonding between the main chain C = O of Leu 56 and Trp 108 indole N1H, resulting in a change in the microenvironment of the substrate-binding site near Trp 108.  相似文献   

9.
We have investigated the specificity of six different lysozymes for peptidoglycan substrates obtained by extraction of a number of gram-negative bacteria and Micrococcus lysodeikticus with chloroform/Tris-HCl buffer (chloroform/buffer). The lysozymes included two that are commercially available (hen egg white lysozyme or HEWL, and mutanolysin from Streptomyces globisporus or M1L), and four that were chromatographically purified (bacteriophage lambda lysozyme or LaL, bacteriophage T4 lysozyme or T4L, goose egg white lysozyme or GEWL, and cauliflower lysozyme or CFL). HEWL was much more effective on M. lysodeikticus than on any of the gram-negative cell walls, while the opposite was found for LaL. Also the gram-negative cell walls showed remarkable differences in susceptibility to the different lysozymes, even for closely related species like Escherichia coli and Salmonella Typhimurium. These differences could not be due to the presence of lysozyme inhibitors such as Ivy from E. coli in the cell wall substrates because we showed that chloroform extraction effectively removed this inhibitor. Interestingly, we found strong inhibitory activity to HEWL in the chloroform/buffer extracts of Salmonella Typhimurium, and to LaL in the extracts of Pseudomonas aeruginosa, suggesting that other lysozyme inhibitors than Ivy exist and are probably widespread in gram-negative bacteria.  相似文献   

10.
Understanding of the driving forces of protein folding is a complex challenge because different types of interactions play a varying role. To investigate the role of hydrogen bonding involving the backbone, the effect of thio substitutions in a protein, hen egg white lysozyme (HEWL), was investigated through molecular dynamics simulations of native as well as partly (only residues in loops) and fully thionated HEWL using the GROMOS 54A7 force field. The results of the three simulations show that the structural properties of fully thionated HEWL clearly differ from those of the native protein, while for partly thionated HEWL they only changed slightly compared with native HEWL. The analysis of the torsional-angle distributions and hydrogen bonds in the backbone suggests that the α-helical segments of native HEWL tend to show a propensity to convert to 3(10)-helical geometry in fully thionated HEWL. A comparison of the simulated quantities with experimental NMR data such as nuclear overhauser effect (NOE) atom-atom distance bounds and (3)J((H)(N)(H)(α))-couplings measured for native HEWL illustrates that the information content of these quantities with respect to the structural changes induced by thionation of the protein backbone is rather limited.  相似文献   

11.
Protein folding, natural conformational changes, or interaction between partners involved in recognition phenomena brings about differences in the solvent-accessible surface area (SASA) of the polypeptide chain. This primary event can be monitored by the differential chemical reactivity of functional groups along the protein sequence. Diazirine (DZN), a photoreactive gas similar in size to water, generates methylene carbene (:CH(2)). The extreme chemical reactivity of this species allows the almost instantaneous and indiscriminate modification of its immediate molecular cage. (3)H-DZN was successfully used in our laboratory for studying protein structure and folding. Here we address for the first time the usefulness of this probe to examine the area of interaction in protein-protein complexes. For this purpose we chose the complex formed between hen egg white lysozyme (HEWL) and the monoclonal antibody IgG(1) D1.3. :CH(2) labeling of free HEWL or complexed with IgG(1) D1.3 yields 2.76 and 2.32 mmol CH(2) per mole protein at 1 mM DZN concentration, respectively. This reduction (15%) becomes consistent with the expected decrement in the SASA of HEWL occurring upon complexation derived from crystallographic data (11%), in agreement with the known unspecific surface labeling reaction of :CH(2). Further comparative analysis at the level of tryptic peptides led to the identification of the sites involved in the interaction. Remarkably, those peptides implicated in the contact area show the highest differential labeling: H(15)GLDNYR(21), G(117)TDVQAWIR(125), andG(22)YSLGNWVCAAK(33). Thus, protein footprinting with DZN emerges as a feasible methodology useful for mapping contact regions of protein domains involved in macromolecular assemblies.  相似文献   

12.
NaCl-induced aggregation of hen egg white lysozyme (HEWL) was monitored by NMR spectroscopy. Small, but significant, changes induced by salt addition in TOCSY spectra were attributed to the effect of local reorganization of protein backbone upon ion binding. Salt-induced variations in HN and H alpha chemical shifts were mapped on the HEWL 3D structure which allowed the construction of a scheme of the spatial localization of potential ion binding sites. It was found that in a 0.5 M NaCl solution six chloride anions and at least one sodium cation are bound to preferred sites on the HEWL surface.  相似文献   

13.
Alpha-synuclein (α-syn) aggregation and mitochondrial dysfunction are considered as two of the main factors associated with Parkinson's disease (PD). In the present investigation, the effectiveness of the amyloid fibrils obtained from α-syn with those of hen egg white lysozyme (HEWL), as disease-related and-unrelated proteins, to damage rat brain and rat liver mitochondria have been investigated. This was extended by looking at SH-SY5Y human neuroblastoma cells and erythrocytes, thereby investigating the significance of structural characteristics of amyloid fibrils related to their interactions with biomembranes obtained from various sources. Results presented clearly demonstrate substantial differences in the response of tested biomembranes to toxicity induced by α-syn/HEWL amyloid fibrils, highlighting a structure-function relationship. We found that fibrillar aggregates of α-syn, but not HEWL, caused a significant increase in mitochondrial ROS, loss of membrane potential, and mitochondrial swelling, in a dose-dependent manner. Toxicity was found to be more pronounced in brain mitochondria, as compared to liver mitochondria. For SH-SY5Y cells and erythrocytes, however, both α-syn and HEWL amyloid fibrils showed the capacity to induce toxicity. Taken together, these results may suggest selective toxicity of α-syn amyloid fibrils to mitochondria mediated likely by their direct interaction with the outer mitochondrial membrane, indicating a correlation between specific structural characteristics of α-syn fibrils and an organelle strongly implicated in PD pathology.  相似文献   

14.
Various experimental studies of hen egg white lysozyme (HEWL) in water and TFE/water clearly indicate structural differences between the native state and TFE state of HEWL, e.g. the helical content of the protein in the TFE state is much higher than in the native state. However, the available detailed NMR studies were not sufficient to determine fully a structure of HEWL in the TFE state. Different molecular dynamics (MD) simulations, i.e. at room temperature, at increased temperature and using proton–proton distance restraints derived from NMR NOE data, have been used to generate configurational ensembles corresponding to the TFE state of HEWL. The configurational ensemble obtained at room temperature using atom-atom distance restraints measured for HEWL in TFE/water solution satisfies the experimental data and has the lowest protein energy. In this ensemble residues 50–58, which are part of the β-sheet in native HEWL, adopt fluctuating α-helical secondary structure.  相似文献   

15.
Herein, the binding of 1-methyl-3-octylimidazolium chloride [OMIM][Cl] ionic liquid with hen egg white lysozyme (HEWL) has been studied using fluorescence, time resolved fluorescence, UV–visible and circular dichroism (CD) spectroscopy, in combination with computational study. The fluorescence results revealed that [OMIM][Cl] quenches the fluorophore of HEWL through static quenching mechanism. The calculated thermodynamic parameters show that [OMIM][Cl] bind with HEWL through hydrophobic interactions. In addition, the negative value of Gibbs energy change (?G) indicates that the binding process was spontaneous. Furthermore, UV–vis and CD results indicate that [OMIM][Cl] induce the conformational change in HEWL and increase its enzymatic activity. Additionally, molecular docking results showed that [OMIM][Cl] binds at the active site of HEWL where both the fluorophore residues (Trp108 and Trp62) and the catalytic residues (Glu35 and Asp52) reside. Molecular dynamic simulation results show the reduction of intra-molecular hydrogen bond of HEWL when it binds with [OMIM][Cl].  相似文献   

16.
Summary Curative treatments with antibiotics and hen egg white lysozyme (HEWL) were used to salvage embryo cultures contaminated withBaccillus subtilis. The use of HEWL gave good control ofBaccillus subtilis, but no control ofErwinia. HEWL was better than antibiotics, being much less phytotoxic. The antibiotics piperacillin, ampicillin and imipenem were also found to be ineffective againstErwinia. HEWL, at a final concentration of 1 mg per mL, was used as a preventive and curative agent for routine use in embryo culture ofTriticum aestivum and other Triticeae, as it cured from 30% to 50% of bacterial contamination problems over a one year period. Standardin vitro culture precautions remained essential, as certain bacteria were not controlled by HEWL.  相似文献   

17.
Lysozyme-induced inhibition of the lymphocyte response to mitogenic lectins   总被引:4,自引:0,他引:4  
Both human lysozyme (HL) and hen egg white lysozyme (HEWL) inhibited the proliferative response of peripheral blood lymphocytes to T cell mitogens such as the lectins phytohemagglutinin and concanavalin A. This inhibition was observed both when HL or HEWL was added to the lymphocyte cultures in combination with phytohemagglutinin or concanavalin A and when lymphocytes were pretreated with either lysozyme and extensively washed prior to culture with mitogens. Under both conditions, the effects were strictly dose dependent; the lysozyme concentrations yielding maximal inhibitory effect were 5 micrograms/ml for HL and 1 microgram/ml for HEWL, while both lower and higher concentrations were less effective. Specific antilysozyme rabbit sera completely prevented the inhibitory effects of both HL and HEWL on the proliferative response of lymphocytes to phytohemagglutin or concanavalin A. Chitotriose (a lysozyme inhibitor) caused a strong reduction in the inhibitory effects of the two lysozymes on the lymphocyte response to either lectin. HL and HEWL also were found to markedly inhibit the polyclonal B cell proliferation and differentiation induced by pokeweed mitogen and T cells. A less marked inhibition was also obtained when T cells, but not B cells, were pretreated with HL or HEWL. Again, as in the experiments with T cell mitogens, the effects were dose dependent and 5 micrograms/ml HL and 1 microgram/ml HEWL proved to be the most effective concentrations. The possible mechanisms by which lysozyme inhibits the lymphocyte response to mitogenic lectins are considered and discussed. The enzymatic activity seemed to perform an essential function, as shown by the loss of effect when the heat- or trypsin-inactivated lysozymes were used and by the fact that only the enzymatically active compound, among certain semisynthetic derivatives of HEWL, inhibited the lymphocyte response to the mitogens. However, the cationic properties of the lysozyme molecule appeared to be essential too, since enzymes with a similar specificity of action showed effects similar to those observed with HL or HEWL only when they carried a strong positive charge. It is suggested that lysozyme, which is naturally secreted by monocytes and macrophages, might interact with lymphocyte surface receptor sites and participate in the complex mononuclear phagocyte-lymphocyte interactions and in the modulation of lymphocyte activation.  相似文献   

18.
We have employed nuclear magnetic resonance (NMR) measurements of hydrogen exchange to identify residue-level conformational changes in hen egg white lysozyme (HEWL) as induced by salt precipitation. Deuterated HEWL was dissolved into a phosphate (H2O) buffer and precipitated at pH 2.1 upon addition of solid KSCN or (ND4)2SO4, allowing isotope labeling of unfolded regions. After 1 h, each precipitate was then dissolved at pH 3.8 to initiate refolding and preserve labeling and subsequently purified for NMR analysis. HEWL precipitated by 1.0 M KSCN exhibited increased hydrogen exchange at 14 residues out of 42 normally well-protected in the native state. Of the affected residues, 9 were situated in the beta-sheet/loop domain. A similar, though less extensive, effect was observed at 0.2 M KSCN. Precipitation by 1.2 M (ND4)2SO4 resulted in none of the changes detected with KSCN. The popularity of ammonium sulfate as a precipitant is thus supported by this observed preservation of structural integrity. KSCN, in comparison, produced partial unfolding of specific regions in HEWL due most likely to known preferential interactions between -SCN and proteins. The severity of unfolding increased with KSCN concentration such that, at 1.0 M KSCN, almost the entire beta-sheet/loop domain of HEWL was disrupted. Even so, a portion of the HEWL core encompassed by three alpha-helices remained intact, possibly facilitating precipitate dissolution.  相似文献   

19.
The protein folding kinetics of hen egg white lysozyme (HEWL) was studied using experimental and bioinformatics tools. The structure of the transition state in the unfolding pathway of lysozyme was determined with stopped-flow kinetics using intact HEWL and its chemically modified derivative, in which six lysine residues have been modified. The overall consistency of φ-value (φ ≈ 1) indicates that lysine side chains interactions are subject to breaking in the structure of the transition state. Following experimental evidences, multiple sequence alignment of lysozyme family in vertebrates and exact structural examination of lysozyme, showed that the α-helix in the structure of lysozyme has critical role in the unfolding kinetics.  相似文献   

20.
To understand the role of ATP underlying the enhanced amyloidosis of hen egg white lysozyme (HEWL), the synchrotron radiation circular dichroism, combined with tryptophan fluorescence, dynamic light-scattering, and differential scanning calorimetry, is used to examine the alterations of the conformation and thermal unfolding pathway of the HEWL in the presence of ATP, Mg2+-ATP, ADP, AMP, etc. It is revealed that the binding of ATP to HEWL through strong electrostatic interaction changes the secondary structures of HEWL and makes the exposed residue W62 move into hydrophobic environments. This alteration of W62 decreases the β-domain stability of HEWL, induces a noncooperative unfolding of the secondary structures, and produces a partially unfolded intermediate. This intermediate containing relatively rich α-helix and less β-sheet structures has a great tendency to aggregate. The results imply that the ease of aggregating of HEWL is related to the extent of denaturation of the amyloidogenic region, rather than the electrostatic neutralizing effect or monomeric β-sheet enriched intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号