首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.  相似文献   

2.
We studied the roles of three HOXA genes in cultured normal ovarian surface epithelial (OSE) cells and ovarian cancer cells. They included HOXA4 and HOXA7 because, by cDNA microarray analysis, these were more highly expressed in invasive ovarian carcinomas than in benign or borderline (noninvasive) ovarian tumors, and HOXA9 because it characterizes normal oviductal epithelium, which resembles ovarian serous adenocarcinomas. The three HOXA genes were more highly expressed when OSE cells were dividing and motile than when they were confluent and stationary, and also when they dispersed in response to EGF treatment or to reduced calcium concentrations in culture media. The expression of the HOXA genes varied among ovarian cancer cell lines, but was highest in lines with compact epithelial morphologies. We focused on HOXA4 as the most highly expressed in the ovarian carcinoma array. HOXA4 expression did not parallel proliferative activities of either OSE or ovarian cancer lines. Moreover, modifying HOXA4 expression in ovarian cancer cell lines did not alter either E-cadherin expression or CA125 secretion. However, HOXA4 downregulation enhanced EGFR phosphorylation and migration in serum-starved OSE and ovarian cancer cells in response to EGF, and enhanced migration of all ovarian cancer lines in 5% serum even without EGF treatment. Thus, HOXA4 expression does not correlate with proliferation or with epithelial differentiation, but it increases in response to OSE cell dispersion and negatively regulates EGFR activation and the motility of OSE and of ovarian cancer cells. HOXA4 expression was highest in cancer lines with compact epithelial growth patterns, suggesting, again, an anti-dispersion function. In summary, increased HOXA4 expression in ovarian cancer appears to constitute a tumor-suppressive, homeostatic response to aberrant cell behavior, and, in particular, to cell dispersion and migration.  相似文献   

3.
TNF and epidermal growth factor (EGF) are well-known stimuli of cyclooxygenase (COX)-2 expression, and TNF stimulates transactivation of EGF receptor (EGFR) signaling to promote survival in colon epithelial cells. We hypothesized that COX-2 induction and cell survival signaling downstream of TNF are mediated by EGFR transactivation. TNF treatment was more cytotoxic to COX-2(-/-) mouse colon epithelial (MCE) cells than wild-type (WT) young adult mouse colon (YAMC) epithelial cells or COX-1(-/-) cells. TNF also induced COX-2 protein and mRNA expression in YAMC cells, but blockade of EGFR kinase activity or expression inhibited COX-2 upregulation. TNF-induced COX-2 expression was reduced and absent in EGFR(-/-) and TNF receptor-1 (TNFR1) knockout MCE cells, respectively, but was restored upon expression of the WT receptors. Inhibition of mediators of EGFR transactivation, Src family kinases and p38 MAPK, blocked TNF-induced COX-2 protein and mRNA expression. Finally, TNF injection increased COX-2 expression in colon epithelium of WT, but not kinase-defective EGFR(wa2) and EGFR(wa5), mice. These data indicate that TNFR1-dependent transactivation of EGFR through a p38- and/or an Src-dependent mechanism stimulates COX-2 expression to promote cell survival. This highlights an EGFR-dependent cell signaling pathway and response that may be significant in colitis-associated carcinoma.  相似文献   

4.
5.
6.
Recurrent respiratory papillomas are epithelial tumors of the airway caused by human papillomaviruses. We previously reported that the epidermal growth factor receptor (EGFR) is overexpressed in papilloma cells, that cyclooxygenase-2 (COX-2) is induced, and that COX-2 expression in primary papilloma cells requires activation of the EGFR but not Erk. Rac1, a member of the Rho family of GTPases, is a key signaling element that is known to control multiple pathways downstream of the EGFR. Here we report that Rac1 is overexpressed in papilloma cells compared with normal laryngeal epithelial cells and that the increased levels of Rac1 are mediated by EGFR activation. Transfecting cells with Rac1-specific siRNA suppressed COX-2 expression. Surprisingly, Rac1 mediated phosphorylation of p38 mitogen-activated kinase in papilloma cells but not normal cells, and inhibition of p38 with the specific inhibitor SB202190 suppressed COX-2 expression in papilloma cells but had no effect on low-level COX-2 expression in normal cells. Thus, the signaling cascades that regulate COX-2 expression are different in HPV-infected papilloma cells, with a significant contribution by the EGFR-- Rac1-->p38 pathway.  相似文献   

7.
The myofibroblast has recently been identified as an important mediator of tumor necrosis factor-α (TNF-α)-associated colitis and cancer, but the mechanism(s) involved remains incompletely understood. Recent evidence suggests that TNF-α is a central regulator of multiple inflammatory signaling cascades. One important target of TNF-α may be the signaling pathway downstream of the epidermal growth factor receptor (EGFR), which has been associated with many human cancers. Here, we show that long-term exposure of 18Co cells, a model of human colonic myofibroblasts, with TNF-α led to a striking increase in cell surface EGFR expression, an effect that was completely inhibited by cycloheximide. Subsequent EGFR binding by EGF and heparin binding (HB)-EGF was associated with enhanced EGFR tyrosine kinase activity, prolonged ERK activation, and a significant increase in cyclooxygenase-2 (COX-2) expression compared with 18Co cells treated with EGF and HB-EGF alone. TNF-α also increased EGFR expression and signaling in primary myofibroblasts isolated from human colon tissue. TNF-α-induced upregulation of EGFR may be a plausible mechanism to explain the exaggerated cellular responsiveness that characterizes inflammatory bowel disease and that may contribute to a microenvironment that predisposes to colitis-associated cancer through enhanced COX-2 expression.  相似文献   

8.
Epidermal growth factor (EGF) is commonly thought to affect the proliferation of many cells, especially epithelial cells. Aberrant expression of the receptor for EGF, (EGFR) or members of the EGFR family is often implicated in the etiology of many cancers. Ligation of the EGFR results in the activation of many downstream signaling pathways which have profound effects on cell cycle progression and the prevention of apoptosis. In general, the EGFR is thought to be either not expressed or expressed at low levels in hematopoietic cells. We determined that the EGFR was expressed at a low level in the murine cytokine-dependent hematopoietic cell line FDC-P1 but not in an additional murine IL-3 dependent cell line FL5.12. EGF induced a mild effect on DNA synthesis and ERK activation in EGFR positive FDC-P1 cells but not EGFR negative FL5.12 cells. Addition of suboptimal concentrations of IL-3 synergized with EGF in stimulating DNA synthesis in EGFR-positive FDC-P1 cells. Likewise, the EGFR inhibitor AG1478 induced apoptosis in EGFR positive FDC-P1 cells but not EGFR negative FL5.12 cells. Both cell lines can be directly transformed to cytokine independence by activated EGFR (v-ERBB) expression in the absence of autocrine growth factors indicating that they are poised to fully utilize EGFR mediated signal transduction pathways as a means for proliferation. These results document the functional importance of endogenous EGFR signaling pathway in some hematopoietic cells.  相似文献   

9.
Prostate cancer stem-like cells (PCSCs) are being intensely investigated largely owing to their contributions towards prostate tumorigenesis, however, our understanding of PCSC biology, including their critical pathways, remains incompletely understood. While epidermal growth factor (EGF) is widely used in maintaining PCSC cells in vitro, the importance of EGF-dependent signaling and its downstream pathways in PCSC self-renewal are not well characterized. By investigating DU145 sphere cells, a population of prostate cancer cells with stem-like properties, we report here that epidermal growth factor receptor (EGFR) signaling plays a critical role in the propagation of DU145 PCSCs. Activation of EGFR signaling via addition of EGF and ectopic expression of a constitutively-active EGFR mutant (EGFRvIII) increased sphere formation. Conversely, inhibition of EGFR signaling by using EGFR inhibitors (AG1478 and PD168393) and knockdown of EGFR significantly inhibited PCSC self-renewal. Consistent with the MEK-ERK pathway being a major target of EGFR signaling, activation of the MEK-ERK pathway contributed to EGFR-facilitated PCSC propagation. Modulation of EGFR signaling affected extracellular signal-related kinase (ERK) activation. Inhibition of ERK activation through multiple approaches, including treatment with the MEK inhibitor U0126, ectopic expression of dominant-negative MEK1(K97M), and knockdown of either ERK1 or ERK2 resulted in a robust reduction in PCSC propagation. Collectively, the present study provides evidence that EGFR signaling promotes PCSC self-renewal, in part, by activating the MEK-ERK pathway.  相似文献   

10.
Retinoic acid (RA) induces cell cycle arrest of hormone-dependent human breast cancer (HBC) cells. Previously, we demonstrated that RA-induced growth arrest of T-47D HBC cells required the activity of the RA-induced protein kinase, protein kinase Calpha (PKCalpha) [J. Cell Physiol. 172 (1997) 306]. Here, we demonstrate that RA treatment of T-47D cells interfered with growth factor signaling to downstream, cytoplasmic and nuclear targets. RA treatment did not inhibit epidermal growth factor (EGF) receptor activation but resulted in rapid inactivation. The lack of sustained EGFR activation was associated with transient rather than sustained association of the EGFR with the Shc adaptor proteins and activation of Erk 1/2 and with compromised induction of expression of immediate early response genes. Inhibiting the activity of PKCalpha, a retinoic acid-induced target gene, prevented the effects of RA on cell proliferation and EGF signaling. Constitutive expression of PKCalpha, in the absence of RA, decreased cell proliferation and decreased EGF signaling. RA treatment increased steady-state levels of the protein tyrosine phosphatase PTP-1C and all measured effects of RA on EGF receptor function were reversed by the tyrosine phosphate inhibitor orthovanadate. These results indicate that RA-induced target genes, particularly PKCalpha, prevent sustained growth factor signaling, uncoupling activated receptor tyrosine kinases and nuclear targets that are required for cell cycle progression.  相似文献   

11.
Epidermal growth factor receptor (EGFR) is a valid drug target for development of target-based therapeutics against non-small-cell lung cancer. In this study, we established a high-throughput cell-based assay to screen for compounds that may inhibit EGFR activation and/or EGFR-mediated downstream signaling pathway. This drug screening platform is based on the characterization of an EGFR-transfected 32D cell line (32D-EGFR). The expression of EGFR in 32D cells allowed cell proliferation in the presence of either epidermal growth factor (EGF) or interleukin 3 (IL-3) and provided a system for both screening and counterscreening of EGFR pathway-inhibitory compounds. After the completion of primary and secondary screenings in which 32D-EGFR cells were grown under the stimulation of either EGF or IL-3, 9 of 20,000 compounds were found to selectively inhibit the EGF-dependent proliferation, but not the IL-3-dependent proliferation, of 32D-EGFR cells. Subsequent analysis showed that 3 compounds of the 9 initial hits directly inhibited the kinase activity of recombinant EGFR in vitro and the phosphorylation of EGFR in H1299 cells transfected with EGFR. Thus, this 32D-EGFR assay system provides a promising approach for identifying novel EGFR and EGFR signaling pathway inhibitors with potential antitumor activity.  相似文献   

12.
13.
Ovarian adenocarcinomas, like human ovarian surface epithelial cells, form functional tight junctions. Tight junction molecules claudin-3 and claudin-4, which are the receptors of Clostridium perfringens enterotoxin (CPE), are abnormally upregulated in epithelial ovarian cancers of all subtypes including, mucinous cystadenocarcinoma and serous cystadenocarcinoma. Clostridium perfringens enterotoxin may be a novel tumor-targeted therapy for ovarian cancers. In epithelial ovarian cancers, overexpression of epidermal growth factor receptor has been observed and the exogenous ligand EGF induces epithelial-mesenchymal transition in ovarian surface epithelium. Epidermal growth factor (EGF) signaling modulates expression of claudins with changes of fence and barrier functions in various cell types. However, the regulation of tight junctions by EGF in ovarian cancers remains unclear. In the present study, to investigate the mechanisms of the regulation of tight junctions in ovarian cancers, ovarian cancer cell lines mucinous cystadenocarcinoma (MCAS) and serous cystadenocarcinoma (HUOA) were treated with EGF. Epidermal growth factor downregulated claudin-3 in MCAS and claudin-4 in HUOA by inducing degradation of the proteins with changes in structures and functions of tight junctions via the MEK/ERK or PI3K/Akt signaling pathway. In addition, in HUOA but not MCAS, EGF downregulated the cytotoxic effect of CPE via claudin-4. Thus, there were different mechanisms for regulation of claudins by EGF between subtypes of epithelial ovarian cancer cells in vitro. These results indicate that EGF may affect claudins and tight junctional functions in ovarian cancer cells during cancer progression.  相似文献   

14.
15.
16.
17.
Deregulation of the endocytic machinery has been implicated in human cancers. However, the mechanism by which endocytic defects drive cancer development remains to be clarified. Here, we find through a genetic screen in Drosophila that loss of Rab5, a protein required for early endocytic trafficking, drives non-autonomous cell proliferation in imaginal epithelium. Our genetic data indicate that dysfunction of Rab5 leads to cell-autonomous accumulation of Eiger (a TNF homolog) and EGF receptor (EGFR), which causes activation of downstream JNK and Ras signaling, respectively. JNK signaling and its downstream component Cdc42 cooperate with Ras signaling to induce upregulation of a secreted growth factor Upd (an IL-6 homolog) through inactivation of the Hippo pathway. Such non-autonomous tissue growth triggered by Rab5 defect could contribute to epithelial homeostasis as well as cancer development within heterogeneous tumor microenvironment.  相似文献   

18.
19.
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.  相似文献   

20.
Epidermal growth factor (EGF) and its receptor (EGFR) are involved in hormone-refractory growth and poor prognosis of a subgroup of human prostate cancer. In this communication, we investigated the regulation of PSA by the EGFR signaling pathway using LNCaP C-81 prostate cancer cells. Administration of EGF stimulated the growth of LNCaP C-81 cells, however, PSA expression and secretion were suppressed. An EGFR inhibitor, AG1478, abrogated the PSA suppression effect by EGF, in concurrence with the suppression of tyro-phosphorylation levels of EGFR. Interestingly, the AR level was also decreased in EGF-treated LNCaP C-81 cells. Moreover, LY294002, but not PD98059, inhibited the PSA and AR suppression effect by EGF in concurrence with the suppression of phosphorylation levels of Akt. In conclusion, our results strongly suggest the existence of a novel androgen-independent PSA regulatory mechanism, i.e., the EGFR signaling pathway negatively regulates PSA expression which may be induced by the alteration of AR expression via the PI3K-Akt pathway in LNCaP C-81 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号