首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungi (17 species), oomycetous organisms (four species of Pythium) and a plasmodiophorid (Polymyxa graminis) were recorded in wheat roots analysed by cloning of the total ITS1/2 rDNA and sequencing of representative clones. Roots of a fourth successive wheat crop were inhabited mostly by fungal pathogens including Gaeumannomyces graminis var. tritici, Monographella nivalis var. nivalis, Ophiosphaerella sp. and Helgardia anguioides. Roots of a first wheat crop were inhabited mostly by P. graminis and saprotrophic Pythium species. Results on fungal diversity and density were compared with those obtained by pure culture isolation and morphotyping. Only M. nivalis var. nivalis and H. anguioides were identifed in wheat roots by both the molecular and the pure culture isolation methods. New and additional evidence for the ecological roles of the species recorded is discussed.  相似文献   

2.
The biology and infection-behaviour of a typical isolate of Phialophora radicicola Cain have been compared with those of a representative isolate of Ophiobolus graminis (Sacc.) Sacc. Both species can utilize a nitrate source of nitrogen and both require thiamine and biotin for growth on inorganic nitro-gen; P. radicicola, but not O. graminis, was able to synthesize biotin when grown on asparagine as a nitrogen source. The pH range for good growth of P. radicicola in nutrient solution was narrower than that for O. graminis, and its growth rate on agar was only one-third. P. radicicola was the more active decomposer of cellulose, and its cellulolysis adequacy index was I.66 as com-pared with a value of 0.33 for 0. graminis. In agreement with prediction from Garrett's (I966) hypothesis on the cellulolysis adequacy index, saprophytic survival of P. radicicola in wheat straw was shortened by additional soil nitrogen, which prolongs survival of O. graminis.P. radicicola was found to spread ectotrophically over the roots of wheat, oats and barley by runner hyphae indistinguishable from those of O. graminis, but cortical infection caused no necrosis and no discernible check to growth of the infected cereals, nor any significant decrease in grain yield of inoculated wheat grown to maturity. Pre-existing infection of wheat roots by P. radicicola retarded spread of infection by O. graminis; inoculation of several grass species with P. radicicola reduced the extent of infection by O. graminis of wheat following the grasses.  相似文献   

3.
Pratylenchus thornei reaches high population densities in non-irrigated annual cropping systems in low-rainfall regions of the Pacific Northwest. Two spring wheat varieties with different levels of tolerance and susceptibility to P. thornei were treated or not treated with aldicarb in three experiments. Grain yield was inversely correlated (P < 0.05) with pre-plant populations of P. thornei in soil and with P. thornei density in mature roots. As population of P. thornei increased, yield of the moderately tolerant/moderately susceptible variety Krichauff was generally more stable than for the intolerant/susceptible variety Machete. The reproductive factor (Pf/Pi) was generally lower (P < 0.05) for Krichauff than Machete. Aldicarb improved wheat yield (P < 0.05) in highly infested fields by an average of 67% for Krichauff and 113% for Machete. Aldicarb increased (P < 0.05) numbers of headed tillers, plant height, and grain test weight and kernel weight, and reduced (P < 0.05) the density of P. thornei in mature wheat roots, variability in height of heads, and leaf canopy temperature. Aldicarb did not improve yield in a soil with a low population of P. thornei. This is the first report that P. thornei causes economic damage to wheat in the Pacific Northwest.  相似文献   

4.
In a long-term field experiment, differential population densities of Heterodera avenae were produced by frequent cropping with resistant (cv. Panema) or susceptible (cv. Peniarth) oat. The two oat cultivars were equally good hosts of Pratylenchus neglectus in a glass house experiment with field soil. On wheat crops grown after oats in field experiments, P. neglectus population densities in roots were higher in plots where H. avenae had been controlled than in plots with moderate infestations (40 H. avenae eggs/g soil). The field observations indicated that the reduction in population densities of P. neglectus coincided with the development in roots of sedentary stages of the cyst nematode. Evidence for an indirect effect of H. avenae on P. neglectus was found in vitro in a split-root experiment. In the same field, grain yields of two wheat cultivars susceptible or resistant to H. avenae, but both susceptible to P. neglectus, was not reduced by P. neglectus. Alternation of H. avenae resistant and susceptible cultivars is a possible way of exploiting the inverse relationship between these nematodes, whilst controlling cyst nematode -populations in intensive cereal production systems.  相似文献   

5.
Certain nematodes are common soilborne organisms found in turfgrass in the United States that cause significant economic damage to golf course turf. One of the most prevalent plant-parasitic nematodes infesting turfgrass are root-knot nematodes (Meloidogyne spp.). Chemical treatment options for root-knot nematodes in turfgrass are limited, and there is a need for new nematicidal active ingredients to address this problem. In this study, we evaluated the use of silver nanoparticles (AgNP) as a potential nematicide in laboratory and field experiments. AgNP was synthesized by a redox reaction of silver nitrate with sodium borohydride using 0.2% starch as a stabilizer. When J2 of M. incognita were exposed to AgNP in water at 30 to 150 μg/ml, >99% nematodes became inactive in 6 hr. When turfgrass and soil composite samples infested with M. graminis were treated with 150 μg/ml AgNP, J2 were reduced in the soil samples by 92% and 82% after 4- and 2-d exposures, respectively, in the treated compared to the nontreated soil samples. Field trials evaluating AgNP were conducted on a bermudagrass (Cynodon dactylon × C. transvaalensis) putting green infested with M. graminis. Biweekly application of 90.4 mg/m2 of AgNP improved turfgrass quality in one year and reduced gall formation in the roots in two years without phytotoxicity. The AgNP application did not significantly reduce the number of M. graminis J2 in plots during the growing season. The laboratory assays attested to the nematicidal effect of AgNP, and the field evaluation demonstrated its benefits for mitigating damage caused by root-knot nematode in bermudagrass.  相似文献   

6.
Auxin transport in maize roots in response to localized nitrate supply   总被引:2,自引:0,他引:2  
Liu J  An X  Cheng L  Chen F  Bao J  Yuan L  Zhang F  Mi G 《Annals of botany》2010,106(6):1019-1026

Background and Aims

Roots typically respond to localized nitrate by enhancing lateral-root growth. Polar auxin transport has important roles in lateral-root formation and growth; however, it is a matter of debate whether or how auxin plays a role in the localized response of lateral roots to nitrate.

Methods

Treating maize (Zea mays) in a split-root system, auxin levels were quantified directly and polar transport was assayed by the movement of [3H]IAA. The effects of exogenous auxin and polar auxin transport inhibitors were also examined.

Key Results

Auxin levels in roots decreased more in the nitrate-fed compartment than in the nitrate-free compartment and nitrate treatment appeared to inhibit shoot-to-root auxin transport. However, exogenous application of IAA only partially reduced the stimulatory effect of localized nitrate, and auxin level in the roots was similarly reduced by local applications of ammonium that did not stimulate lateral-root growth.

Conclusions

It is concluded that local applications of nitrate reduced shoot-to-root auxin transport and decreased auxin concentration in roots to a level more suitable for lateral-root growth. However, alteration of root auxin level alone is not sufficient to stimulate lateral-root growth.  相似文献   

7.
The influences of Gaeumannomyces graminis var. tritici (which causes take-all of wheat), Rhizoctonia solani AG-8 (which causes rhizoctonia root rot of wheat), Pythium irregulare, P. aristosporum, and P. ultimum var. sporangiiferum (which cause pythium root rot of wheat) on the population dynamics of Pseudomonas fluorescens 2-79 and Q72a-80 (bicontrol strains active against take-all and pythium root rot of wheat, respectively) in the wheat rhizosphere were examined. Root infection by either G. graminis var. tritici or R. solani resulted in populations of both bacterial strains that were equal to or significantly larger than their respective populations maintained on roots in the absence of these pathogens. In contrast, the population of strain 2-79 was significantly smaller on roots in the presence of any of the three Pythium species than on noninfected roots and was often below the limits of detection (50 CFU/cm of root) on Pythium-infected roots after 40 days of plant growth. In the presence of either P. aristosporum or P. ultimum var. sporangiiferum, the decline in the population of Q72a-80 was similar to that observed on noninfected roots; however, the population of this strain declined more rapidly on roots infected by P. irregulare than on noninfected roots. Application of metalaxyl (which is selectively inhibitory to Pythium spp.) to soil naturally infestated with Pythium spp. resulted in significantly larger rhizosphere populations of the introduced bacteria over time than on plants grown in the same soil without metalaxyl. It is apparent that root infections by fungal pathogens may either enhance or depress the population of fluorescent pseudomonads introduced for their control, with different strains of pseudomonads reacting differentially to different genera and species of the root pathogens.  相似文献   

8.
9.
The relative suitability of potato and crops frequently grown in rotation with potato as hosts for Pratylenchus penetrans was evaluated. Suitability of rye, wheat, corn, oat, sorgho-sudangrass, and potato were compared in pot studies based on ratios of final population : initial population density and densities of nematodes in roots at harvest. Population densities increased more on potato, oat, and corn than on rye, wheat, and sorgho-sudangrass. There were no differences among the four rye cultivars or between the two oat cultivars in host suitability. Population increases were not related to root weight or consistently to nematode densities in roots. Although rye and wheat were equally suitable hosts in pot studies, P. penetrans increased more on wheat than on rye in a field study, indicating that reproduction was reduced or mortality was increased on rye under field conditions.  相似文献   

10.
A two-year field trial with 130 plots was conducted at Tanunda, South Australia. Ten cereal cultivars differing in susceptibility to Pratylenchus thornei, two poor host crops (non-leguminous), and a bare fallow treatment were used to manipulate the numbers of nematodes in the plots in the first year. Initial and final densities were determined for each plot and varied from 0 to 9,400 nematodes/200 g oven-dried soil at the beginning of the second year. A highly susceptible wheat cultivar, Warigal, and two wheat lines known to have some resistance to P. thornei, GS50A and AUS4930, were planted in the second year. High densities of P. thornei caused more extensive lesions and severe cortical degradation in roots of Warigal than in GS50A or AUS4930. There was a significant linear relationship between initial density of P. thornei and Warigal grain yield (t/ha), with the estimated regression equation Y = 1.86 - 0.0000557x, where Y is the grain yield in t/ha and x is the number of P. thornei/200 g oven-dried soil. High initial densities (9,000 P. thornei/200 g oven-dried soil) caused up to 27% yield loss of this commercial Australian wheat. In contrast, the yield of the two resistant lines was not affected by initial density, suggesting that both were tolerant as well as resistant in the field.  相似文献   

11.
The vertical distribution and overwintering potential of Meloidogyne graminis on field-grown Cynodon sp (var. ''Tifgreen'' bermudagrass) was measured. Total populations of M. graminis were found to be lowest in March and highest in May. Larvae were most abundant in the top 5-cm of soil during periods favoring bermudagrass growth and least numerous during periods of host dormancy. Throughout the year, more t h a n 50% of the nematodes recovered each month were in roots within the top 5-cm of the soil profile. Both eggs and larvae of M. graminis overwinter in eastern Virginia.  相似文献   

12.
Tylenchulus graminis n. sp. and T. palustris n. sp. are described and illustrated from broomsedge (Andropogon virginicus L.) and pop ash (Fraxinus caroliniana Mill.), respectively. T. graminis resembles T. furcus in having a distinct anus, but T. graminis second-stage juveniles (J2) do not have a bifid tail. T. semipenetrans does not have a perceptible anus. The mature female of T. graminis has a mucronate pointed terminus while T. semipenetrans has a smooth and round terminus. T. graminis males have wider stylet knobs and basal bulb and a longer tail than T. semipenetrans males. T. graminis J2 have a longer posterior body portion (without large fat globules) than T. semipenetrans J2. T. palustris resembles T. semipenetrans in having an undetectable anus but differs by the short and conoid mature female postvulval section. The male of T. palustris has larger stylet knobs and basal bulb than those of T. semipenetrans and a bluntly rounded tail terminus, which is tapered in T. semipenetrans. T. palustris differs from T. furcus and T. graminis in having an undetectable anus, by the conoid postvulval section of mature females, by the shorter and rounded tail of males, and the shorter J2 posterior body section without large fat globules. T. graminis and T. palustris are parasites of indigenous flora of Florida.  相似文献   

13.
Changes in root- and leaf-soluble proteins were investigated in tomato after invasion by the root-knot nematode Meloidogyne javanica, or in barley and wheat after invasion by the cereal cyst nematode Heterodera avenae. Infection of susceptible tomato plants by M. javanica did not cause any change in the soluble-protein composition of leaves or roots compared with uninoculated plants at an early infection stage. No pathogenesis-related proteins (chitinase, glucanase, or P-14) were induced in the leaf apoplast. Changes in leaf proteins were not observed after invasion of wheat cultivars by H. avenae, whereas, in barley, a few changes in intercellular leaf proteins were recorded in resistant cultivars. These changes, however, were not the same among different H. avenae-resistant cultivars. Protein changes were found at an early stage of infection in barley and wheat roots infected with H. avenae, but no difference was found between resistant and susceptible cultivars.  相似文献   

14.
Excised tomato roots were examined histologically for interactions of the fungus Paecilomyces lilacinus and Meloidogyne incognita race 1. Root galling and giant-cell formation were absent in tomato roots inoculated with nematode eggs infected with P. lilacinus. Few to no galls and no giant-cell formation were found in roots dipped in a spore suspension of P. lilacinus and inoculated with M. incognita. Numerous large galls and giant cells were present in roots inoculated only with M. incognita. P. lilacinus colonized the surface of epidermal cells as well as the internal cells of epidermis and cortex. The possibility of biological protection of plant surfaces with P. lilacinus against root-knot nematodes is discussed.  相似文献   

15.

Background and Aims

In some lupin species, phosphate deficiency induces cluster-root formation, which enhances P uptake by increasing root surface area and, more importantly, the release of root exudates which enhances P availability.

Methods

Three species of Lupinus, L. albus, L. atlanticus and L. micranthus, with inherently different relative growth rates were cultivated under hydroponics in a greenhouse at four phosphate concentrations (1, 10, 50 and 150 µm) to compare the role of internal P in regulating cluster-root formation.

Key Results

The highest growth rate was observed in L. atlanticus, followed by L. albus and L. micranthus. At 1 µm P, cluster-root formation was markedly induced in all three species. The highest P uptake and accumulation was observed in L. micranthus, followed by L. atlanticus and then L. albus. Inhibition of cluster-root formation was severe at 10 µm P in L. atlanticus, but occurred stepwise with increasing P concentration in the root medium in L. albus.

Conclusions

In L. atlanticus and L. albus cluster-root formation was suppressed by P treatments above 10 µm, indicating a P-inducible regulating system for cluster-root formation, as expected. By contrast, production of cluster roots in L. micranthus, in spite of a high internal P concentration, indicated a lower sensitivity to P status, which allowed P-toxicity symptoms to develop.  相似文献   

16.
Pseudomonas fluorescens 2-79 and P. aureofaciens 30-84 produce the antibiotic phenazine-1-carboxylic acid and suppress take-all, an important root disease of wheat caused by Gaeumannomyces graminis var. tritici. To determine whether the antibiotic is produced in situ, wheat seeds were treated with strain 2-79 or 30-84 or with phenazine-nonproducing mutants or were left untreated and then were sown in natural or steamed soil in the field or growth chamber. The antibiotic was isolated only from roots of wheat colonized by strain 2-79 or 30-84 in both growth chamber and field studies. No antibiotic was recovered from the roots of seedlings grown from seeds treated with phenazine-nonproducing mutants or left untreated. In natural soils, comparable amounts of antibiotic (27 to 43 ng/g of root with adhering soil) were recovered from roots colonized by strain 2-79 whether or not the pathogen was present. Roots of plants grown in steamed soil yielded larger bacterial populations and more antibiotic than roots from natural soils. In steamed and natural soils, roots from which the antibiotic was recovered had significantly less disease than roots with no antibiotic, indicating that suppression of take-all is related directly to the presence of the antibiotic in the rhizosphere.  相似文献   

17.
The effects of planting date, rye (Secale cereale cv. Wren Abruzzi) and wheat (Triticura aestivum cv. Coker 797), crop destruction, fallow, and soil temperature on managing Meloidogyne incognita race 1 were determined in a 2-year study. More M. incognita juveniles (J2) and egg-producing adults were found in roots of rye planted 1 October than in roots of rye planted 1 November and wheat planted 1 November and 1 December. Numbers of M. incognita adults with and without egg masses were near or below detectable levels in roots of rye planted 1 November and wheat planted 1 November and 1 December. Meloidogyne incognita survived the mild winters in southern Georgia as J2 and eggs. The destruction of rye and wheat as a trap crop 1 March suppressed numbers of J2 in the soil temporarily but did not provide long-term benefits for susceptible crops that followed. In warmer areas where rye and wheat are grown in winter, reproduction of M. incognita may be avoided by delaying planting dates until soil temperature declines below the nematode penetration threshold (18 C), but no long-term benefits should be expected. The temperature threshold may be an important consideration in managing M. incognita population densities in areas having lower winter soil temperatures than southern Georgia.  相似文献   

18.
Roots of wheat grown in unsterilized sand inoculated withGaeumannomyces graminis (Sacc.) von Arx and Olivier were examined by scanning electron microscopy. Healthy roots had a mucilaginous covering and were sparsely colonized by bacteria, but asG. graminis colonized the roots the mucilage disappeared and the numbers of bacteria on the surface increased. Lysis of the hyphae occurred, apparently caused by bacteria that colonized the hyphae. Inoculation of wheat in axenic culture with a strain ofPseudomonas fluorescens that was antagonistic toG. graminis in agar gave some protection against the pathogen; lysis of hyphae was observed where protection occurred.  相似文献   

19.
20.
Growth of alfalfa (Medicago sativa cv. Vernal) seedlings was compared after inoculation with combinations of either Pratylenchus penetrans and Fusarium soloni or P. penetrans and F. oxysporum f. sp. medicaginis. A synergistic disease interaction occurred in alfalfa when F. oxysporum and P. penetrans were added simultaneously to the soil. Alfalfa growth was suppressed at all inoculum levels of P. penetrans and F. oxysporum, but not with F. solani. Seedlings inoculated with the nematode alone gave lower yields than when inoculated with either Fusarium species alone. Fusarium oxysporum, but not F. solani, was pathogenic to alfalfa under similar experimental conditions. Fusarium oxysporum did not alter the populations of P. penetrans in alfalfa roots, whereas the presence of F. solani was associated with a diminished number of P. penetrans in the roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号