首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
J M Huang  J Tanguy    J Z Yeh 《Biophysical journal》1987,52(2):155-163
Modification of sodium channels by chloramine-T was examined in voltage clamped internally perfused crayfish and squid giant axons using the double sucrose gap and axial wire technique, respectively. Freshly prepared chloramine-T solution exerted two major actions on sodium channels: (a) an irreversible removal of the fast Na inactivation, and (b) a reversible block of the Na current. Both effects were observed when chloramine-T was applied internally or externally (5-10 mM) to axons. The first effect was studied in crayfish axons. We found that the removal of the fast Na inactivation did not depend on the states of the channel since the channel could be modified by chloramine-T at holding potential (from -80 to -100 mV) or at depolarized potential of -30 mV. After removal of fast Na inactivation, the slow inactivation mechanism was still present, and more channels could undergo slow inactivation. This result indicates that in crayfish axons the transition through the fast inactivated state is not a prerequisite for the slow inactivation to occur. During chloramine-T treatment, a distinct blocking phase occurred, which recovered upon washing out the drug. This second effect of chloramine-T was studied in detail in squid axons. After 24 h, chloramine-T solution lost its ability to remove fast inactivation but retained its blocking action. After removal of the fast Na inactivation, both fresh and aged chloramine-T solutions blocked the Na currents with a similar potency and in a voltage-dependent manner, being more pronounced at lower depolarizing potentials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Gating current "fractionation" in crayfish giant axons.   总被引:2,自引:2,他引:0       下载免费PDF全文
Effects of changes in initial conditions on the magnitude and kinetics of gating current and sodium current were studied in voltage-clamped, internally-perfused, crayfish giant axons. We examined the effects of changes in holding potential, inactivating prepulses, and recovery from inactivation in axons with intact fast inactivation. We also studied the effects of brief interpulse intervals in axons pretreated with chloramine-T for removal of fast inactivation. We find marked effects of gating current kinetics induced by both prepulse inactivation and brief interpulse intervals. The apparent changes in gating current relaxation rates cannot be explained simply by changes in gating charge magnitude (charge immobilization) combined with "Cole-Moore-type" time shifts. Rather they appear to indicate selective suppression of kinetically-identifiable components within the control gating currents. Our results provide additional support for a model involving parallel, nonidentical, gating particles.  相似文献   

3.
Recent experimental evidence from a number of preparations indicates that sodium channel inactivation may be intrinsically voltage sensitive. Intrinsically voltage sensitive inactivation should produce a charge movement. Crayfish giant axons provide a unique opportunity to reexamine the slower components of gating currents (Ig) for a contribution from inactivation (Igh). In reference to other axon preparations, this preparation has relatively rapid inactivation, and steady-state inactivation has a comparatively steep voltage dependence. As predicted by a two-state scheme for voltage-sensitive sodium channel inactivation, Ig in crayfish axons includes a slow component with time constant comparable to the time constant of decay of the sodium current. Allowing for some delay in its onset (60 microseconds), inactivation as described by this slow component of Ig carries roughly the amount of charge predicted by the voltage dependence of inactivation.  相似文献   

4.
Schauf and Bullock (1979. Biophys. J. 27:193-208; 1982. Biophys. J. 37:441-452), using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford (1981. J. Gen. Physiol. 77:1-22) found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with "parallel gate" models, provided that one gating particle has a substantially reduced effective valence.  相似文献   

5.
The fast inactivation of sodium currents and the immobolization of sodium gating charge are thought to be closely coupled to each other. This notion was tested in the squid axon in which kinetics and steady-state properties of the gating charge movement were compared before and after removal of the Na inactivation by batrachotoxin (BTX), pronase, or chloramine-T. The immobilization of gating charge was determined by measuring the total charge movement (QON) obtained by integrating the ON gating current (Ig,ON) using a double pulse protocol. After removal of the fast inactivation with pronase or chloramine-T, the gating charge movement was no longer immobilized. In contrast, after BTX modification, the channels still exhibited an immobilization of the gating charge (QON) with an onset time course and voltage dependence similar to that for the activation process. These results show that BTX can uncouple the charge immobilization from the fast Na inactivation mechanism, suggesting that the Na gating charge movement can be immobilized independently of the inactivation of the channel.  相似文献   

6.
The effect of ether and halothane on the kinetics of sodium and potassium currents were investigated in the crayfish giant axon. Both general anesthetics produced a reversible, dose-dependent speeding up of sodium current inactivation at all membrane potentials, with no change in the phase of the currents. Double-pulse inactivation experiments with ether also showed faster inactivation, but the rate of recovery from inactivation at negative potentials was not affected. Ether shifted the midpoint of the steady-state fast inactivation curve in the hyperpolarizing direction and made the curve steeper. The activation of potassium currents was faster with ether present, with no change in the voltage dependence of steady-state potassium currents. Ether and halothane are known to perturb the structure of lipid bilayer membranes; the alterations in sodium and potassium channel gating kinetics are consistent with the hypothesis that the rates of the gating processes of the channels can be affected by the state of the lipids surrounding the channels, but a direct effect of ether and halothane on the protein part of the channels cannot be ruled out. Ether did not affect the capacitance of the axon membrane.  相似文献   

7.
Illumination of crayfish giant axons, during internal perfusion with 0.5 mM methylene blue (MB), produces photodynamic effects that include (i) reduction in total sodium conductance, (ii) shifting of the steady-state inactivation curve to the right along the voltage axis, (iii) reduction in the effective valence of steady-state inactivation and, (iv) potentially complete removal of fast inactivation. Additionally, the two kinetic components of fast inactivation in crayfish axons are differentially affected by MB+light. The intercept of the faster component (tau h1) is selectively reduced at shorter MB+light exposure times. Neither tau h1 nor the slower (tau h2) process was protected from MB+light by prior steady-state inactivation of sodium channels. However, carotenoids provide differing degrees of protection against each of the photodynamic actions listed above, suggesting that the four major effects of MB+light are mediated by changes occurring within different regions of the sodium channel molecule.  相似文献   

8.
The best-known Shaker allele of Drosophila with a novel gating phenotype, Sh(5), differs from the wild-type potassium channel by a point mutation in the fifth membrane-spanning segment (S5) (Gautam, M., and M.A. Tanouye. 1990. Neuron. 5:67-73; Lichtinghagen, R., M. Stocker, R. Wittka, G. Boheim, W. Stühmer, A. Ferrus, and O. Pongs. 1990. EMBO [Eur. Mol. Biol. Organ.] J. 9:4399-4407) and causes a decrease in the apparent voltage dependence of opening. A kinetic study of Sh(5) revealed that changes in the deactivation rate could account for the altered gating behavior (Zagotta, W.N., and R.W. Aldrich. 1990. J. Neurosci. 10:1799-1810), but the presence of intact fast inactivation precluded observation of the closing kinetics and steady state activation. We studied the Sh(5) mutation (F401I) in ShB channels in which fast N-type inactivation was removed, directly confirming this conclusion. Replacement of other phenylalanines in S5 did not result in substantial alterations in voltage-dependent gating. At position 401, valine and alanine substitutions, like F401I, produce currents with decreased apparent voltage dependence of the open probability and of the deactivation rates, as well as accelerated kinetics of opening and closing. A leucine residue is the exception among aliphatic mutants, with the F401L channels having a steep voltage dependence of opening and slow closing kinetics. The analysis of sigmoidal delay in channel opening, and of gating current kinetics, indicates that wild-type and F401L mutant channels possess a form of cooperativity in the gating mechanism that the F401A channels lack. The wild-type and F401L channels' entering the open state gives rise to slow decay of the OFF gating current. In F401A, rapid gating charge return persists after channels open, confirming that this mutation disrupts stabilization of the open state. We present a kinetic model that can account for these properties by postulating that the four subunits independently undergo two sequential voltage-sensitive transitions each, followed by a final concerted opening step. These channels differ primarily in the final concerted transition, which is biased in favor of the open state in F401L and the wild type, and in the opposite direction in F401A. These results are consistent with an activation scheme whereby bulky aromatic or aliphatic side chains at position 401 in S5 cooperatively stabilize the open state, possibly by interacting with residues in other helices.  相似文献   

9.
We have investigated the effects of a mild oxidant, chloramine-T(CT), on the sodium and potassium currents of squid axons under voltage-clamp conditions. Sodium channel inactivation of squid giant axons can be completely removed by CT at neutral pH. Internal and external CT treatment are both effective. CT apparently removes inactivation in an irreversible, all-or-none manner. The activation process of sodium channels is little affected, as judged from the voltage dependence of peak sodium currents, the rising phase of sodium currents, and the time course of tail currents following the repolarization. The removal of inactivation by CT is pH-dependent; higher pH decreases the removal rate, whereas lower pH increases it. Internal metabisulfite, a strong reductant, does not protect inactivation from the action of external CT, nor does external metabisulfite protect from internal CT application. CT slightly depresses the peak potassium currents at comparable concentrations but has no apparent effects on their kinetics. Our results suggest that the neutral form of CT modifies an embedded methionine residue that is involved in sodium channel inactivation.  相似文献   

10.
Quaternary strychnine blocks sodium channels from the axoplasmic side, probably by insertion into the inner channel mouth. Block is strongly voltage dependent, being more pronounced in depolarized than in resting axons. Using potential steps as a means to modulate the level of block, we investigate strychnine effects on sodium and gating currents at +50 and -50 mV. We analyze our data in terms of the simplest possible model, wherein only an open channel may receive and retain a strychnine molecule. Our main findings are (a) block by strychnine and inactivation resemble each other and (b) block of sodium and gating currents by strychnine happen with closely similar time-courses. Our data support the hypothesis of Armstrong and Bezanilla (1977) wherein an endogenous blocking particle causes inactivation by inserting itself into the inner mouth of the sodium channel. Quaternary strychnine may act as an artificial substitute for the hypothetical endogenous blocking particle. Further, we suggest that at least 90% of the rapid asymmetrical displacement current in squid axons is sodium channel gating current, inasmuch as quaternary strychnine can block 90% of the displacement current simultaneously with sodium current.  相似文献   

11.
A voltage clamp technique was used to study sodium currents and gating currents in squid axons internally perfused with the membrane impermeant sodium channel blocker, QX-314. Block by QX-314 is strongly and reversibly enhanced if a train of depolarizing pulses precedes the measurement. The depolarization-induced block is antagonized by external sodium. This antagonism provides evidence that the blocking site for the drug lies inside the channel. Depolarization-induced block of sodium current by QX-314 is accompanied by nearly twofold reduction in gating charge movement. This reduction does not add to a depolarization-induced immobilization of gating charge normally present and believed to be associated with inactivation of sodium channels. Failure to act additively suggests that both, inactivation and QX-314, affect the same component of gating charge movement. Judged from gating current measurement, a drug-blocked channel is an inactivated channel. In the presence of external tetrodotoxin and internal QX-314, gating charge movement is always half its normal size regardless of conditioning, as it QX-314 is then permanently present in the channel.  相似文献   

12.
This study tests the hypothesis that ion channels will be affected differently by external (extracellular) versus internal (cytoplasmic) exposure to hyperosmolar media. We looked first for effects on inactivation kinetics in wild-type Shaker B potassium channels. Although external hyperosmolar exposure did not alter the inactivation rate, internal exposure slowed both onset and recovery from fast inactivation. Differential effects on activation kinetics were then characterized by using a noninactivating Shaker B mutant. External hyperosmolar exposure slowed the late rising phase of macroscopic current without affecting the initial delay or early rising phase kinetics. By contrast, internal exposure slowed the initial steps in channel activation with only minimal changes in the later part of the rising phase. Neither external nor internal hyperosmolar exposure affected tail current rates in these noninactivating channels. Additionally, suppression of peak macroscopic current was approximately twofold smaller during external, as compared with internal, hyperosmolar exposure. Single-channel currents, observed under identical experimental conditions, showed a differential suppression equivalent to that seen in macroscopic currents. Apparently, during unilateral hyperosmolar exposure, changes in macroscopic peak current arise primarily from changes in single-channel conductance rather than from changes in equilibrium channel gating. We conclude that unilateral hyperosmolar exposure can provide information concerning the potential structural localization of functional components within ion-channel molecules.  相似文献   

13.
The relationship between the maximum velocity of action potential upstroke (V+max) and steady-state Na+ channel inactivation (h infinity) was studied in frog skeletal muscle during repetitive discharges evoked in the presence of cevadine (1 mumol/l). Conventional microelectrodes and vaseline-gap voltage-clamp techniques were used. A severe degree of nonlinearity was found between (h infinity) and (V+max) especially when the Na+ conductance (gNa) was small. The observed nonlinearity could be explained as a property of the normal Na+ channel gating in skeletal muscle rather than that of cevadine-modified channels. Part of this work has been published in abstract form in Biophys. J. 57: 105A, 1990.  相似文献   

14.
Internally perfused squid giant axons with intact sodium inactivation gating were prepared for gating current experiments. Gating current records were obtained in sinusoidally driven dynamic steady states and as dynamic transients as functions of the mean membrane potential and the frequency of the command sinusoid. Controls were obtained after internal protease treatment of the axons that fully removed inactivation. The nonlinear analysis consisted of determining and interpreting the harmonic content in the current records. The results indicate the presence of three kinetic processes, two of which are associated with activation gating (the so-called primary and secondary processes), and the third with inactivation gating. The dynamic steady state data show that inactivation gating does not contribute a component to the gating current, and has no direct voltage-dependence of its own. Rather, the inactivation kinetics appear to be coupled to the primary activation kinetics, and the coupling mechanism appears to be one of reciprocal steric hindrance between two molecular components. The mechanism allows the channel to become inactivated without first entering the conducting state, and will do so in about 40 percent of depolarizing voltage-clamp steps to 0 mV. The derived model kinetics further indicate that the conducting state may flicker between open and closed with the lifetime of either state being 10 microseconds. Dynamic transients generated by the model kinetics (i.e., the behavior of the harmonic components as a function of time after an instantaneous change in the mean membrane potential from a holding potential of -80 mV) match the experimental dynamic transients in all details. These transients have a duration of 7-10 ms (depending on the level of depolarization), and are the result of the developing inactivation following the discontinuous voltage change. A detailed hypothetical molecular model of the channel and gating machinery is presented.  相似文献   

15.
The voltage-dependent gating mechanism of A1-type potassium channels coded for by the Shaker locus of Drosophila was studied using macroscopic and single-channel recording techniques on embryonic myotubes in primary culture. From a kinetic analysis of data from single A1 channels, we have concluded that all of the molecular transitions after first opening, including the inactivation transition, are voltage independent and therefore not associated with charge movement through the membrane. In contrast, at least some of the activation transitions leading to first opening are considerably voltage dependent and account for all of the voltage dependence seen in the macroscopic currents. This mechanism is similar in many ways to that of vertebrate neuronal voltage-sensitive sodium channels, and together with the sequence similarities in the S4 region suggests a conserved mechanism for voltage-dependent gating among channels with different selectivities. By testing independent and coupled models for activation and inactivation we have determined that the final opening transition and inactivation are not likely to arise from the independent action of multiple subunits, each with simple gating transitions, but rather come about through their aggregate properties. A partially coupled model accurately reproduces all of the single-channel and macroscopic data. This model will provide a framework on which to organize and understand alterations in gating that occur in Shaker variants and mutants.  相似文献   

16.
Recently we reported that rapid fluctuations of ion currents flowing through open gramicidin A channels exceed the expected level of pure transport noise at low ion concentrations (Heinemann, S. H. and F. J. Sigworth. 1990. Biophys. J. 57:499-514). Based on comparisons with kinetic ion transport models we concluded that this excess noise is likely caused by current interruptions lasting approximately 1 microsecond. Here we introduce a method using the higher-order cumulants of the amplitude distribution to estimate the kinetics of channel closing events far below the actual time resolution of the recording system. Using this method on data recorded with 10 kHz bandwidth, estimates for gap time constants on the order of 1 microsecond were obtained, similar to the earlier predictions.  相似文献   

17.
Macroscopic ionic sodium currents and gating currents were studied in voltage-clamped, dialyzed giant axons of the squid Loligo pealei under conditions of regular and inverse sodium gradients. Sodium currents showed regular kinetics but inactivation was incomplete, showing a maintained current for depolarizations lasting 18 ms. The ratio of the maintained current to the peak current increased with depolarization and it did not depend on the direction of the current flow or the sodium gradient. The time constant of inactivation was not affected by the sodium gradient. Double-pulse experiments allowed the separation of a normal inactivating component and a noninactivating component of the sodium currents. In gating current experiments, the results from double-pulse protocols showed that the charge was decreased by the prepulse and that the slow component of the 'on' gating current was preferentially depressed. As expected, charge immobilization was established faster at higher depolarizations than at low depolarizations, however, the amount of immobilized charge was unaffected by the pulse amplitude. This indicates that the incomplete sodium inactivation observed at high depolarizations is not the result of decreased charge immobilization; the maintained current must be due to a conductance that appears after normal charge immobilization and fast inactivation.  相似文献   

18.
Squid giant axons were used to study the reversible effects of high intracellular pH (pHi) on gating currents. Under depolarization, when Na channels are activated, internal solutions buffered at high pHi (10.2) affect considerably the time course of gating charge associated with channel closing, QOFF, with almost no alteration of QON records. In particular, at pHi 10.2 the charge corresponding to the fast phase of IgOFF, measured after long depolarizing pulses (7.7 ms), was consistently larger than that recorded at physiological pHi (7.2). This suggests that high pH prevents immobilization of gating charges induced by Na inactivation. In this respect, the present data agree reasonably well with previous observations, which show that pHi greater than 7.2 reversibly removes the fast Na inactivation with little effects on activation kinetics (Carbone, E., P. L. Testa, and E. Wanke, 1981, Biophys. J., 35:393-413; Brodwick, M.S., and D. C. Eaton, 1978, Science [Wash. DC], 200:1494-1496). Unexpectedly, high pH increases the amount of charge associated with the slow phase of IgOFF. In our opinion, this might be the result of either an increment of the net charge produced by the exposure to high pHi or that gating charges that return to the closed state might experience a larger fraction of the potential drop across the membrane (Neumcke, B., W. Schwarz, and R. Stampfli, 1980, Biophys. J., 31:325-332).  相似文献   

19.
Kv4 channels represent the main class of brain A-type K+ channels that operate in the subthreshold range of membrane potentials (Serodio, P., E. Vega-Saenz de Miera, and B. Rudy. 1996. J. Neurophysiol. 75:2174- 2179), and their function depends critically on inactivation gating. A previous study suggested that the cytoplasmic NH2- and COOH-terminal domains of Kv4.1 channels act in concert to determine the fast phase of the complex time course of macroscopic inactivation (Jerng, H.H., and M. Covarrubias. 1997. Biophys. J. 72:163-174). To investigate the structural basis of slow inactivation gating of these channels, we examined internal residues that may affect the mutually exclusive relationship between inactivation and closed-state blockade by 4-aminopyridine (4-AP) (Campbell, D.L., Y. Qu, R.L. Rasmussen, and H.C. Strauss. 1993. J. Gen. Physiol. 101:603-626; Shieh, C.-C., and G.E. Kirsch. 1994. Biophys. J. 67:2316-2325). A double mutation V[404,406]I in the distal section of the S6 region of the protein drastically slowed channel inactivation and deactivation, and significantly reduced the blockade by 4-AP. In addition, recovery from inactivation was slightly faster, but the pore properties were not significantly affected. Consistent with a more stable open state and disrupted closed state inactivation, V[404,406]I also caused hyperpolarizing and depolarizing shifts of the peak conductance-voltage curve ( approximately 5 mV) and the prepulse inactivation curve (>10 mV), respectively. By contrast, the analogous mutations (V[556,558]I) in a K+ channel that undergoes N- and C-type inactivation (Kv1.4) did not affect macroscopic inactivation but dramatically slowed deactivation and recovery from inactivation, and eliminated open-channel blockade by 4-AP. Mutation of a Kv4-specific residue in the S4-S5 loop (C322S) of Kv4.1 also altered gating and 4-AP sensitivity in a manner that closely resembles the effects of V[404, 406]I. However, this mutant did not exhibit disrupted closed state inactivation. A kinetic model that assumes coupling between channel closing and inactivation at depolarized membrane potentials accounts for the results. We propose that components of the pore's internal vestibule control both closing and inactivation in Kv4 K+ channels.  相似文献   

20.
Ca channel gating during cardiac action potentials.   总被引:4,自引:2,他引:2       下载免费PDF全文
How do Ca channels conduct Ca ions during the cardiac action potential? We attempt to answer this question by applying a two-microelectrode technique, previously used for Na and K currents, in which we record the patch current and the action potential at the same time (Mazzanti, M., and L. J. DeFelice. 1987. Biophys. J. 12:95-100, and 1988. Biophys. J. 54:1139-1148; Wellis, D., L. J. DeFelice, and M. Mazzanti. 1990. Biophys. J. 57:41-48). In this paper, we also compare the action currents obtained by the technique with the step-protocol currents obtained during standard voltage-clamp experiments. Individual Ca channels were measured in 10 mM Ca/1 Ba and 10 mM Ba. To describe part of our results, we use the nomenclature introduced by Hess, P., J. B. Lansman, and R. W. Tsien (1984. Nature (Lond.). 311:538-544). With Ba as the charge carrier, Ca channel kinetics convert rapidly from long to short open times as the patch voltage changes from 20 to -20 mV. This voltage-dependent conversion occurs during action potentials and in step-protocol experiments. With Ca as the charge carrier, the currents are brief at all voltages, and it is difficult to define either the number of channels in the patch or the conductance of the individual channels. Occasionally, however, Ca-conducting channels spontaneously convert to long-open-time kinetics (in Hess et al., 1984, notation, mode 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号