首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The relationship between protein synthesis and commitment to terminal erythroid differentiation by dimethylsulfoxide-treated murine erythroleukemia (MEL) cells has been studied. Treatment with cycloheximide blocks the commitment of MEL cells. The effects of cycloheximide are completely reversible, however. Treatment of MEL cells before commitment delays commitment for a period of time equal to the length of inhibitor treatment. Puromycin exerts a similar effect on the commitment of MEL cells. These results indicate that there is a continuous requirement for protein synthesis before the commitment event.  相似文献   

2.
The level of cytoplasmic calcium ions appears to be important in the control of murine erythroleukemia (MEL) cell differentiation. Our interest in this study focuses on the relationship between the regulation of calcium concentration and differentiation. We used the fluorescent membrane probe DiOC6 to examine the relationship between MEL cell mitochondria and changes in cytoplasmic calcium levels occurring at the initiation of commitment. Fluorescence microscopy reveals the selective association of DiOC6 with MEL cell mitochondria, where an enhanced fluorescence is observed. Treatment of cells with dimethylsulfoxide (DMSO) or other inducers causes a decrease in mitochondria-associated fluorescence levels that occurs with the initiation of commitment. A decrease in DiOC6 fluorescence is caused by agents that reduce mitochondrial membrane potential, but is only slightly affected by agents that alter plasma membrane potential. Amiloride and EGTA, agents that prevent commitment and inhibit calcium uptake, also prevent the decrease in DiOC6 uptake caused by DMSO. The effect of DMSO on MEL cell mitochondria is mimicked by FCCP, a proton ionophore that dissipates mitochondrial membrane potential. FCCP also caused MEL cell mitochondria to release calcium into the cytoplasm. When MEL cells are treated with DMSO plus FCCP, commitment is initiated without the lag period observed when cells are treated with DMSO alone. These results are consistent with the hypothesis that mitochondrial transmembrane potential is important in the regulation of cytoplasmic calcium levels at the time of commitment of MEL cells to terminal differentiation.  相似文献   

3.
We previously found that murine leukemia cells of T cell, B cell, and erythroid ontogeny express a cell membrane antigen that cross-reacts with an idiotype of an anti-retroviral antibody. In the present study, the expression of this antigen (termed AVID, for anti-viral idiotype) by murine erythroleukemia (MEL) cells was examined during chemically induced differentiation. AVID expression by MEL cells was found to be lost when they were treated with either dimethyl sulfoxide or hexamethylene bisacetamide, two chemicals that induce MEL cells to terminally differentiate. The kinetics of disappearance of AVID during inducer treatment reflected the kinetics with which the inducers caused MEL cell commitment to terminal differentiation. Loss of AVID expression by inducer-treated cells was inhibited by dexamethasone, which inhibits commitment and MEL cell differentiation. The subset of inducer-treated cells that expressed the least amount of AVID contained the greatest number of cells committed to differentiate. These results indicate that AVID identifies a novel differentiation antigen of MEL cells.  相似文献   

4.
The action of procaine on the terminal erythroid differentiation of murine erythroleukemia (MEL) cells has been investigated at the level of individual cells. At concentrations (7 × 10?4 M) which had no inhibitory effect on cell growth, pretreatment of these cells with procaine for 12–24 hr caused a pronounced inhibition (> 90%) of commitment to terminal erythroid differentiation of dimethyl sulfoxide (DMSO)-treated cells. Simultaneous treatment of MEL cells with DMSO and procaine, however, resulted to only slight inhibition (< 20%) of commitment. Blockade of commitment by procaine pretreatment appears to be general since it was observed in cells treated with other inducers (6-thioguanine, dimethylformamide). Procaine pretreatment did not abolish the ability of MEL cells to complete the “latent period” and commit upon the removal of the block. Reversal of procaine inhibition of commitment was obtained by the addition of either CaCl2 (1.0 mM), calcium ionophore A23817 (1 μg/ml), but not of MgCl2 (1.0 mM). From these data we conclude that procaine inhibits the terminal erythroid differentiation of MEL cells by blocking an event or process required for commitment which occurs prior to commitment itself. Our results suggest that this process involves calcium metabolism.  相似文献   

5.
The effect of imidazole on DMSO-induced murine erythroleukemia (MEL) cell differentiation has been examined. While imidazole does inhibit heme, globin mRNA, and hemoglobin accumulation in DMSO-induced MEL cells, it does not affect the commitment of MEL cells to the specific limitation of proliferative capacity associated with the in vitro differentiation program. Furthermore, imidazole treatment does not affect DMSO-induced changes in cell volume, in the relative proportion of nuclear protein IP25, and in the specific activity of the enzyme cytidine deaminase. A clonal analysis in the presence of imidazole indicated that the drug prevents heme accumulation even in MEL cells already committed to terminal differentiation. These observations suggest that imidazole effectively dissociates two aspects of the erythroid differentiation program of MEL cells: globin gene expression and commitment to loss of proliferative capacity.  相似文献   

6.
Erythroid differentiation of murine erythroleukemia (MEL) cells, as induced by dimethyl sulfoxide, can be suppressed by chemicals at very low concentrations, not affecting cell viability and proliferation, if present in the culture medium between 18 and 24 h after addition of the inducer. The effect is apparent on the progeny of the treated cells and is determined, between day 3 and 5 following DMSO induction, as percent value of cells expressing the erythroid phenotype. Cultures showing decreased values are no longer terminal and a large number of clones, incapable of expressing the erythroid phenotype, can be isolated from them. In contrast, induced cultures are terminal if the added chemicals do not decrease the expression of the erythroid phenotype. Incorporation of thymidine into induced cultures reveals that maximal sensitivity of MEL cells to chemicals coincides with DNA duplication. In all affected cells, the inhibition to undergo erythroid differentiation is transmitted from one cell generation to the next.  相似文献   

7.
The relationship between differentiation of murine erythroleukemia cells (MEL) induced by DMSO and the cell division cycle has been analyzed. We demonstrate that incubation in the presence of DMSO increases the length of the G1 phase of the cell cycle. A method of synchronization of MEL cells by unit gravity sedimentation has been developed and characterized. Using this method, a series of synchronized cell populations covering the entire cell division cycle can be generated simultaneously. Cells synchronized by this technique were challenged with DMSO and analyzed for kinetics of commitment to the differentiation program. Our results indicate that populations of cells in G1 or G2 at the time of addition of inducer give rise to a greater proportion of committed cells than an unfractionated population, while cells in S phase result in a lower percentage of committed cells than the unfractionated population when cultured in DMSO.  相似文献   

8.
9.
High mobility group 1 (HMG1) protein is an abundant and conserved component of vertebrate nuclei and has been proposed to play a structural role in chromatin organization, possibly similar to that of histone H1. However, a high abundance of HMG1 had also been reported in the cytoplasm and on the surface of mammalian cells. We conclusively show that HMG1 is a nuclear protein, since several different anti-HMG1 antibodies stain the nucleoplasm of cultured cells, and epitope-tagged HMG1 is localized in the nucleus only. The protein is excluded from nucleoli and is not associated to specific nuclear structures but rather appears to be uniformly distributed. HMG1 can bind in vitro to reconstituted core nucleosomes but is not stably associated to chromatin in live cells. At metaphase, HMG1 is detached from condensed chromosomes, contrary to histone H1. During interphase, HMG1 readily diffuses out of nuclei after permeabilization of the nuclear membranes with detergents, whereas histone H1 remains associated to chromatin. These properties exclude a shared function for HMG1 and H1 in differentiated cells, in spite of their similar biochemical properties. HMG1 may be stably associated only to a very minor population of nucleosomes or may interact transiently with nucleosomes during dynamic processes of chromatin remodeling.  相似文献   

10.
When MEL cells are reexposed to DMSO after an interruption in inducer treatment, they can initiate commitment to differentiation without the lag period observed after the primary exposure to inducer. This property is known as memory. Here we have employed metabolic inhibitors to analyze the basis of the memory response. Treatment of cells with cycloheximide or cordycepin during the inducer withdrawal period causes memory erasure. Cells must recapitulate an entire lag period upon reexposure to DMSO. The memory response is maintained, however, if cells are treated with metabolic inhibitors in the presence of DMSO. Our results suggest that the capacity of MEL cells for memory requires the synthesis of cell components which are normally stable in the absence of DMSO. Experiments involving reciprocal shifts between two different inhibitors have been performed. Evidence is presented that the process leading to the initiation of commitment is composed of at least three components acting in sequence.  相似文献   

11.
4-Hydroxynonenal (HNE) is a highly reactive aldehyde, produced by cellular lipid peroxidation, able to inhibit proliferation and to induce differentiation in MEL cells at concentrations similar to those detected in several normal tissues. Inducer-mediated differentiation of murine erythroleukemia (MEL) cells is a multiple step process characterized by modulation of several genes as well as by a transient increase in the amount of membrane-associated protein kinase C (PKC) activity. Here we demonstrate that a rapid translocation of PKC activity from cytosol to the membranes occurs during the differentiation induced by HNE. When PKC is completely translocated by phorbol-12-myristate-13-acetate (TPA), the degree of HNE-induced MEL cells differentiation is highly decreased. However, if TPA is washed out from the culture medium before the exposition to the aldehyde, HNE gradually resumes its differentiative ability. The incubation of cells with a selective inhibitor of PKC activity, bisindolylmaleimide GF 109203X, partially prevents the HNE-induced differentiation in MEL cells. In conclusion, our results demonstrate that HNE-induced MEL cell differentiation is preceded by a rapid translocation of PKC activity, and that the inhibition of this phenomenon prevents the onset of terminal differentiation.  相似文献   

12.
An antibody was raised against high mobility group nuclear protein 14 (HMG 14) from calf thymus, known to be associated with actively transcribed chromatin. By means of indirect immunofluorescence, it was shown to react with the nuclei of mouse fibroblasts and of brain cells from Xenopus and Drosophila, but not of Xenopus erythrocytes. The antibody was used to detect immunologically related proteins in giant chromosomes of the midge, Chironomus pallidivittatus. Indirect immunofluorescence with anti-HMG 14 antibody in polytene nuclei was restricted to the active puffs. Giant puffs (Balbiani rings) exhibited especially intense fluorescence in their peripheral regions. An inducible puff site, the Balbiani ring 6 locus, showed no reaction with the antibody prior to induction. When puff formation began, the chromosome site assumed a very intense fluorescence, which disappeared again when the Balbiani ring was recondensed. — Protein extracts of salivary gland nuclei were found on immunoblots to contain one major protein fraction that reacted with the anti-HMG 14 antibody. The electrophoretic mobility of this fraction was similar to that of calf thymus HMG 17. — It is concluded that actively transcribed puffs in polytene chromosomes contain HMG 14-related protein(s) that are not present in potentially active gene loci prior to induction.This paper is dedicated to Prof. Hans Bauer on the occasion of his 80th birthday.  相似文献   

13.
Dimethylsulfoxide (DMSO) converts almost all of the undifferentiated murine erythroleukemia cells (MEL or Friend cells, clone 745A) in a culture to differentiated cells that contain high levels of hemoglobin and that stop growing after a limited number of cell divisions. Contrary to other reports--that amiloride strongly inhibits DMSO-induced differentiation in MEL cells--in this laboratory, inhibition by amiloride, tested with DMSO over a range of concentrations in two kinds of media and at various cell densities, was found to be only weak or absent. Similarly, amiloride did not inhibit induction by N,N'-hexamethylene bis-acetamide (HMBA). As expected from previous findings with other cell systems, amiloride inhibited protein synthesis and cell multiplication.  相似文献   

14.
15.
4,6-Dioxoheptanoic acid (succinylacetone, SA) was examined with regard to its ability to a) inhibit the second enzyme of the heme pathway, δ-aminolevulinic acid (ALA) dehydratase, b) lower the heme concentration, and c) inhibit cell growth of murine erythroleukemia (MEL) cells in culture. SA profoundly inhibited ALA dehydratase in broken cell preparations at concentrations as low as 10?7 M. The stimulation of hemoglobin production by DMSO and butyrate in MEL cells was inhibited by the addition of SA to the cell medium. When 1 mM SA was added to the medium, there was a profound inhibition of ALA dehydratase activity, and the heme concentration of cells declined progressively with each cell division. Cell growth was markedly inhibited after two cell divisions.  相似文献   

16.
Friend virus-transformed mouse erythroleukemia (MEL) cells can be induced to undergo erythroid differentiation by a variety of compounds, including dimethyl sulfoxide (DMSO) and the adenosine analog xylosyladenine. The present studies have monitored the effects of the stable adenosine receptor ligand N6-phenylisopropyladenosine (PIA) on induction of MEL cell differentiation. PIA has been previously shown to stimulate adenylate cyclase activity in rat hepatic and mouse Leydig 1-10 cells as well as inhibit adenylate cyclase in adipocytes. In the present study, PIA was ineffective as an inducer of the differentiated MEL cell phenotype. However, the results demonstrate that PIA inhibits the induction of MEL cell differentiation by DMSO and xylosyladenine. The extent of this inhibition as determined by benzidine staining, induction of globin RNA, and loss of self-renewal capacity was dependent on PIA concentration. The results also demonstrate that PIA induces a rapid and sustained increase in cyclic AMP (cAMP) levels. Furthermore, there was a highly significant correlation between cAMP levels and inhibition of xylosyladenine-induced differentiation (r = 0.962, P less than 0.0005). This relationship is further supported by the demonstration that prostaglandins E1 and E2 increase MEL cell cAMP levels and inhibit induction of the differentiated MEL cell phenotype. Moreover, PIA inhibited induction of MEL cell differentiation by butyric acid, diazepam, hypoxanthine, and the aminonucleoside analog of puromycin. These results suggest that cAMP may act as a negative regulatory signal in the induction of MEL cell differentiation.  相似文献   

17.
18.
We have assessed the relationship between DNA synthesis and the differentiation of MEL cells induced by DMSO. Under conditions where the rate of incorporation of 3H-deoxyadenosine into DNA was inhibited by 99%, the rate at which MEL cells become committed to terminal erythroid differentiation was identical to that of a culture treated with inducer alone. We conclude that commitment of MEL cells does not require concomitant DNA synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号