首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.

Background and Aims

Black cherry (Prunus serotina) is a North American tree that is rapidly invading European forests. This species was introduced first as an ornamental plant then it was massively planted by foresters in many countries but its origins and the process of invasion remain poorly documented. Based on a genetic survey of both native and invasive ranges, the invasion history of black cherry was investigated by identifying putative source populations and then assessing the importance of multiple introductions on the maintenance of gene diversity.

Methods

Genetic variability and structure of 23 populations from the invasive range and 22 populations from the native range were analysed using eight nuclear microsatellite loci and five chloroplast DNA regions.

Key Results

Chloroplast DNA diversity suggests there were multiple introductions from a single geographic region (the north-eastern United States). A low reduction of genetic diversity was observed in the invasive range for both nuclear and plastid genomes. High propagule pressure including both the size and number of introductions shaped the genetic structure in Europe and boosted genetic diversity. Populations from Denmark, The Netherlands, Belgium and Germany showed high genetic diversity and low differentiation among populations, supporting the hypothesis that numerous introduction events, including multiple individuals and exchanges between sites, have taken place during two centuries of plantation.

Conclusions

This study postulates that the invasive black cherry has originated from east of the Appalachian Mountains (mainly the Allegheny plateau) and its invasiveness in north-western Europe is mainly due to multiple introductions containing high numbers of individuals.  相似文献   

2.

Background and Aims

Natural selection and genetic drift are important evolutionary forces in determining genetic and phenotypic differentiation in plant populations. The extent to which these two distinct evolutionary forces affect locally adaptive quantitative traits has been well studied in common plant and animal species. However, we know less about how quantitative traits respond to selection pressures and drift in endangered species that have small population sizes and fragmented distributions. To address this question, this study assessed the relative strengths of selection and genetic drift in shaping population differentiation of phenotypic traits in Psilopeganum sinense, a naturally rare and recently endangered plant species.

Methods

Population differentiation at five quantitative traits (QST) obtained from a common garden experiment was compared with differentiation at putatively neutral microsatellite markers (FST) in seven populations of P. sinense. QST estimates were derived using a Bayesian hierarchical variance component method.

Key Results

Trait-specific QST values were equal to or lower than FST. Neutral genetic diversity was not correlated with quantitative genetic variation within the populations of P. sinense.

Conclusions

Despite the prevalent empirical evidence for QST > FST, the results instead suggest a definitive role of stabilizing selection and drift leading to phenotypic differentiation among small populations. Three traits exhibited a significantly lower QST relative to FST, suggesting that populations of P. sinense might have experienced stabilizing selection for the same optimal phenotypes despite large geographical distances between populations and habitat fragmentation. For the other two traits, QST estimates were of the same magnitude as FST, indicating that divergence in these traits could have been achieved by genetic drift alone. The lack of correlation between molecular marker and quantitative genetic variation suggests that sophisticated considerations are required for the inference of conservation measures of P. sinense from neutral genetic markers.  相似文献   

3.

Background and Aims

A previous study detected no allozyme diversity in Iberian populations of the buckler-fern Dryopteris aemula. The use of a more sensitive marker, such as microsatellites, was thus needed to reveal the genetic diversity, breeding system and spatial genetic structure of this species in natural populations.

Methods

Eight microsatellite loci for D. aemula were developed and their cross-amplification with other ferns was tested. Five polymorphic loci were used to characterize the amount and distribution of genetic diversity of D. aemula in three populations from the Iberian Peninsula and one population from the Azores.

Key Results

Most microsatellite markers developed were transferable to taxa close to D. aemula. Overall genetic variation was low (HT = 0·447), but was higher in the Azorean population than in the Iberian populations of this species. Among-population genetic differentiation was high (FST = 0·520). All loci strongly departed from Hardy–Weinberg equilibrium. In the population where genetic structure was studied, no spatial autocorrelation was found in any distance class.

Conclusions

The higher genetic diversity observed in the Azorean population studied suggested a possible refugium in this region from which mainland Europe has been recolonized after the Pleistocene glaciations. High among-population genetic differentiation indicated restricted gene flow (i.e. lack of spore exchange) across the highly fragmented area occupied by D. aemula. The deviations from Hardy–Weinberg equilibrium reflected strong inbreeding in D. aemula, a trait rarely observed in homosporous ferns. The absence of spatial genetic structure indicated effective spore dispersal over short distances. Additionally, the cross-amplification of some D. aemula microsatellites makes them suitable for use in other Dryopteris taxa.  相似文献   

4.

Background and Aims

Plants show patterns of spatial genetic differentiation reflecting gene flow mediated by pollen and seed dispersal and genotype × environment interactions. If patterns of genetic structure are determined largely by gene flow then they may be useful in predicting the likelihood of inbreeding or outbreeding depression but should be less useful if there is strong site-specific selection. For many Australian plants little is known about either their population genetics or the effects on mating systems of variation in pollen transfer distances. Experimental pollinations were used to compare the reproductive success of bird-adapted Grevillea mucronulata plants mated with individuals from a range of spatial scales. A hierarchical survey of microsatellite DNA variation was also conducted to describe the scale of population differentiation for neutral markers.

Methods

The effects of four pollen treatments on reproductive performance were compared. These treatments were characterized by transfer of pollen from (a) neighbouring adults; (b) an adjacent cluster of adults (30–50 m distant); (c) a distant cluster (>5 km distant); and (d) open pollination. Sets of 17·9 ± 3·3 leaves from each of 15 clusters of plants were genotyped and spatial autocorrelation and F statistics were used to describe patterns of genetic structure.

Key Results

Grevillea mucronulata displayed evidence of both inbreeding and outbreeding depression, with ‘intermediate’ pollen producing consistently superior outcomes for most aspects of fitness including seed set, seed size, germination and seedling growth. Significant genotypic structuring was detected within clusters (spatial autocorrelation) and among adjacent clusters and clusters separated by >5 km distance (FST = 0·07 and 0·10).

Conclusions

The superior outcome of intermediate pollen transfer and genetic differentiation of adjacent clusters suggests that G. mucronulata selection disfavours matings among closely and distantly related neighbours. Moreover, the performance of open-pollinated seedlings was poor, implying that current mating patterns are suboptimal.  相似文献   

5.

Background and Aims

Knowledge on how climate-induced range shifts might affect natural selection is crucial to understand the evolution of species ranges.

Methods

Using historical demographic perspectives gathered from regional-scale phylogeography on the alpine herb Biscutella laevigata, indirect inferences on gene flow and signature of selection based on AFLP genotyping were compared between local populations persisting at the trailing edge and expanding at the leading edge.

Key Results

Spatial autocorrelation revealed that gene flow was two times more restricted at the trailing edge and genome scans indicated divergent selection in this persisting population. In contrast, no pattern of selection emerged in the expanding population at the leading edge.

Conclusions

Historical effects may determine different architecture of genetic variation and selective patterns within local populations, what is arguably important to understand evolutionary processes acting across the species ranges.  相似文献   

6.

Background and Aims

Despite the great importance of autopolyploidy in the evolution of angiosperms, relatively little attention has been devoted to autopolyploids in natural polyploid systems. Several hypotheses have been proposed to explain why autopolyploids are so common and successful, for example increased genetic diversity and heterozygosity and the transition towards selfing. However, case studies on patterns of genetic diversity and on mating systems in autopolyploids are scarce. In this study allozymes were employed to investigate the origin, population genetic diversity and mating system in the contact zone between diploid and assumed autotetraploid cytotypes of Vicia cracca in Central Europe.

Methods

Four enzyme systems resolved in six putative loci were investigated in ten diploid, ten tetraploid and five mixed-ploidy populations. Genetic diversity and heterozygosity, partitioning of genetic diversity among populations and cytotypes, spatial genetic structure and fixed heterozygosity were analysed. These studies were supplemented by a pollination experiment and meiotic chromosome observation.

Key Results and Conclusions

Weak evidence of fixed heterozygosity, a low proportion of unique alleles and genetic variation between cytotypes similar to the variation among populations within cytotypes supported the autopolyploid origin of tetraploids, although no multivalent formation was observed. Tetraploids possessed more alleles than diploids and showed higher observed zygotic heterozygosity than diploids, but the observed gametic heterozygosity was similar to the value observed in diploids and smaller than expected under panmixis. Values of the inbreeding coefficient and differentiation among populations (ρST) suggested that the breeding system in both cytotypes of V. cracca is mixed mating with prevailing outcrossing. The reduction in seed production of tetraploids after selfing was less than that in diploids. An absence of correlation between genetic and geographic distances and high differentiation among neighbouring tetraploid populations supports the secondary contact hypothesis with tetraploids of several independent origins in Central Europe. Nevertheless, the possibility of a recent in situ origin of tetraploids through a triploid bridge in some regions is also discussed.  相似文献   

7.

Background and Aims

It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments.

Methods

A series of traits related to hydraulics (vulnerability to cavitation and hydraulic conductivity in branches), growth performance and leaf mass per area were assessed in eight Pinus canariensis populations growing in two common gardens under contrasting environments. In addition, the neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits.

Key Results

The variability for hydraulic traits was largely due to phenotypic plasticity. Nevertheless, the vulnerability to cavitation displayed a significant genetic variability (approx. 5 % of the explained variation), and a significant genetic × environment interaction (between 5 and 19 % of the explained variation). The strong correlation between vulnerability to cavitation and survival in the xeric common garden (r = –0·81; P < 0·05) suggests a role for the former in the adaptation to xeric environments. Populations from drier sites and higher temperature seasonality were less vulnerable to cavitation than those growing at mesic sites. No trade-off between xylem safety and efficiency was detected. QST of parameters of the vulnerability curve (0·365 for P50 and the slope of the vulnerability curve and 0·452 for P88) differed substantially from FST (0·091), indicating divergent selection. In contrast, genetic drift alone was found to be sufficient to explain patterns of differentiation for xylem efficiency and growth.

Conclusions

The ability of P. canariensis to inhabit a wide range of ecosystems seemed to be associated with high phenotypic plasticity and some degree of local adaptations of xylem and leaf traits. Resistance to cavitation conferred adaptive potential for this species to adapt successfully to xeric conditions.  相似文献   

8.

Background and Aims

The successful spread of invasive plants in new environments is often linked to multiple introductions and a diverse gene pool that facilitates local adaptation to variable environmental conditions. For clonal plants, however, phenotypic plasticity may be equally important. Here the primary adaptive strategy in three non-native, clonally reproducing macrophytes (Egeria densa, Elodea canadensis and Lagarosiphon major) in New Zealand freshwaters were examined and an attempt was made to link observed differences in plant morphology to local variation in habitat conditions.

Methods

Field populations with a large phenotypic variety were sampled in a range of lakes and streams with different chemical and physical properties. The phenotypic plasticity of the species before and after cultivation was studied in a common garden growth experiment, and the genetic diversity of these same populations was also quantified.

Key Results

For all three species, greater variation in plant characteristics was found before they were grown in standardized conditions. Moreover, field populations displayed remarkably little genetic variation and there was little interaction between habitat conditions and plant morphological characteristics.

Conclusions

The results indicate that at the current stage of spread into New Zealand, the primary adaptive strategy of these three invasive macrophytes is phenotypic plasticity. However, while limited, the possibility that genetic diversity between populations may facilitate ecotypic differentiation in the future cannot be excluded. These results thus indicate that invasive clonal aquatic plants adapt to new introduced areas by phenotypic plasticity. Inorganic carbon, nitrogen and phosphorous were important in controlling plant size of E. canadensis and L. major, but no other relationships between plant characteristics and habitat conditions were apparent. This implies that within-species differences in plant size can be explained by local nutrient conditions. All together this strongly suggests that invasive clonal aquatic plants adapt to a wide range of habitats in introduced areas by phenotypic plasticity rather than local adaptation.  相似文献   

9.

Background and Aims

The Asian genus Vigna, to which four cultivated species (rice bean, azuki bean, mung bean and black gram) belong, is suitable for comparative genomics. The aims were to construct a genetic linkage map of rice bean, to identify the genomic regions associated with domestication in rice bean, and to compare these regions with those in azuki bean.

Methods

A genetic linkage map was constructed by using simple sequence repeat and amplified fragment length polymorphism markers in the BC1F1 population derived from a cross between cultivated and wild rice bean. Using this map, 31 domestication-related traits were dissected into quantitative trait loci (QTLs). The genetic linkage map and QTLs of rice bean were compared with those of azuki bean.

Key Results

A total of 326 markers converged into 11 linkage groups (LGs), corresponding to the haploid number of rice bean chromosomes. The domestication-related traits in rice bean associated with a few major QTLs distributed as clusters on LGs 2, 4 and 7. A high level of co-linearity in marker order between the rice bean and azuki bean linkage maps was observed. Major QTLs in rice bean were found on LG4, whereas major QTLs in azuki bean were found on LG9.

Conclusions

This is the first report of a genetic linkage map and QTLs for domestication-related traits in rice bean. The inheritance of domestication-related traits was so simple that a few major QTLs explained the phenotypic variation between cultivated and wild rice bean. The high level of genomic synteny between rice bean and azuki bean facilitates QTL comparison between species. These results provide a genetic foundation for improvement of rice bean; interchange of major QTLs between rice bean and azuki bean might be useful for broadening the genetic variation of both species.  相似文献   

10.

Background and Aims

In heterostylous plant species, skewed morph ratios are not uncommon and may arise from a range of factors. Despite the recognized importance of skewed morph ratios on overall reproductive success within populations, little is known about the impact of skewed morph ratios on population genetic diversity and differentiation in heterostylous species. This study specifically aimed to clarify the effect of population size and morph bias on population genetic diversity and differentiation in the temperate forest herb Pulmonaria officinalis. This species is characterized by a distylous breeding system and shows morph-specific differences in reproductive success.

Methods

Genetic diversity was determined for 27 P. officinalis populations in northern Belgium by using eight recently developed microsatellite markers. Multiple regressions were used to assess the relationship between genetic diversity, morph bias and population size, and FST-values were calculated for short- and long-styled morphs separately to study genetic differentiation as a function of morph type.

Key Results

For all genetic measures used, morph bias was more important in explaining patterns of genetic diversity than population size, and in all cases patterns of population genetic diversity followed a quadratic function, which showed a symmetrical decrease in genetic diversity with increasing morph bias. However, probably due to the reproductive advantage of L-morphs relative to S-morphs, maximum genetic diversity was found in populations showing an excess of L-morphs (60·7 % L-morph). On the other hand, no significant difference in pairwise genetic distances between populations was observed between L- (0·107) and S-morphs (0·106).

Conclusions

Our results indicate that significant deviations from equal morph ratios not only affect plant reproductive success but also population genetic diversity of heterostylous plant species. Hence, when defining conservation measures for populations of heterostylous plant species, morph ratios should be considered as an important trait affecting their long-term population viability.  相似文献   

11.

Background and Aims

Lolium perenne (perennial ryegrass) is the most important forage grass species of temperate regions. We have previously released the chloroplast genome sequence of L. perenne ‘Cashel’. Here nine chloroplast microsatellite markers are published, which were designed based on knowledge about genetically variable regions within the L. perenne chloroplast genome. These markers were successfully used for characterizing the genetic diversity in Lolium and different grass species.

Methods

Chloroplast genomes of 14 Poaceae taxa were screened for mononucleotide microsatellite repeat regions and primers designed for their amplification from nine loci. The potential of these markers to assess genetic diversity was evaluated on a set of 16 Irish and 15 European L. perenne ecotypes, nine L. perenne cultivars, other Lolium taxa and other grass species.

Key Results

All analysed Poaceae chloroplast genomes contained more than 200 mononucleotide repeats (chloroplast simple sequence repeats, cpSSRs) of at least 7 bp in length, concentrated mainly in the large single copy region of the genome. Nucleotide composition varied considerably among subfamilies (with Pooideae biased towards poly A repeats). The nine new markers distinguish L. perenne from all non-Lolium taxa. TeaCpSSR28 was able to distinguish between all Lolium species and Lolium multiflorum due to an elongation of an A8 mononucleotide repeat in L. multiflorum. TeaCpSSR31 detected a considerable degree of microsatellite length variation and single nucleotide polymorphism. TeaCpSSR27 revealed variation within some L. perenne accessions due to a 44-bp indel and was hence readily detected by simple agarose gel electrophoresis. Smaller insertion/deletion events or single nucleotide polymorphisms detected by these new markers could be visualized by polyacrylamide gel electrophoresis or DNA sequencing, respectively.

Conclusions

The new markers are a valuable tool for plant breeding companies, seed testing agencies and the wider scientific community due to their ability to monitor genetic diversity within breeding pools, to trace maternal inheritance and to distinguish closely related species.  相似文献   

12.

Background and Aim

Anagenesis (also known as phyletic speciation) is an important process of speciation in endemic species of oceanic islands. We investigated genetic variation in Acer okamotoanum, an anagenetically derived species endemic to Ullung Island, South Korea, to infer genetic consequences of anagenesis in comparison with other groups that have undergone cladogenesis (and adaptive radiation).

Methods

We examined genetic variation based on eight polymorphic microsatellite markers from 145 individuals of A. okamotoanum and 134 individuals of its putative progenitor A. mono. We employed standard population genetic analyses, clustering analyses, Bayesian clustering analyses in STRUCTURE and bottleneck analyses.

Key Results

Based on both the Neighbor–Joining tree and Bayesian clustering analyses, clear genetic distinctions were found between the two species. Genetic diversity in terms of allelic richness and heterozygosity shows slightly lower levels in A. okamotoanum in comparison with A. mono. Bayesian clustering analyses showed a relatively high F-value in the cluster of A. okamotoanum, suggesting a strong episode of genetic drift during colonization and speciation. There was no clear evidence of a bottleneck based on allelic frequency distribution and excess of observed heterozygotes, but the M-ratio indicated a historical bottleneck in several populations of A. okamotoanum. No geographical genetic structure within the island was found, and the genetic variation among populations of A. okamotoanum was quite low.

Conclusions

We hypothesized that genetic consequences of oceanic-endemic plants derived via anagenesis would be quite different from those derived via cladogenesis. Populations of A. okamotoanum form a cluster and are clearly differentiated from A. mono, which suggests a single origin for the anagenetically derived island endemic. No pattern of geographical differentiation of populations occurs in A. okamotoanum, which supports the concept of initial founder populations diverging through time by accumulation of mutations in a relatively uniform environment without further specific differentiation.  相似文献   

13.

Background and Aims

Climate change is expected to alter the geographic range of many plant species dramatically. Predicting this response will be critical to managing the conservation of plant resources and the effects of invasive species. The aim of this study was to predict the response of temperate homosporous ferns to climate change.

Methods

Genetic diversity and changes in distribution range were inferred for the diploid rock fern Asplenium fontanum along a South–North transect, extending from its putative last glacial maximum (LGM) refugia in southern France towards southern Germany and eastern-central France. This study reconciles observations from distribution models and phylogeographic analyses derived from plastid and nuclear diversity.

Key Results

Genetic diversity distribution and niche modelling propose that genetic diversity accumulates in the LGM climate refugium in southern France with the formation of a diversity gradient reflecting a slow, post-LGM range expansion towards the current distribution range. Evidence supports the fern''s preference for outcrossing, contradicting the expectation that homosporous ferns would populate new sites by single-spore colonization. Prediction of climate and distribution range change suggests that a dramatic loss of range and genetic diversity in this fern is possible. The observed migration is best described by the phalanx expansion model.

Conclusions

The results suggest that homosporous ferns reproducing preferentially by outcrossing accumulate genetic diversity primarily in LGM climate refugia and may be threatened if these areas disappear due to global climate change.  相似文献   

14.

Background and Aims

A fundamental element in the evolution of obligate root-parasitic angiosperms is their ability to germinate only in response to chemical stimulation by roots, to ensure contact with a nearby nourishing host. The aim of this study was to explore inheritance of the unique germination control in this group of plants.

Methods

Analysis was made of the segregation of spontaneous (non-induced) germination that appeared in hybrid progenies derived from crosses between Orobanche cernua and O. cumana, which, like all other Orobanche species, are totally dependent on chemical stimulation for the onset of germination, and show negligible spontaneous germination in their natural seed populations.

Key Results and Conclusions

F1 and F2 seeds did not germinate in the absence of chemical stimulation, but significant spontaneous germination was found in some F3 seed families. This indicates that the prevention of non-induced germination in Orobanche seeds, i.e. dependence on an external chemical stimulation for seed germination, is genetically controlled, that this genetic control is expressed in a seed tissue with maternal origin (presumably the perisperm that originates from the nucellus) and that genetic variation for this trait exists in Orobanche species. Similar segregation results were obtained in reciprocal crosses, suggesting that stimulated germination is controlled by nuclear genes.  相似文献   

15.

Background and Aims

The Tehuacán Valley in Mexico is a principal area of plant domestication in Mesoamerica. There, artificial selection is currently practised on nearly 120 native plant species with coexisting wild, silvicultural and cultivated populations, providing an excellent setting for studying ongoing mechanisms of evolution under domestication. One of these species is the columnar cactus Stenocereus pruinosus, in which we studied how artificial selection is operating through traditional management and whether it has determined morphological and genetic divergence between wild and managed populations.

Methods

Semi-structured interviews were conducted with 83 households of three villages to investigate motives and mechanisms of artificial selection. Management effects were studied by comparing variation patterns of 14 morphological characters and population genetics (four microsatellite loci) of 264 plants from nine wild, silvicultural and cultivated populations.

Key Results

Variation in fruit characters was recognized by most people, and was the principal target of artificial selection directed to favour larger and sweeter fruits with thinner or thicker peel, fewer spines and pulp colours others than red. Artificial selection operates in agroforestry systems favouring abundance (through not felling plants and planting branches) of the preferred phenotypes, and acts more intensely in household gardens. Significant morphological divergence between wild and managed populations was observed in fruit characters and plant vigour. On average, genetic diversity in silvicultural populations (HE = 0·743) was higher than in wild (HE = 0·726) and cultivated (HE = 0·700) populations. Most of the genetic variation (90·58 %) occurred within populations. High gene flow (NmFST > 2) was identified among almost all populations studied, but was slightly limited by mountains among wild populations, and by artificial selection among wild and managed populations.

Conclusions

Traditional management of S. pruinosus involves artificial selection, which, despite the high levels of gene flow, has promoted morphological divergence and moderate genetic structure between wild and managed populations, while conserving genetic diversity.  相似文献   

16.
Ivey CT  Carr DE 《Annals of botany》2012,109(3):583-598

Background and Aims

Self-fertilizing taxa are often found at the range margins of their progenitors, where sub-optimal habitats may select for alternative physiological strategies. The extent to which self-fertilization is favoured directly vs. arising indirectly through correlations with other adaptive life history traits is unclear. Trait responses to selection depend on genetic variation and covariation, as well as phenotypic and genetic responses to altered environmental conditions. We tested predictions of the hypothesis that self-fertilization in Mimulus arises through direct selection on physiological and developmental traits that allow seasonal drought escape.

Methods

Phenotypic selection on mating system and drought escape traits was estimated in field populations of M. guttatus. In addition, trait phenotype and phenotypic selection were compared between experimental wet and dry soil in two greenhouse populations each of M. guttatus and M. nasutus. Finally, genetic variation and covariation for traits were compared between wet and dry soil treatments in a greenhouse population of M. guttatus.

Key Results

Consistent with predictions, selection for early flowering was generally stronger than for mating system traits, and selection for early flowering was stronger in dry soil. Inconsistent with predictions, selection for water-use efficiency was largely absent; selection for large flowers was stronger than for drought escape in the field; and most drought escape and mating system traits were not genetically correlated. A positive genetic correlation between flowering time and flower size, which opposed the adaptive contour, emerged only in wet soil, suggesting that variation in water availability may maintain variation in these traits. Plastic responses to soil moisture treatments supported the idea that taxonomic divergence could have been facilitated by plasticity in flowering time and selfing.

Conclusions

The hypothesis that plant mating systems may evolve indirectly via selection on correlated life history characteristics is plausible and warrants increased attention.  相似文献   

17.

Background and Aims

The Mediterranean Basin is one of the most important regions for the Earth''s plant biodiversity; however, the scarcity of studies on fine scale patterns of genetic variation in this region is striking. Here, an assessment is made of the spatial genetic structure of all known locations of the three Sardinian endemic species of Aquilegia in order to determine the relative roles of gene flow and genetic drift as underlying evolutionary forces canalizing the divergence of Sardinian Aquilegia taxa, and to see if the spatial genetic structure found fits the current taxonomic differentiation of these taxa.

Methods

DNA from 89 individuals from all known locations of Aquilegia across Sardinia was analysed by means of amplified fragment length polymorphism (AFLP) markers. Both principal co-ordinates analysis (PCoA) and Bayesian clustering analyses were used to determine the spatial genetic structure irrespective of any taxonomic affiliation. Historical effects of gene flow and genetic drift were assessed by checking for the existence of isolation-by-distance patterns.

Key Results

STRUCTURE and PCoA analyses revealed a pattern of genetic variation geographically structured into four spatial genetic groups. No migration–drift equilibrium was detected for Aquilegia in Sardinia, when analysed either as a whole or in individual groups. The scenario approached a Case III pattern sensu Hutchinson and Templeton, which is associated with extreme isolation conditions where genetic drift has historically played a dominant role over gene flow.

Conclusions

The pattern of genetic variation of Sardinian taxa of Aquilegia indicates that genetic drift has been historically more influential than gene flow on population structure of Sardinian species of Aquilegia. Limited seed dispersal and divergent selection imposed by habitat conditions have been probably the main causes reinforcing post-Pleistocene geographical isolation of Aquilegia populations. The spatial genetic structure found here is not fully compatible with current taxonomic affiliations of Sardinian Aquilegia taxa. This is probably a consequence of the uncoupling between morphological and genetic patterns of differentiation frequently found in recently radiated taxa.  相似文献   

18.

Background and Aims

A shift from outcrossing to selfing is thought to reduce the long-term survival of populations by decreasing the genetic variation necessary for adaptation to novel ecological conditions. However, theory also predicts an increase in adaptive potential as more of the existing variation becomes expressed as homozygous genotypes. So far, relatively few studies have examined how a transition to selfing simultaneously affects means, variances and covariances for characters that might be under stabilizing selection for a spatially varying optimum, e.g. characters describing leaf morphology.

Methods

Experimental crosses within an initially self-sterile population of Crepis tectorum were performed to produce an outbred and inbred progeny population to assess how a shift to selfing affects the adaptive potential for measures of leaf morphology, with special emphasis on the degree of leaf dissection, a major target of diversifying selection within the study species.

Key Results

Three consecutive generations of selfing had a minor impact on survival, the total number of heads produced and the mean leaf phenotype, but caused a proportional increase in the genetic (co)variance matrix for foliar characters. For the degree of leaf dissection, the lowest 50th percentile of the inbred progeny population showed a disproportionate increase in the genetic variance, consistent with the recessive nature of the weakly lobed phenotype observed in interpopulation crosses. Comparison of inbreeding response with large-scale patterns of variation indicates a potential for selection in a (recently) inbred population to drive a large evolutionary reduction in degree of leaf dissection by increasing the frequency of particular sibling lines.

Conclusions

The results point to a positive role for inbreeding in phenotypic evolution, at least during or immediately after a rapid shift in mating system.  相似文献   

19.

Background and Aims

Seemannaralia appears to be fundamentally different from all other Araliaceae in the presence of a well-developed symplicate zone in its gynoecium, as well as in the ovule insertion in the symplicate zone (rather than in the cross-zone). The present investigation re-examined the floral structure of Seemannaralia with emphasis on the morphology and evolution of its gynoecium.

Methods

Flowers and fruits of Seemannaralia gerrardii at various developmental stages were examined using light microscopy and scanning electron microscopy.

Key Results

Ovaries in the flowers of Seemannaralia are bilocular. Each ovary locule corresponds to a carpel whose ascidiate part is distinctly longer than the plicate part. Each carpel contains one fertile ovule attached to the cross-zone, and one sterile ovule as well. The fruit is unilocular: its central cavity is occupied by a single large seed. In the course of fruit development, the growth of one ovule stops while another ovule develops into the mature seed. When this ovule outgrows the available space in the locule, the septum is ruptured, forming a united cavity of two carpels.

Conclusions

Despite literature data, the synascidiate zone is well developed in the gynoecium of Seemannaralia, and the ovules are attached to the cross-zone. Its preanthetic and anthetic gynoecium has nearly the same structure as gynoecia of most other Araliaceae. The Seemannaralia fruit resembles the paracarpous gynoecium but its ground plan is very different because the central cavity is formed by mechanical rupture of the septum. The term ‘pseudoparacarpy’ (‘false paracarpy’) is proposed to describe this condition, which has not been reported to date for indehiscent fruits in any taxa other than Seemannaralia. In this genus, the pseudoparacarpy has probably resulted from a decrease in seed number in the course of the transition from zoochory to anemochory.  相似文献   

20.

Background and Aims

Serotiny is common in the genus Banksia, so any seed collection is likely to be comprised of seeds that were produced in many different years. This study aimed to determine the impact of cone age and degree of serotiny on longevity in ex situ storage.

Methods

Cones of identifiable age classes were collected from three species of Banksia. Seeds were extracted from cones and the degree of serotiny calculated. An estimate of initial viability (Ki), the time for viability to fall by one probit (σ) and the relative longevity of seeds (p50) for each species and cone age class was determined using a comparative longevity test (50 °C, 63 % relative humidity).

Key Results

The degree of serotiny ranged from moderate (7·9) for Banksia attenuata to strong (40·4) for B. hookeriana. Survival curves for all seed age classes within each species could be described by regressions with a common slope (1/σ), but with different values for Ki. The time taken for viability to fall by one probit (σ) could be described by a common value (29·1 d) for all three species.

Conclusions

Differences in seed longevity between cone age classes and species was related to variation in initial viability (Ki) rather than to differences in σ. While targeting the youngest mature seed cohort on a plant will maximize the viability of seeds collected, a wide range of age classes should be collected (but stored as separate cohorts if possible) for quality conservation/restoration seed collections where genetic diversity is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号