首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The mechanism of HCO3- translocation across the proximal tubule basolateral membrane was investigated by testing for Na+-HCO3- cotransport using isolated membrane vesicles purified from rat renal cortex. As indicated by 22Na+ uptake, imposing an inwardly directed HCO3- concentration gradient induced the transient concentrative accumulation of intravesicular Na+. The stimulation of basolateral membrane vesicle Na+ uptake was specifically HCO3(-)-dependent as only basolateral membrane-independent Na+ uptake was stimulated by an imposed hydroxyl gradient in the absence of HCO3-. No evidence for Na+-HCO3- cotransport was detected in brush border membrane vesicles. Charging the vesicle interior positive stimulated net intravesicular Na+ accumulation in the absence of other driving forces via a HCO3(-)-dependent pathway indicating the flow of negative charge accompanies the Na+-HCO3- cotransport event. Among the anion transport inhibitors tested, 4-4'-diisothiocyanostilbene-2,2'-disulfonic acid demonstrated the strongest inhibitor potency at 1 mM. The Na+-coupled transport inhibitor harmaline also markedly inhibited HCO3- gradient-driven Na+ influx. A role for carbonic anhydrase in the mechanism of Na+-HCO3- cotransport is suggested by the modest inhibition of HCO3- gradient driven Na+ influx caused by acetazolamide. The imposition of Cl- concentration gradients had a marked effect on HCO3- gradient-driven Na+ influx which was furosemide-sensitive and consistent with the operation of a Na+-HCO3- for Cl- exchange mechanism. The results of this study provide evidence for an electrogenic Na+-HCO3- cotransporter in basolateral but not microvillar membrane vesicles isolated from rat kidney cortex. The possible existence of an additional basolateral membrane HCO3(-)-translocating pathway mediating Na+-HCO3- for Cl- exchange is suggested.  相似文献   

2.
An open circuit kinetic model was developed to calculate the time course of proximal tubule cell pH, solute concentrations, and volume in response to induced perturbations in luminal or peritubular fluid composition. Solute fluxes were calculated from electrokinetic equations containing terms for known carrier saturabilities, allosteric dependences, and ion coupling ratios. Apical and basolateral membrane potentials were determined iteratively from the requirements of cell electroneutrality and equal opposing transcellular and paracellular currents. The model converged to membrane potentials accurate to 0.05% in one to four iterations. Model variables included cell concentrations of Na, K, HCO3, glucose, pH (uniform CO2), volume, and apical and basolateral membrane potentials. The basic model contained passive apical membrane transport of Na/H, Na/glucose, H and K, basolateral transport of Na/3HCO3, K, H, and glucose, and paracellular transport of Na, K, Cl, and HCO3; apical H and basolateral 3Na/2K-ATPases were present. Apical Na/H and basolateral K transport were regulated allosterically by pH. Apical Na/H transport, basolateral Na/3HCO3 transport, and the 3Na/2K-ATPase were saturable. Model parameters were chosen from data in the rat proximal tubule. Model predictions for the magnitude and time course of cell pH, Na, and membrane potential in response to rapid changes in apical and peritubular Na and HCO3 were in excellent agreement with experiment. In addition, the model requires that there exist an apical H-ATPase, basolateral Na/3HCO3 transport saturable with HCO3, and electroneutral basolateral K transport.  相似文献   

3.
The exit of HCO3- across the basolateral membrane of the proximal tubule cell occurs via the electrogenic cotransport of 3 eq of base per Na+. We have used basolateral membrane vesicles isolated from rabbit renal cortex to identify the ionic species transported via this pathway. Media of varying pH and pCO2 were employed to evaluate the independent effects of HCO3- and CO3(2-) on 22Na transport. Na+ uptake was stimulated when [CO3(2-)] was increased at constant [HCO3-], indicating the existence of a transport site for CO3(2-). In the presence of HCO3-, Na+ influx was stimulated more than 3-fold by an inward SO3(2-) gradient. SO3(2-)-stimulated Na+ influx was stilbene-sensitive, confirming that it occurs via the Na+-HCO3- cotransport system. Na+-SO3(2-) cotransport was demonstrated and found to have a 1:1 stoichiometry. Increasing [CO3(2-)] at constant [HCO3-] reduced the stimulation of Na+ influx by SO3(2-), suggesting competition between SO3(2-) and CO3(2-) at a common divalent anion site. Additional divalent anions that were tested, such as SO4(2-), oxalate2-, and HPO4(2-), did not interact at this site. SO3(2-) stimulation of Na+ influx was absolutely HCO3-(-)dependent and was increased as a function of [HCO3-], indicating the presence of a separate HCO3- site. Lastly, we tested whether Na+ interacts via ion pair formation with CO3(2-) or binds to a distinct site. Na+, which has lower affinity than Li+ for ion pair formation with CO3(2-), was found to have greater than 5-fold higher affinity than Li+ for the Na+-HCO3- cotransport system. Moreover, when its inhibition was studied as a function of [Na+], harmaline was found to be a competitive inhibitor of Na+ influx, indicating the existence of a distinct cation site. Our data are compatible with a model in which base transport across the basolateral membrane of the proximal tubule cell takes place via 1:1:1 cotransport of CO3(2-), HCO3-, and Na+ on distinct sites.  相似文献   

4.
We have studied the mechanisms of NaCl transport in the mammalian proximal tubule. Studies of isolated brush-border membrane vesicles confirmed the presence of Na+-H+ exchange and identified Cl(-)-formate and Cl(-)-oxalate exchangers as possible mechanisms of uphill Cl- entry. We found that formate and oxalate each stimulate NaCl absorption in microperfused proximal tubules. Stimulation of NaCl absorption by formate was blocked by the Na+-H+-exchange inhibitor EIPA, whereas stimulation by oxalate was blocked by omission of sulfate from the perfusion solutions. These observations were consistent with recycling of formate from lumen to cell by H+-coupled formate transport in parallel with Na+-H+ exchange and recycling of oxalate by oxalate-sulfate exchange in parallel with Na+-sulfate cotransport. Using isoform-specific antibodies, we found that NHE1 is present on the basolateral membrane of all nephron segments, whereas NHE3 is present on the apical membrane of cells in the proximal tubule and the loop of Henle. The inhibitor sensitivity of Na+-H+ exchange in renal brush-border vesicles and of HCO3- absorption in microperfused tubules suggested that NHE3 is responsible for most, if not all, apical membrane Na+-H+ exchange in the proximal tubule. The role of NHE3 in mediating proximal tubule HCO3- absorption and formate-dependent Cl- absorption was confirmed by studies in NHE3 null mice. Finally, we cloned and functionally expressed CFEX, an anion transporter expressed on the apical surface of proximal tubule cells and capable of mediating Cl(-)-formate exchange.  相似文献   

5.
To investigate the possible role of a Na transport defect in the pathogenesis of the phosphaturia in vitamin D resistant rickets, we studied the activity of the Na-K ATPase activity along the microdissected segments of the nephron in normal (N) and hypophosphatemic mice (Hyp), the Na uptake by renal brush border membrane (BBM), as well as the interrelationship between Na and phosphate transport through this membrane. In N mice, Na-K ATPase activity was present in decreasing order, in the distal tubule, the ascending branch of the loop of Henle, the proximal tubule, and the collecting tubule. In Hyp mice, the Na-K ATPase activity was comparable to that measured in N mice, except in the granular segment of the distal tubule where a 256% of the control activity was reproducibly observed. In N mice, Na initial uptake by BBM vesicles increased with Na concentration in the incubation medium, according to two kinetic components: one saturable, evident at low substrate concentrations and the other, nonsaturable, corresponding to a passive diffusion. The addition of 5 mM PO4 in the incubation medium did not significantly influence Na transport. In contrast, Na concentration in the incubation medium largely modified the kinetics of PO4 uptake: increasing Na concentration enhanced PO4 uptake and decreased the apparent Km. In Hyp mice, Na uptake by BBM was identical to that observed in N mice, but PO4 uptake was decreased by half. Na concentration in the incubation medium similarly influenced PO4 uptake in N and Hyp mice, and the Km values at each concentration of Na were comparable in the two series of animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We evaluated the mechanism of oxalate transport in basolateral membrane vesicles isolated from the rabbit renal cortex. An outward HCO3- gradient induced the transient uphill accumulation of oxalate and sulfate, indicating the presence of oxalate/HCO3- exchange and sulfate/HCO3- exchange. For oxalate, sulfate, or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, the K1/2 value for oxalate/HCO3- exchange was nearly identical to that for sulfate/HCO3- exchange, suggesting that both exchange processes occur via the same transport system. This was further supported by the finding of sulfate/oxalate exchange. Thiosulfate/sulfate exchange and thiosulfate/oxalate exchange were also demonstrated, but a variety of other tested anions including Cl-, p-aminohippurate, and lactate did not exchange for sulfate or oxalate. Na+ did not affect sulfate or oxalate transport, indicating that neither anion undergoes Na+ co-transport or Na+-dependent anion exchange in these membrane vesicles. Finally, we found that the stoichiometry of exchange is 1 sulfate or oxalate per 2 HCO3-, or a thermodynamically equivalent process. We conclude that oxalate, but not other organic or inorganic anions of physiologic importance, can share the sulfate/HCO3- exchanger in renal basolateral membrane vesicles. In series with luminal membrane oxalate/Cl- (formate) exchange, exchange of oxalate for HCO3- or sulfate across the basolateral membrane provides a possible transcellular route for oxalate transport in the proximal tubule.  相似文献   

7.
Several studies in rat kidney have established that an appreciable fraction of proximal absorption is passive in nature and occurs across the highly conductive paracellular pathway. Passive absorption is generally ascribed to the transepithelial Cl- distribution, luminal Cl- activity (alpha lCl) being higher than plasma Cl- activity (alpha pCl). The inequality alpha lCl greater than alpha pCl generates a transepithelial diffusion potential, lumen positive, which taken together with the chemical potential differences of Cl- and Na+ across the epithelium gives rise to transepithelial electrochemical potential differences for Cl- and Na+ favoring their absorption. The alpha lCl greater than alpha pCl distribution is traditionally ascribed to preferential bicarbonate absorption. We argue that HCO3- absorption alone cannot generate a non equilibrium transepithelial Cl- distribution. Other mechanisms are necessary. Our measurements in amphibian proximal tubule demonstrate that the intracellular Cl- activity, alpha cCl, is higher than the theoretical value predicted for equilibrium. This distribution is the result of two basolateral coupled transport processes (Cl-/HCO3- exchange and Cl-/Na+ cotransport). It contributes to the exit of Cl- from cell to lumen (by passive diffusion and K+/Cl- cotransport), yielding alpha lCl values higher than the theoretical value for equilibrium with regard to plasma. Thus, a small transcellular flux of Cl- (without solvent) proceeds from interstitium to lumen. It compensates the dissipative tendency of a much higher paracellular Cl- absorptive flux (in association with water) on the transepithelial Cl- gradient. The result is a steady-state luminal Cl- distribution above equilibrium, along the major part of the proximal tubule.  相似文献   

8.
Using pH-sensitive microelectrodes to measure intracellular pH (pHi) in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum, we have found that when cells are acid-loaded by pretreatment with NH+4 in a nominally HCO3--free Ringer, pHi spontaneously recovers with an exponential time course. This pHi recovery, which is indicative of active (i.e., uphill) transport, is blocked by removal of Na+ from both the luminal and basolateral (i.e., bath) solutions. Re-addition of Na+ to either the lumen or the bath results in a full pHi recovery, but at a lower-than-normal rate; the maximal rate is achieved only with Na+ in both solutions. The diuretic amiloride reversibly inhibits the pHi recovery when present on either the luminal or basolateral sides, and has its maximal effect when present in both solutions. The pHi recovery is insensitive to stilbene derivatives and to Cl- removal. A transient rise of intracellular Na+ activity accompanies the pHi recovery; there is no change of intracellular Cl- activity. These data suggest that these proximal tubule cells have Na-H exchangers in both the luminal and basolateral membranes.  相似文献   

9.
Basolateral Na-H exchange in the rabbit cortical collecting tubule   总被引:9,自引:3,他引:6       下载免费PDF全文
We used the intracellular absorbance spectrum of the dye 4',5'-dimethyl-5- (and -6-) carboxyfluorescein (Me2CF) to measure intracellular pH (pHi) in the isolated, perfused cortical collecting tubule (CCT) of the rabbit nephron. The incident spot of light was generally 10 micron in diameter, large enough to illuminate from two to six cells. No attempt was made to distinguish principal from intercalated cells. All experiments were carried out in HCO3- -free Ringer to minimize HCO3- transport. When cells were acid-loaded by briefly exposing them to Ringer containing NH+4 and then withdrawing the NH+4, pHi spontaneously recovered from the acid load. The pHi recovery was best fit by the sum of two exponentials. When the acid loading was performed in the absence of Na+, the more rapid of the two phases of pHi recovery was absent. The remaining slow phase never returned pHi to normal and was sometimes absent. Returning Na+ to the lumen had only a slight effect on the pHi recovery. However, when Na+ was returned to the basolateral (i.e., blood-side) solution, pHi recovered rapidly and completely. The apparent Km for basolateral Na+ was 27.3 +/- 4.5 mM. The basolateral Na-dependent pHi recovery was reversibly inhibited by amiloride. We conclude that the mechanism responsible for the rapid phase of pHi recovery is an Na-H exchanger confined primarily, if not exclusively, to the basolateral membrane of the CCT.  相似文献   

10.
Inward Na(+)-HCO(3)(-) cotransport has previously been demonstrated in acidified duodenal epithelial cells, but the identity and localization of the mRNAs and proteins involved have not been determined. The molecular expression and localization of Na(+)-HCO(3)(-) cotransporters (NBCs) were studied by RT-PCR, sequence analysis, and immunohistochemistry. By fluorescence spectroscopy, the intracellular pH (pH(i)) was recorded in suspensions of isolated murine duodenal epithelial cells loaded with 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Proximal duodenal epithelial cells expressed mRNA encoding two electrogenic NBC1 isoforms and the electroneutral NBCn1. Both NBC1 and NBCn1 were localized to the basolateral membrane of proximal duodenal villus cells, whereas the crypt cells did not label with the anti-NBC antibodies. DIDS or removal of extracellular Cl(-) increased pH(i), whereas an acidification was observed on removal of Na(+) or both Na(+) and Cl(-). The effects of inhibitors and ionic dependence of acid/base transporters were consistent with both inward and outward Na(+)-HCO(3)(-) cotransport. Hence, we propose that NBCs are involved in both basolateral electroneutral HCO(3)(-) transport as well as basolateral electrogenic HCO(3)(-) transport in proximal duodenal villus cells.  相似文献   

11.
Recent studies suggest that the major pathway for exit of HCO3- across the basolateral membrane of the proximal tubule cell is electrogenic Na+/HCO3- co-transport. We therefore evaluated the possible presence of Na+/HCO3- co-transport in basolateral membrane vesicles isolated from the rabbit renal cortex. Imposing an inward HCO3- gradient induced the transient uphill accumulation of Na+, and imposing an outward Na+ gradient caused HCO3- -dependent generation of an inside-acid pH gradient as monitored by quenching of acridine orange fluorescence, findings consistent with the presence of Na+/HCO3- co-transport. In the absence of other driving forces, generating an inside-positive membrane potential by imposing an inward K+ gradient in the presence of valinomycin caused net Na+ uptake via a HCO3- -dependent pathway, indicating that Na+/HCO3- co-transport is electrogenic and associated with a flow of negative charge. Imposing transmembrane Cl- gradients did not appreciably affect HCO3- gradient-stimulated Na+ influx, suggesting that Na+/HCO3- co-transport is not Cl- -dependent. The rate of HCO3- gradient-stimulated Na+ influx was a simple, saturable function of the Na+ concentration (Km = 9.7 mM, Vmax = 160 nmol/min/mg of protein), was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (I50 = 100 microM), but was inhibited less than 10% by up to 1 mM amiloride. We could not demonstrate a HCO3- -dependent or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive component of Na+ influx in microvillus membrane vesicles. This study thus indicates the presence of a transport system mediating electrogenic Na+/HCO3- co-transport in basolateral, but not luminal, membrane vesicles isolated from the rabbit renal cortex. Analogous to the use of renal microvillus membrane vesicles to study Na+/H+ exchange, renal basolateral membrane vesicles may be a useful model system for examining the kinetics and possible regulation of Na+/HCO3- co-transport.  相似文献   

12.
Mutational changes of one transporter can have deleterious effects on epithelial function leaving the cells with the options of either compensating for the loss of function or dedifferentiating. Previous studies have shown that the choroid plexus epithelium (CPE) from mice lacking the Na(+)-dependent Cl(-)/HCO(3)(-) exchanger (NCBE) encoded by Slc4a10 leads to retargeting of the Na(+)/H(+) exchanger 1 (NHE1) from the luminal to the basolateral plasma membrane. We hypothesized that disruption of NCBE, the main basolateral Na(+) importer in the CPE, would lead to a compensatory increase in the abundance of other important transport proteins in this tissue. Aquaporin-1 (AQP1) abundance was 42.7% lower and Na,K-ATPase 36.4% lower in the CPE of Slc4a10 knockout mice, respectively. The NHE1 binding ezrin cytoskeleton appeared disrupted in Slc4a10 knockout mice, whereas no changes were observed in cellular polarization with respect to claudin-2 and appearance of luminal surface microvilli. The renal proximal tubule constitutes a leaky epithelium with high transport rate similar to CPE. Here, Slc4a10 knockout did not affect Na,K-ATPase or AQP1 expression. CPE from AQP1 knockout mice has a secretory defect similar to Slc4a10 mice. However, neither NCBE nor Na,K-ATPase expression was affected in CPE from AQP1 knockout mice. By contrast, the abundance of Na,K-ATPase and NBCe1 was decreased by 23 and 31.7%, respectively, in AQP1 knockout proximal tubules, while the NHE3 abundance was unchanged. In conclusion, CPE lacking NCBE seems to spare the molecular machinery involved in CSF secretion rather than compensate for the loss of the Na(+) loader. Slc4a10 knockout seems to be more deleterious to CPE than AQP1 knockout.  相似文献   

13.
HCO3- exit across the basolateral membrane of the kidney proximal tubule cell is mediated via an electrogenic Na+:HCO3- cotransporter. We have studied the effect of pH on the activity of this cotransport system in basolateral membrane vesicles isolated from rabbit renal cortex. At constant internal pH 6.0, increasing the external pH and [HCO3-] increased the rate of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive 22Na+ influx into the vesicles. To determine the role of internal pH on the activity of the Na+:HCO3- cotransport system, the influx of 22Na+ via HCO3-dependent Na(+)-Na+ exchange was measured in the absence of an initial pH and [HCO3-] gradient (pH(i) = pH(o), 5% CO2). Increasing the pH from 6.8 to 7.2 increased whereas, increasing the pH from 7.4 to 8.0 decreased the rate of 22Na+ influx via this exchange. Increasing pH at constant [HCO3-] (pH(i) = pH(o) = 8.0, 1.5% CO2 versus pH(i) = pH(o) = 7.2, 10% CO2) reduced the influx of 22Na+ via HCO3-dependent Na(+)-Na+ exchange. Increasing pH at constant [CO3(2-)](pH(i) = pH(o) = 8.0, 1.5% CO2 versus pH(i) = pH(o) = 7.2, 60% CO2) was associated with reduced 22Na+ uptake. Decreasing the pH (pH(i) = pH(o) = 6.3, 60% CO2 versus pH(i) = pH(o) = 7.2, 5% CO2) was associated with a reduced rate of HCO3(-)-dependent Na(+)-Na+ exchange. We conclude that the Na+:HCO3- cotransporter displays a significant pH sensitivity profile with the cotransporter being more functional at pH 7.0-7.4 and less active at more acid or alkaline pH. In addition, the results suggest that the pH sensitivity arises at the inner surface of the basolateral membrane.  相似文献   

14.
Rheogenic transport in the renal proximal tubule   总被引:2,自引:2,他引:0       下载免费PDF全文
The electrophysiology of the renal Na-K ATPase was studied in isolated perfused amphibian proximal tubules during alterations in bath (serosal) potassium. Intracellular and extracellular ionic activity measurements permitted continuous evaluation of the Nernst potentials for Na+, K+, and Cl- across the basolateral membrane. The cell membrane and transepithelial potential differences and resistances were also determined. Return of K to the basal (serosal) solution after a 20-min incubation in K-free solution hyperpolarized the basolateral membrane to an electrical potential that was more negative than the Nernst potential for either Na, Cl, or K. This constitutes strong evidence that at least under stimulated conditions the Na-K ATPase located at the basolateral membrane of the renal proximal tubule mediates a rheogenic process which directly transfers net charge across the cell membrane. Interpretation of these data in terms of an electrical equivalent circuit permitted calculation of both the rheogenic current and the Na/K coupling ratio of the basolateral pump. During the period between 1 and 3 min after pump reactivation by return of bath K, the basolateral rheogenic current was directly proportional to the intracellular Na activity, and the pump stoichiometry transiently exceeded the coupling ratio of 3Na to 2K reported in other preparations.  相似文献   

15.
Angiotensin II (AII) plays an important role in renal proximal tubular acidification via the costimulation of basolateral Na/HCO3 cotransporter (NBC) and apical Na/H exchanger (NHE) activities. These effects are mediated by specific G protein-coupled AII receptors, but their corresponding downstream effectors are incompletely defined. Src family tyrosine kinases (SFKs) contribute to the regulation of both transport activities by a variety of stimuli and are coupled to classic mitogen-activated protein kinase (MAPK) pathway activation in this cell type. We therefore examined these signaling intermediates for involvement in AII-stimulated NBC activity in cultured proximal tubule cells. Subpressor concentrations of AII (0.1 nM) increased NBC activity within minutes, and this effect was abrogated by selective antagonism of AT1 angiotensin receptors, SFKs, or the classic MAPK pathway. AII directly activated Src, as well as the proximal (Raf) and distal (ERK) elements of the classic MAPK module, and the activation of Src was prevented by AT1 receptor antagonism. An associated increase in basolateral membrane NBC1 content is compatible with the involvement of this proximal tubule isoform in these changes. We conclude that AII stimulation of the AT1 receptor increases NBC activity via sequential activation of SFKs and the classic MAPK pathway. Similar requirements for SFK/MAPK coupling in both cholinergic and acidotic costimulation of NBC and NHE activities suggest a central role for these effectors in the coordinated regulation of epithelial transport by diverse stimuli.  相似文献   

16.
Previous studies from our laboratory have provided evidence that the rat epididymis utilizes the Na(+)/H(+) exchanger to transport acid and base. The present study was undertaken to use immunohistochemistry for investigating the localization (apical versus basolateral) and distribution of NHE1 and NHE2 proteins along intact rat epididymis. Both proteins were found to be exclusively localized within the epithelium. Immunoreactivity for NHE1 was detected on the basolateral surface, whereas NHE2 immunoreactivity was detected on the apical side of the epithelium. Interestingly, NHE1 was found along the entire length of the epididymal tubule whereas NHE2 was absent in the initial segment but present in the caput, corpus, and cauda regions. These results, when interpreted along with those of previous functional studies, may suggest that the apical NHE2 is involved in Na(+) reabsorption and the basolateral NHE1 in HCO(3)(-) secretion in the rat epididymis.  相似文献   

17.
This review updates our current knowledge on the regulation of Na+/H+ exchanger, Na+,K+,Cl- cotransporter, Na+,Pi cotransporter, and Na+,K+ pump in isolated epithelial cells from mammalian kidney by protein kinase C (PKC). In cells derived from different tubule segments, an activator of PKC, 4beta-phorbol 12-myristate 13-acetate (PMA), inhibits apical Na+/H+ exchanger (NHE3), Na+,Pi cotransport, and basolateral Na+,K+ cotransport (NKCCl) and augments Na+,K+ pump. In PMA-treated proximal tubules, activation of Na+,K+ pump probably plays a major role in increased reabsorption of salt and osmotically obliged water. In Madin-Darby canine kidney (MDCK) cells, which are highly abundant with intercalated cells from the collecting duct, PMA completely blocks Na+,K+,Cl- cotransport and decreases the activity of Na+,Pi cotransport by 30-40%. In these cells, agonists of P2 purinoceptors inhibit Na+,K+,Cl- and Na+,Pi cotransport by 50-70% via a PKC-independent pathway. In contrast with MDCK cells, in epithelial cells derived from proximal and distal tubules of the rabbit kidney, Na+,K+,Cl- cotransport is inhibited by PMA but is insensitive to P2 receptor activation. In proximal tubules, PKC-induced inhibition of NHE3 and Na+,Pi cotransporter can be triggered by parathyroid hormone. Both PKC and cAMP signaling contribute to dopaminergic inhibition of NHE3 and Na+,K+ pump. The receptors triggering PKC-mediated activation of Na+,K+ pump remain unknown. Recent data suggest that the PKC signaling system is involved in abnormalities of dopaminergic regulation of renal ion transport in hypertension and in the development of diabetic complications. The physiological and pathophysiological implications of PKC-independent regulation of renal ion transporters by P2 purinoceptors has not yet been examined.  相似文献   

18.
To examine whether Cl-coupled HCO3 transport mechanisms were present on the basolateral membrane of the mammalian proximal tubule, cell pH was measured in the microperfused rat proximal convoluted tubule using the pH-sensitive, intracellularly trapped fluorescent dye (2',7')- bis(carboxyethyl)-(5,6)-carboxyfluorescein. Increasing the peritubular Cl concentration from 0 to 128.6 meq/liter caused cell pH to decrease from 7.34 +/- 0.04 to 7.21 +/- 0.04 (p less than 0.001). With more acid extracellular fluid (pH 6.62), a similar increase in the peritubular Cl concentration caused cell pH to decrease by a similar amount from 6.97 +/- 0.04 to 6.84 +/- 0.05 (p less than 0.001). This effect was blocked by 1 mM SITS. To examine the Na dependence of Cl/HCO3 exchange, the above studies were repeated in the absence of luminal and peritubular Na. In alkaline Na-free solutions, peritubular Cl addition caused cell pH to decrease from 7.57 +/- 0.06 to 7.53 +/- 0.06 (p less than 0.025); in acid Na-free solutions, peritubular Cl addition caused cell pH to decrease from 7.21 +/- 0.04 to 7.19 +/- 0.04 (p less than 0.05). The effect of Cl on cell pH was smaller in the absence of luminal and peritubular Na than in its presence. To examine whether the previously described Na/(HCO3)n greater than 1 cotransporter was coupled to or dependent on Cl, the effect of lowering the peritubular Na concentration from 147 to 25 meq/liter was examined in the absence of ambient Cl. Cell pH decreased from 7.28 +/- 0.03 to 7.08 +/- 0.03, a response similar to that observed previously in the presence of Cl. The results demonstrate that Cl/HCO3 (or Cl/OH) exchange is present on the basolateral membrane. Most of Cl/HCO3 exchange is dependent on the presence of Na and may be coupled to it. The previously described Na/(HCO3)n greater than 1 cotransporter is the major basolateral membrane pathway for the coupling of Na and HCO3 and is not coupled to Cl.  相似文献   

19.
The inner stripe of the outer medullary collecting tubule is a major distal nephron segment in urinary acidification. To examine the mechanism of basolateral membrane H+/OH-/HCO3- transport in this segment, cell pH was measured microfluorometrically in the inner stripe of the rabbit outer medullary collecting tubule perfused in vitro using the pH-sensitive fluorescent dye, (2',7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein. Decreasing peritubular pH from 7.4 to 6.8 (changing [HCO3-] from 25 to 5 mM) caused a cell acidification of 0.25 +/- 0.02 pH units, while a similar luminal change resulted in a smaller cell acidification of only 0.04 +/- 0.01 pH units. Total replacement of peritubular Cl- with gluconate caused cell pH to increase by 0.18 +/- 0.04 pH units, an effect inhibited by 100 microM peritubular DIDS and independent of Na+. Direct coupling between Cl- and base was suggested by the continued presence of peritubular Cl- removal-induced cell alkalinization under the condition of a cell voltage clamp (K(+)-valinomycin). In addition, 90% of basolateral membrane H+/OH-/HCO3- permeability was inhibited by complete removal of luminal and peritubular Cl-. Peritubular Cl(-)-induced cell pH changes were inhibited two-thirds by removal of exogenous CO2/HCO3- from the system. The apparent Km for peritubular Cl- determined in the presence of 25 mM luminal and peritubular [HCO3-] was 113.5 +/- 14.8 mM. These results demonstrate that the basolateral membrane of the inner stripe of the outer medullary collecting tubule possesses a stilbene-sensitive Cl-/HCO3- exchanger which mediates 90% of basolateral membrane H+/OH-/HCO3- permeability and may be regulated by physiologic Cl- concentrations.  相似文献   

20.
Basolateral membranes purified from rat jejunal enterocytes and enriched 14 times in (Na, K)-ATPase, are present as unsealed and right side out (RSO) or inside out (IO) vesicles in the ratio 2:2:1, as determined by detergent activation of ATPase activity. Entrance of 1 mM Na into basolateral membrane vesicles was measured in the presence and in the absence of 5 mM ATP by a rapid filtration technique, under different experimental conditions. Carrier-mediated Na transport across the basolateral membrane can be trans-stimulated and cis-inhibited by K and further stimulated by ATP (activation of the Na pump). The ATP effect can be suppressed by vanadate and strophanthidin and enhanced by bleomycin (19% increase), which positively also acts on (Na, K)-ATPase activity (16% increase). In addition to the Na pump this study demonstrates the existence of a carrier-mediated Na transport trans-stimulated by K. There appears to be no cotransport of Na-K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号