首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
When root pieces of cassava, Manihot esculenta Crantz (cv. Yellow Heart or cv. Cuba Sweet), with an area of periderm removed or with a transverse cut uncovered, were held at low humidity and at 22°C, vascular discoloration consistently developed within 2 days. Vascular discoloration was prevented when injured pieces were stored at high humidity or when wounds were covered by a semi-permeable film. When pieces were injured by removal of periderm, at high humidity the respiratory rate was unaltered but at low humidity an increase in respiratory rate occurred after 1 day. When pieces were injured by a transverse cut, at high humidity respiratory rate increased during the first day but decreased thereafter, whereas at low humidity the initial increase was followed by a further increase in respiratory rate after 2 days. It is suggested that vascular discoloration and a respiratory increase may occur in freshly harvested cassava roots as a result of stress produced locally by high rates of water loss at cuts and abrasions.  相似文献   

2.
The short storage life of harvested cassava roots is an important constraint that limits the full potential of cassava as a commercial food crop in developing countries. We investigated the molecular changes during physiological deterioration of cassava root after harvesting using isobaric tags for relative and absolute quantification (iTRAQ) of proteins in soluble and non‐soluble fractions prepared during a 96 h post‐harvest time course. Combining bioinformatic approaches to reduce information redundancy for unsequenced or partially sequenced plant species, we established a comprehensive proteome map of the cassava root and identified quantitatively regulated proteins. Up‐regulation of several key proteins confirmed that physiological deterioration of cassava root after harvesting is an active process, with 67 and 170 proteins, respectively, being up‐regulated early and later after harvesting. This included regulated proteins that had not previously been associated with physiological deterioration after harvesting, such as linamarase, glutamic acid‐rich protein, hydroxycinnamoyl transferase, glycine‐rich RNA binding protein, β‐1,3‐glucanase, pectin methylesterase, maturase K, dehydroascorbate reductase, allene oxide cyclase, and proteins involved in signal pathways. To confirm the regulation of these proteins, activity assays were performed for selected enzymes. Together, our results show that physiological deterioration after harvesting is a highly regulated complex process involving proteins that are potential candidates for biotechnology approaches to reduce such deterioration.  相似文献   

3.
After harvest, cassava (Manihot esculenta Crantz) storage roots undergo rapid postharvest physiological deterioration, producing blue-brown discoloration in the vasculature due to the production of polyphenolics (mainly quinones and coumarins) by enzymes such as polyphenol oxidase (PPO). Here, we report the application of hen egg-white lysozyme (HEWL), a natural PPO inhibitor, in transgenic cassava to repress the symptoms of postharvest physiological deterioration. The HEWL-expressing transgenic plants had lower levels of the two main cassava coumarins tested, scopoletin and scopolin, compared with wild type. HEWL-expressing cassava also showed increased tolerance of oxidative stress. Overall, the lysozyme-PPO system proved to be functional in plants for repressing PPO-mediated commercial product browning.  相似文献   

4.
Factors affecting the resistance of cold-stored carrots to Botrytis cinerea   总被引:2,自引:0,他引:2  
The secondary phloem parenchyma of cold-stored turgid roots of carrot (Daucus carota) is capable of localizing mycelial infection by Botrytis cinerea, producing a dark resistant lesion. The percentage of roots exhibiting this reaction declined with increasing time in cold-store: when freshly harvested and wound-inoculated in October 1974, 99%of roots resisted invasion, whereas only 5% of those stored until March 1975 did so. The surface dimensions of resistant lesions did not increase between 33 and 55 days after inoculation. However, the surface dimensions and mean weights of lesions (arising from inoculations performed at different times over the course of the storage season) were both larger with increasing time in storage of roots prior to inoculation. The ability of the root tissue to localize infection was reduced if the roots lost 5–10% or more of their fresh weight before inoculation, resulting progressively in susceptibility. Compared with roots wound-inoculated using mycelial disks, there was an overall reduction in infection when carrots were wound-inoculated using conidia or when conidia or mycelial disks were inoculated onto the apparently undamaged surface of roots.  相似文献   

5.
木薯储藏根采后生理性变质研究进展   总被引:5,自引:0,他引:5  
木薯(Manihot esculenta Crantz)是热带、亚热带地区重要的粮食作物和能源作物.木薯产量很高,储藏根富含淀粉,但收获后采后生理性变质严重,严重影响了木薯的开发和利用.结合近期研究工作,综述了木薯储藏根采后生理性变质的研究进展,包括采后生理性变质的检测标准、生化基础、抗采后生理性变质的杂交育种、以活性氧自由基为主要研究对象的功能基因组学与基因工程、应用前景及存在的问题,以期为木薯储藏根采后生理性变质的遗传改良提供参考.  相似文献   

6.
The root-surface mycoflora of cassava were isolated from roots washed in serial changes of sterile distilled water and plated out on potato-dextrose agar. A small group of fungi which included Aspergillus niger, Botryodiplodia theobromae, Fusarium solani, Penicillium javanicum, Penicillium sp., and Trichoderma sp. were found to be consistently associated with the root surface. While the isolates, B. theobromae and F. solani were found to be aggressively pathogenic on freshly harvested cassava tubers causing extensive rot, A. niger was only mildly so. The root-surface mycoflora, therefore, includes fungi which have been reported as the most important in postharvest deterioration of the tubers. The removal of the rhizoplane microflora by surface-sterilization using calcium hypochlorite or Clorox and subsequent incubation in loosely tied polyethylene bags extended the storage life of the tubers considerably.  相似文献   

7.
Infection of carrot roots by Mycocenlrospora acerina in chill storage (3.5 °C) following inoculation with chlamydospores was studied in 1973–74 and 1974–75. AREAS of intact periderm were only rarely infected, and the high level of periderm resistance predominated over other variables. However, wound infection tended to increase with depth of wound and with increasing age of the plants at harvest. Irrespective of age of root or depth of wound, roots were comparatively resistant to infection at harvest and early in storage, resistance being expressed as a restriction of mycelial growth on the wound surface or localisation of the lesion. Increasing susceptibility with time in storage, depth of wounds, or age at harvest, resulted in larger numbers of inoculated sites becoming infected and a more rapid development from localised to progressive lesions.  相似文献   

8.
桤木插穗不定根发生与发育的解剖学观察   总被引:1,自引:0,他引:1  
采用常规石蜡切片法对桤木插穗进行解剖观察,研究茎的次生结构及不定根的起源和发生发育过程,探讨影响不定根发生的因素。结果表明:桤木茎的次生构造从外至内由周皮、皮层和次生维管组织3部分组成。皮孔有2种类型。不定根的发育过程可分为4个阶段:(1)维管形成层与髓射线交叉处的细胞活动,产生具有典型分生组织特点的薄壁细胞团;(2)薄壁细胞不断分裂,形成不定根原基发端细胞;(3)分裂分化形成的不定根沿着韧皮射线向皮层延伸;(4)随着不定根内部的维管系统的发育,不定根从皮孔或下切口伸出。  相似文献   

9.
10.
Control of respiration has largely been studied with growing and/or photosynthetic tissues or organs, but has rarely been examined in harvested and stored plant products. As nongrowing, heterotrophic organs that are reliant on respiration to provide all of their metabolic needs, harvested plant products differ dramatically in their metabolism and respiratory needs from growing and photosynthetically active plant organs, and it cannot be assumed that the same mechanism controls respiration in both actively growing and harvested plant organs. To elucidate mechanisms of respiratory control for a harvested and stored plant product, sugarbeet (Beta vulgaris L.) root respiration was characterized with respect to respiratory capacity, adenylate levels and cellular energy status in roots whose respiration was altered by wounding or cold treatment (1 degrees C) and in response to potential effectors of respiration. Respiration rate was induced by wounding in roots stored at 10 degrees C and by cold temperature in roots stored at 1 degrees C for 11-13d. Alterations in respiration rate due to wounding or storage temperature were unrelated to changes in total respiratory capacity, the capacities of the cytochrome c oxidase (COX) or alternative oxidase (AOX) pathways, adenylate concentrations or cellular energy status, measured by the ATP:ADP ratio. In root tissue, respiration was induced by exogenous NADH indicating that respiratory capacity was capable of oxidizing additional electrons fed into the electron transport chain via an external NADH dehydrogenase. Respiration was not induced by addition of ADP or a respiratory uncoupler. These results suggest that respiration rate in stored sugarbeet roots is not limited by respiratory capacity, ADP availability or cellular energy status. Since respiration in plants can be regulated by substrate availability, respiratory capacity or energy status, it is likely that a substrate, other than ADP, limits respiration in stored sugarbeet roots.  相似文献   

11.
Carrot root slices, stored for 4 days at 20 °C reacted with a strong accumulation of total phenols, especially chlorogenic acid. A significant accumulation of isocoumarin content within the peel was observed in stored slices. Synthesis of phenols was accompanied by an increase in phenylalanine ammonia lyase activity, wound induced respiration and ethylene production. The great variability among the studied four cultivars was found concerning isocoumarin synthesis, PAL activity, respiration rate and ethylene evolution, but less distinct in the case of chlorogenic acid accumulation. The carrot slices obtained from freshly harvested roots were more sensitive to mechanical damage and short-term storage than those prepared from roots previously stored.  相似文献   

12.
The use of the root crop Cassava (Manihot esculenta Crantz)is constrained by its rapid deterioration after harvest. Chemicaland spectroscopic examination revealed the accumulation of fourhydroxycoumarins (esculin, esculetin, scopolin and scopoletin),compounds derived from the phenylpropanoid pathway, during thetime course of post-harvest deterioration. Fluorescence-microscopyrevealed their localization in the apoplast of the parenchyma.Scopoletin and scopolin showed the most dramatic increases inconcentration, peaking by day 2 after harvesting. A smallersecondary peak of scopoletin tended to be more pronounced incultivars showing lower susceptibility to deterioration. Evidencefor the metabolism of scopoletin to an insoluble coloured productby means of a peroxidase is presented. This product may be thecause of the discolouration of the vascular tissue during storage.Copyright 2000 Annals of Botany Company Cassava, hydroxycoumarins, Manihot esculenta, peroxidases, post-harvest physiological deterioration, wound response  相似文献   

13.
可溶性酸性蔗糖酶是决定甜菜块根贮藏质量的关键酶。贮藏期间其活力的提高是由于蛋白质重新合成所致。不良的贮藏条件使块根汁液pH降低,膜透性增加,这两种因素与可溶性酸性蔗糖酶活力成正相关,与贮藏质量成负相关。  相似文献   

14.
15.
16.
Starch phosphorylase was purified from either freshly harvested or stored roots of sweet potato (.Ipomoea batatas (L.) Lam. cv Tain on 65). Both enzyme preparations in their native state showed on polyacrylamide gel electrophoresis a cluster of about six closely located activity bands, which had common antigenic determinants as they were simultaneously probed by monoclonal antibodies. The molecules of enzymes from stored roots were smaller than those from fresh roots. However, the two enzyme preparations had completely fused precipitin lines in double diffusion assays with an antiserum raised against the fresh root preparation. One large subunit and several small ones were found for both enzyme preparations. The small subunits appeared to be the degradation products of the large ones as revealed by peptide mapping and immunoblotting. Immunofluorescence microscopy showed that the enzyme was present in the amyloplasts and cell walls of root storage parenchyma.  相似文献   

17.
Deteriorative changes during storage of two different lots of field-contaminated (by Aspergillus flavus ), equally matured and freshly harvested (from two different fields) maize grains of the same cultivar (Ganga) and genotype, and stored under the same natural atmospheric conditions prevailing in the store-house, were studied and compared. It was found that the rate and extent or grain deterioration were much less in lot-2 than in lot-1 which had relatively high pre-harvest internal fungal ( A. flavus ) load. However, the deteriorative changes of both the lots could be reduced when the initial A. flavus infection was completely eliminated. Furthermore, of these already contaminated lots, the kernels selected as free of such infection at harvest also suffered less deterioration during storage.  相似文献   

18.
19.
Bluish fluorescent and phenolic components were produced in cassava roots in response to cut- injury, and in relation to physiological deterioration and microbial deterioration. The former roved to consist of five coumarin components, the main three of which were scopoletin, scopolin and esculin, and the other two were scopoletin- and esculetin-containing conjugates. A main component of the latter was (+)-catechin. Some enzymes pertaining to the production of the secondary metabolites such as acid invertase, phenylalanine ammonia lyase and peroxidase were formed in cut-injured tissue and in non-infected tissue adjacent to the soft-rotten part.  相似文献   

20.
Samples of freshly harvested and remoistened corn, of various moisture contents, were stored at different temperatures; analyses for aflatoxin content were made periodically. At moisture levels above 17.5% and at temperatures of 24 C or warmer, aflatoxins were formed by Aspergillus flavus present in the original epiphytic mycoflora. Remoistened dried corn was subject to more rapid fungal deterioration and aflatoxin formation than freshly harvested corn. Screening of the fungi present in the corn revealed aflatoxin production only by A. flavus. The toxigenic strains produced only aflatoxins B(1) and B(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号