首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Evidence in both humans and animals has shown that exercise before or during pregnancy may effect fetal outcome. The purpose of this investigation was to examine the effects of an exercise program on fetal development in the rat. Prior to impregnation one group of animals was exercise-trained on a Quinton shock-stimulus rodent treadmill. The exercised group was trained to run 5 days/wk, for 2.0 h/day at 31 m/min up an 8 degree incline for 8 wk before mating. Following mating the training intensity was reduced to 27 m/min up a 5 degree incline, and the exercise period decreased to 1 h/day. On day 19 of gestation, 24 h postexercise for the trained mothers, the animals were killed in the fed state and the maternal and fetal characteristics were measured. The sedentary controls gained significantly (P less than 0.05) more body weight during pregnancy. This can be attributed to three factors: higher number of fetuses, 14.83 +/- 0.04 vs. 12.2 +/- 0.85 for the trained; larger litter weights, 44.25 +/- 4.97 vs. 26.17 +/- 1.82 g/dam for the trained; and slightly larger lipid stores. In addition to having fewer pups the trained mothers had a greater number of fetal resorptions; 0.9/dam as opposed to 0.17/dam for the sedentary control. Analysis of fetal body composition showed no difference in total body water, protein, or fat between the pups of sedentary and trained dams. The results of this study indicate that exercise training prior to and during pregnancy influences fetal development in the rat.  相似文献   

2.
The purpose of the present study was to examine the effects of exercise on maternal glycogen storage patterns and fetal outcome in mature (approximately 12 months of age) Sprague-Dawley rats. The exercise consisted of treadmill running at 30 m.min-1, on a 10 degree incline, for 60 min, 5 days per week, for 4 weeks prior to pregnancy, which continued until day 19 of gestation. In mature animals, chronic exercise increased (p < 0.05) liver glycogen concentration in both pregnant and nonpregnant rats. In pregnant exercised animals, the glycogen concentration of the maternal liver increased almost twofold (p < 0.05) compared with the sedentary pregnant group. There was no difference in the amount of glycogen stored in the gastrocnemius or soleus muscles in response to training, pregnancy, or chronic maternal exercise in the mature rat. In the pregnant groups, there were fewer (p < 0.05) viable fetuses and more (p < 0.05) resorption sites than in young rats. In addition, exercise during pregnancy in the mature animal decreased (p < 0.05) fetal body weight. These results demonstrate that a conflict may exist between maternal exercise and fetal demands for energy in the mature rat. This conflict seems to favour the maternal system, as evidenced by the enhanced maternal liver glycogen storage and the negative effect on fetal growth.  相似文献   

3.
The purpose of this study was to characterize the contractile properties of individual skinned muscle fibers from insulin-treated streptozotocin-induced diabetic rats after an endurance exercise training program. We hypothesized that single-fiber contractile function would decrease in the diabetic sedentary rats and that endurance exercise would preserve the function. In the study, 28 rats were assigned to either a nondiabetic sedentary, a nondiabetic exercise, a diabetic sedentary, or a diabetic exercise group. Rats in the diabetic groups received subcutaneous intermediate-lasting insulin daily. The exercise-trained rats ran on a treadmill at a moderate intensity for 60 min, five times per week. After 12 wk, the extensor digitorum longus and soleus muscles were dissected. Single-fiber diameter, Ca(2+)-activated peak force, specific tension, activation threshold, and pCa(50) as well as the myosin heavy chain isoform expression (MHC) were determined. We found that in MHC type II fibers from extensor digitorum longus muscle, diameters were significantly smaller from diabetic sedentary rats compared with nondiabetic sedentary rats (P < 0.001). Among the nondiabetic rats, fiber diameters were smaller with exercise (P = 0.038). The absolute force-generating capacity of single fibers was lower in muscles from diabetic rats. There was greater specific tension (force normalized to cross-sectional area) by fibers from the rats that followed an endurance exercise program compared with sedentary. From the results, we conclude that alterations in the properties of contractile proteins are not implicated in the decrease in strength associated with diabetes and that endurance-exercise training does not prevent or increase muscle weakness in diabetic rats.  相似文献   

4.
A considerable amount of clinical and experimental evidence now exists suggesting the involvement of free radical-mediated oxidative processes in the pathogenesis of diabetic complications. If the diabetic state is associated with a generalized increase in oxidative stress, it might well be reflected in the alterations in embryonic and fetal development during pregnancy. In the present study, incidence of the malformed fetuses, biochemical parameters and antioxidant system activity of streptozotocin (STZ)-induced diabetic pregnant rats was investigated and the results obtained were compared with those of the control group (non-diabetic). Virgin female Wistar rats were injected with 40 mg/kg streptozotocin (STZ) before mating. All the females were killed on Day 21 of pregnancy and the fetuses were analyzed. A maternal blood sample was collected by venous puncture and the maternal liver was removed for biochemical measurement. The diabetic dams presented hyperglycemia, hyperlipemia, hypertriglyceridemia, hypercholesterolemia, hyperuricemia, decreased reduced glutathione (GSH), hepatic glycogen and superoxide dismutase (SOD) determinations. There was an increased incidence of skeletal and visceral malformation in fetuses from diabetic rats. Our findings suggest that oxidative stress occurs in the diabetic pregnant state, which might promote maternal homeostasis alterations. These diabetic complications might be a contributory factor to conceptus damage causing embryonic death (abortion/miscarriage) or the appearance of malformations in the fetuses of diabetic dams. Antioxidant treatment of women with diabetes may be important in future attempts to prevent congenital malformations.  相似文献   

5.
The molecular localization of maternal and fetal zinc and copper metalloproteins in diabetic and control rats was studied. Compared to controls, liver and kidneys of diabetic dams showed an increased concentration of zinc and copper that was associated with metallothionein. In contrast, fetuses of diabetic dams had lower zinc and metallothionein levels than fetuses from controls. The abnormal maternal trace element metabolism seen with diabetes resulted in alterations of zinc uptake and/or retention of their fetuses.  相似文献   

6.
Rates of protein synthesis are reduced in severely diabetic rats. A potential mechanism through which insulin can stimulate protein synthesis is modulation of the activity of eukaryotic initiation factor 2B (eIF2B). The activity of this factor is elevated after exercise in nondiabetic rats but is markedly lower in skeletal muscle from nonexercised severely diabetic rats. We tested the hypothesis that a failure to increase eIF2B activity after exercise is one potential reason for a failure of severely diabetic rats to increase rates of protein synthesis after resistance exercise. Diabetic (partial pancreatectomy, plasma glucose >475 mg/dl) and nondiabetic male Sprague-Dawley rats (approximately 300 g) performed acute moderate-intensity resistance exercise or remained sedentary. Rates of protein synthesis were higher in nondiabetic rats and increased significantly with exercise, while no elevation was found in severely diabetic rats. The activity of eIF2B was higher (P < 0.05) in exercised nondiabetic than in sedentary nondiabetic rats (0.096 +/- 0.016 and 0.064 +/- 0.02 pmol GDP exchanged/min, respectively), but no difference was observed between sedentary and exercised diabetic rats (0.037 +/- 0.001 and 0.044 +/- 0.008 pmol GDP exchanged/min, respectively), and these activities were lower (P < 0.05) than in nondiabetic animals. These data suggest that severe hypoinsulinemia is associated with an inability to increase eIF2B activity in response to exercise.  相似文献   

7.
This study determined whether rates of protein synthesis increase after acute resistance exercise in skeletal muscle from severely diabetic rats. Previous studies consistently show that postexercise rates of protein synthesis are elevated in nondiabetic and moderately diabetic rats. Severely diabetic rats performed acute resistance exercise (n = 8) or remained sedentary (n = 8). A group of nondiabetic age-matched rats served as controls (n = 9). Rates of protein synthesis were measured 16 h after exercise. Plasma glucose concentrations were >500 mg/dl in the diabetic rats. Rates of protein synthesis (nmol phenylalanine incorporated. g muscle(-1). h(-1), means +/- SE) were not different between exercised (117 +/- 7) and sedentary (106 +/- 9) diabetic rats but were significantly (P < 0.05) lower than in sedentary nondiabetic rats (162 +/- 9) and in exercised nondiabetic rats (197 +/- 7). Circulating insulin concentrations were 442 +/- 65 pM in nondiabetic rats and 53 +/- 11 and 72 +/- 19 pM in sedentary and exercised diabetic rats, respectively. Plasma insulin-like growth factor I concentrations were reduced by 33% in diabetic rats compared with nondiabetic rats, and there was no difference between exercised and sedentary diabetic rats. Muscle insulin-like growth factor I was not affected by resistance exercise in diabetic rats. The results show that there is a critical concentration of insulin below which rates of protein synthesis begin to decline in vivo. In contrast to previous studies using less diabetic rats, severely diabetic rats cannot increase rates of protein synthesis after acute resistance exercise.  相似文献   

8.
This study had the following objectives: 1) to determine whether diabetic rats could increase muscle mass due to a physiological manipulation (chronic resistance exercise), 2) to determine whether exercise training status modifies the effect of the last bout of exercise on elevations in rates of protein synthesis, and 3) to determine whether chronic resistance exercise alters basal glycemia. Groups consisted of diabetic or nondiabetic rats that performed progressive resistance exercise for 8 wk, performed acute resistance exercise, or remained sedentary. Arterial plasma insulin in diabetic groups was reduced by about one-half (P < 0.05) compared with nondiabetic groups. Soleus and gastrocnemius-plantaris complex muscle wet weights were lower because of diabetes, but in response to chronic exercise these muscles hypertrophied in diabetic (0.028 +/- 0.003 vs. 0.032 +/- 0.0015 g/cm for sedentary vs. exercised soleus and 0.42 +/- 0.068 vs. 0.53 +/- 0.041 g/cm for sedentary vs. exercised gastrocnemius-plantaris, both P < 0.05) but not in nondiabetic (0.041 +/- 0.0026 vs. 0.042 +/- 0.003 g/cm for sedentary vs. exercised soleus and 0.72 +/- 0.015 vs. 0.69 +/- 0.013 g/cm for sedentary vs. exercised gastrocnemius-plantaris) rats when muscle weight was expressed relative to tibial length or body weight (data not shown). Another group of diabetic rats that lifted heavier weights showed muscle hypertrophy. Rates of protein synthesis were higher in red gastrocnemius in chronically exercised than in sedentary rats: 155 +/- 11 and 170 +/- 7 nmol phenylalanine incorporated x g muscle(-1) x h(-1) in exercised diabetic and nondiabetic rats vs. 110 +/- 14 and 143 +/- 7 nmol phenylalanine incorporated x g muscle(-1) x h(-1) in sedentary diabetic and nondiabetic rats. These elevations, however, were lower than in acutely exercised (but untrained) rats: 176 +/- 15 and 193 +/- 8 nmol phenylalanine incorporated x g muscle(-1) x h(-1) in diabetic and nondiabetic rats. Finally, chronic exercise training in diabetic rats was associated with reductions in basal glycemia, and such reductions did not occur in sedentary diabetic groups. These data demonstrate that, despite lower circulating insulin concentrations, diabetic rats can increase muscle mass in response to a physiological stimulus.  相似文献   

9.
The purpose of the present study was to observe the effects of strenuous maternal aerobic exercise throughout gestation on fetal outcome in the rat. The strenuous exercise intensity consisted of a treadmill speed of 30 m.min-1 on a 10 degrees incline, for 120 min.day-1, 5 days.week-1. The rats were conditioned to run on a motor-driven treadmill by following a progressive two-week exercise program, so that by the end of the two weeks the rats were capable of running comfortably at this strenuous intensity in the non-pregnant state. Following the two-week running programme, the rats were paired by weight and randomly assigned to either a pregnant group that continued the running program throughout gestation (pregnant runner), or a pregnant group that did not continue the running program throughout pregnancy (pregnant control). At birth the neonates born to the pregnant running group did not differ in average neonatal body weight values, number per litter or total litter weight values when compared to controls, nor were superficial gross abnormalities observed in neonates born to the pregnant control or pregnant running groups. The strenuous maternal exercise intensity did not alter neonatal organ weight values (brain, heart, liver, lung, kidney), nor neonatal skeletal muscle (gastrocnemius, sternomastoid, diaphragm) when compared to control values. It is suggested that maternal exercise of this intensity throughout gestation does not affect fetal outcome in the rat, and may be due to the animals accustomization to the strenuous exercise protocol prior to pregnancy.  相似文献   

10.
Our goal was to examine whether exercise training alleviates impaired nitric oxide synthase (NOS)-dependent dilatation of the basilar artery in Type 1 diabetic rats. To test this hypothesis, we measured in vivo diameter of the basilar artery in sedentary and exercised nondiabetic and diabetic rats in response to NOS-dependent (acetylcholine) and -independent (nitroglycerin) agonists. To determine the potential role for nitric oxide in vasodilatation in sedentary and exercised nondiabetic and diabetic rats, we examined responses after NG-monomethyl-l-arginine (l-NMMA). We found that acetylcholine produced dilatation of the basilar artery that was similar in sedentary and exercised nondiabetic rats. Acetylcholine produced only minimal vasodilatation in sedentary diabetic rats. However, exercise alleviated impaired acetylcholine-induced vasodilatation in diabetic rats. Nitroglycerin produced dilatation of the basilar artery that was similar in sedentary and exercised nondiabetic and diabetic rats. l-NMMA produced similar inhibition of acetylcholine-induced dilatation of the basilar artery in sedentary and exercised nondiabetic and diabetic rats. Finally, we found that endothelial NOS (eNOS) protein in the basilar artery was higher in diabetic compared with nondiabetic rats and that exercise increased eNOS protein in the basilar artery of nondiabetic and diabetic rats. We conclude that 1) exercise can alleviate impaired NOS-dependent dilatation of the basilar artery during diabetes mellitus, 2) the synthesis and release of nitric oxide accounts for dilatation of the basilar artery to acetylcholine in sedentary and exercised nondiabetic and diabetic rats, and 3) exercise may exert its affect on cerebrovascular reactivity during diabetes by altering levels of eNOS protein in the basilar artery.  相似文献   

11.
This study determined whether exercise training in rats would prevent the accumulation of lipids and depressed glucose utilization found in hearts from diabetic rats. Diabetes was induced by intravenous streptozotocin (60 mg/kg). Trained diabetic rats were run on a treadmill for 60 min, 27 m/min, 10% grade, 6 days/wk for 10 wk. Training of diabetic rats had no effect on glycemic control but decreased plasma lipids. In vivo myocardial long-chain acylcarnitine, acyl-CoA, and high-energy phosphate levels were similar in sedentary control, sedentary diabetic, and trained diabetic groups. The levels of myocardial triacylglycerol were similar in sedentary control and diabetic rats but decreased in trained diabetic rats. Hearts were perfused with buffer containing diabetic concentrations of glucose (22 mM) and palmitate (1.2 mM). D-[U-14C] glucose oxidation rates (14CO2 production) were depressed in hearts from sedentary diabetic rats relative to sedentary control rats. Hearts from trained diabetic rats exhibited increased glucose oxidation relative to those of sedentary diabetic rats, but this improvement was below that of the sedentary control rats. [9,10(-3)H]palmitate oxidation rates (3H2O production) were identical in all three groups. These findings suggest that exercise training resulted in a partial normalization of myocardial glucose utilization in diabetic rats.  相似文献   

12.
Maternal diabetes increases the risk of congenital malformations, placental dysfunction and diseases in both the neonate and the offspring's later life. Oxidative stress has been involved in the etiology of these abnormalities. Matrix metalloproteases (MMPs), involved in multiple developmental pathways, are increased in the fetus and placenta from diabetic experimental models. As oxidants could be involved in the activation of latent MMPs, we investigated a putative relationship between MMPs activities and oxidative stress in the feto-placental unit of diabetic rats at midgestation. We found that H2O2 enhanced and that superoxide dismutase (SOD) reduced MMPs activities in the maternal side of the placenta and in the fetuses from control and diabetic rats. MMPs were not modified by oxidative status in the fetal side of the placenta. Lipid peroxidation was enhanced in the maternal and fetal sides of the placenta and in the fetus from diabetic rats when compared to controls, and gradually decreased from the maternal placental side to the fetus in diabetic animals. The activities of the antioxidant enzymes SOD and catalase were decreased in the maternal placental side, catalase activity was enhanced in the fetal placental side and both enzymes were increased in the fetuses from diabetic rats when compared to controls. Our data demonstrate changes in the oxidative balance and capability of oxidants to upregulate MMPs activity in the feto-placental unit from diabetic rats, a basis to elucidate links between oxidative stress and alterations in the developmental pathways in which MMPs are involved.  相似文献   

13.
In the present study, we investigated the effects of treadmill exercise in early and chronic diabetic stages on parvalbumin (PV) immunoreactivity in the subgranular zone of the dentate gyrus of Zucker diabetic fatty (ZDF) and its lean control rats (ZLC). To investigate the effects, ZLC and ZDF rats at 6 or 23 weeks of age were put on a treadmill with or without running for 1 h/day/5 consecutive days at 16–22 m/min for 5 weeks or 12–16 m/min for 7 weeks, respectively. Physical exercise in pre-diabetic rats prevented onset of diabetes, while exercise in rats at chronic diabetic stage significantly reduced blood glucose levels. In addition, physical exercise in the pre-diabetic rats significantly increased PV immunoreactive fibers in the strata oriens and radiatum of the CA1-3 region and in the polymorphic and molecular layers of the dentate gyrus compared to that in sedentary controls. However, in rats at chronic stages, PV immunoreactivity was slightly increased in the CA1-3 region as well as in the dentate gyrus compared to that in the sedentary controls. These results suggest that physical exercise has differential effects on blood glucose levels and PV immunoreactivity according to diabetic stages. Early exercise improves diabetic phenotype and PV immunoreactive fibers in the rat hippocampus.  相似文献   

14.
The purpose of this investigation was to examine the relationship between an exercise program and fetal development to determine whether training could influence insulin sensitivity in the pregnant rat. Prior to impregnation one group of animals was exercise trained on a Quinton shock-stimulus rodent treadmill. The exercised group was trained to run 5 days/wk, for 2.0 h/day at 31 m/min up an 8 degree incline for 8 wk before mating. Following mating the training intensity was reduced to 27 m/min up a 5 degree incline, and the exercise period decreased to 1 h/day. On day 19 of gestation, 24 h postexercise for the trained mothers, the animals were killed in the fed state and the parametrial fat pads were removed. The parametrial depot of the trained mother was smaller than the sedentary control dam. This was due to a change in cell size and did not involve alterations in cell number. Isolated adipocytes of the parametrial fat pads were used to measure the rates of 2-deoxy-D-[3H]glucose uptake and D-[1-14C]glucose oxidation to 14CO2. The results indicated that the adipocytes from the dam trained prior to and during pregnancy were significantly (P less than 0.05) more responsive to insulin than those of animals remaining sedentary during the same period. At the maximal insulin concentration tested, the fat cells from trained mothers were able to take up and metabolize approximately twice as much glucose as the sedentary control dams. However, the increase in insulin responsiveness induced by the training program did not match the changes observed in trained nonpregnant rats of prior investigations.  相似文献   

15.
Maternal diabetes increases the risk of congenital malformations, placental dysfunction and diseases in both the neonate and the offspring's later life. Oxidative stress has been involved in the etiology of these abnormalities. Matrix metalloproteases (MMPs), involved in multiple developmental pathways, are increased in the fetus and placenta from diabetic experimental models. As oxidants could be involved in the activation of latent MMPs, we investigated a putative relationship between MMPs activities and oxidative stress in the feto-placental unit of diabetic rats at midgestation. We found that H2O2 enhanced and that superoxide dismutase (SOD) reduced MMPs activities in the maternal side of the placenta and in the fetuses from control and diabetic rats. MMPs were not modified by oxidative status in the fetal side of the placenta. Lipid peroxidation was enhanced in the maternal and fetal sides of the placenta and in the fetus from diabetic rats when compared to controls, and gradually decreased from the maternal placental side to the fetus in diabetic animals. The activities of the antioxidant enzymes SOD and catalase were decreased in the maternal placental side, catalase activity was enhanced in the fetal placental side and both enzymes were increased in the fetuses from diabetic rats when compared to controls. Our data demonstrate changes in the oxidative balance and capability of oxidants to upregulate MMPs activity in the feto-placental unit from diabetic rats, a basis to elucidate links between oxidative stress and alterations in the developmental pathways in which MMPs are involved.  相似文献   

16.
R Rauramaa 《Medical biology》1982,60(3):139-143
The effect of acute physical exercise on skeletal muscle glycogen content and on lipoprotein lipase activity of muscle, adipose and lung tissues was studied in streptozotocin diabetic and control rats. Rats were accustomed to treadmill running for two weeks after streptozotocin treatment. For an exercise bout of moderate intensity rats were randomly divided into two groups: one was sacrificed immediately after exercise and the other 24 hours afterwards. In addition there was a nonexercised sedentary group. No depletion of glycogen was observed after exercise in the vastus lateralis muscle of control (nondiabetic) rats. No difference in glycogen utilization was found in soleus muscle between diabetic and control rats. In diabetic rats a slight decrease occurred in the lipoprotein lipase activity in adipose tissue immediately after exercise, while in control rats there was a significant decline 24 hours after exercise. In soleus muscle a slight but significant increase of lipoprotein lipase activity occurred 24 hours after exercise in diabetic rats but not in control rats. The results suggest that nonketotic streptozotocin diabetes of short duration does not influence muscle glycogen in the resting state, but glycogen utilization is disturbed in white muscle during moderate treadmill running in untrained diabetic rats. The increase in lipoprotein lipase activity after physical exercise in red muscle of diabetic rats occurs during the recovery phase.  相似文献   

17.
These studies examined whether passive immunization against insulin-like growth factor I (IGF-I) would prevent increases in rates of protein synthesis in skeletal muscle of diabetic rats after resistance exercise. Male Sprague-Dawley rats were pancreatectomized and randomly assigned to either an exercise or a sedentary group. Animals in each of these groups received either an IGF-I antibody or a nonspecific IgG from a subcutaneous osmotic pump. Exercise did not change plasma or gastrocnemius IGF-I concentrations in nondiabetic rats. However, plasma and muscle IGF-I concentrations were higher in IgG-treated diabetic rats that exercised compared with respective sedentary groups (P < 0.05). Passively immunized diabetic rats did not exhibit the same exercise-induced increase in IGF-I concentrations. In nondiabetic rats, protein synthesis rates were higher after exercise in both control and immunized groups. In diabetic rats, exercise increased protein synthesis in the IgG-treated animals but not in those treated with IGF-I antibody. There was also a significant positive correlation between both plasma and gastrocnemius IGF-I concentrations and rates of protein synthesis in diabetic (P < 0.01), but not nondiabetic, rats. These results suggest that IGF-I is compensatory for insulin in hypoinsulinemic rats by facilitating an anabolic response after acute resistance exercise.  相似文献   

18.
A model of maternal lipemia without hyperglycemia, in the rat, produced by high-fat feedings, was developed to study the effects of an abnormal maternal lipid homeostasis on placental transport of nutrients and possible alterations of key enzymes of energy metabolism in the liver and brain of the fetuses. Pregnant rats fed lower concentrations of fat served as controls. All studies were carried out in dams and fetuses one day prior to delivery. The dietary treatment of the dams and fetuses produced in the fetuses ketonemia as well as lipemia. Following a bolus of 14C-3-0-methyl-D-glucose to the dams, the levels of the tracer remained higher in the blood and brain of lipemic than in control fetuses. By contrast, there was a decrease in the fluxes of 14C--amino-isobutryic acid in the fetuses of lipemic dams as compared to controls. Among enzymes of energy metabolism, fetal liver glucose-6-phosphatase and succinic dehydrogenase were enhanced by lipemia. Fetal brain glucose-6-phosphatase was depressed. Thus, lipemia, as occuring in poorly controlled maternal diabetes, may be a factor in determining the access to the fetus of essential, neutral amino acids and alter the normal activity of energy metabolism enzymes in the fetus.  相似文献   

19.
Our goal was to examine whether exercise training (ExT) could normalize impaired nitric oxide synthase (NOS)-dependent dilation of cerebral (pial) arterioles during type 1 diabetes (T1D). We measured the in vivo diameter of pial arterioles in sedentary and exercised nondiabetic and diabetic rats in response to an endothelial NOS (eNOS)-dependent (ADP), an neuronal NOS (nNOS)-dependent [N-methyl-D-aspartate (NMDA)], and a NOS-independent (nitroglycerin) agonist. In addition, we measured superoxide anion levels in brain tissue under basal conditions in sedentary and exercised nondiabetic and diabetic rats. Furthermore, we used Western blot analysis to determine eNOS and nNOS protein levels in cerebral vessels/brain tissue in sedentary and exercised nondiabetic and diabetic rats. We found that ADP and NMDA produced a dilation of pial arterioles that was similar in sedentary and exercised nondiabetic rats. In contrast, ADP and NMDA produced only minimal vasodilation in sedentary diabetic rats. ExT restored impaired ADP- and NMDA-induced vasodilation observed in diabetic rats to that observed in nondiabetics. Nitroglycerin produced a dilation of pial arterioles that was similar in sedentary and exercised nondiabetic and diabetic rats. Superoxide levels in cortex tissue were similar in sedentary and exercised nondiabetic rats, were increased in sedentary diabetic rats, and were normalized by ExT in diabetic rats. Finally, we found that eNOS protein was increased in diabetic rats and further increased by ExT and that nNOS protein was not influenced by T1D but was increased by ExT. We conclude that ExT can alleviate impaired eNOS- and nNOS-dependent responses of pial arterioles during T1D.  相似文献   

20.
Zinc deficiency (ZD) is teratogenic in rats, and fetal skeletal defects are prominent. This study identifies fetal skeletal malformations that affect calcified and non-calcified bone tissue as a result of gestational zinc deficiency in rats, and it assesses the effect of maternal ZD in fetal bone calcification. Pregnant Sprague-Dawley rats (180-250 g) were fed 1) a control diet (76.4 micrograms Zn/g diet) ad libitum (group C), 2) a zinc-deficient diet (0 microgram/g) ad libitum (group ZD), or 3) the control diet pair-fed to the ZD rats (group PF). On day 21 of gestation, laparotomies were performed. Fetuses were weighed, examined for external malformations, and stained in toto with a double-staining technique for the study of skeletal malformations. Maternal and fetal tissues were used for Zn, Mg, Ca, and P determinations. Gross external malformations were present in 97% of the ZD fetuses. No external malformations were found in fetuses from groups C and PF. Ninety-one percent of cleared ZD fetuses had multiple skeletal malformations, whereas only 3% of the fetuses of group PF had skeletal defects; no skeletal malformations were found in fetuses from group C. Some of the skeletal malformations described in the ZD fetuses, mainly affecting non-calcified bone, were not mentioned in previous reports, thus stressing the importance of using double-staining techniques. Examination of stained fetuses and counting of ossification centers revealed important calcification defects in ZD fetuses. These effects were confirmed by lower Ca and P concentrations in fetal bone with alteration of the Ca:P ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号