首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The Escherichia coli F plasmid gene required for amino-terminal acetylation of F-pilin subunits was identified. Using Western blots (immunoblots), we assayed the reaction of monoclonal antibodies with F-pilin polypeptides in inner membrane preparations from various F mutant strains. It was known that JEL92 recognizes an internal pilin epitope and JEL93 recognizes the acetylated amino-terminal sequence (L.S. Frost, J.S. Lee, D.G. Scraba, and W. Paranchych, J. Bacteriol. 168:192-198, 1986). As expected, neither antibody reacted with inner membranes from F- cells or Flac derivatives that do not synthesize pilin. Mutations that affected the individual activities of F tra genes traA, -B, -C, -D, -E, -F, -G, -H, -I, -J, -K, -L, -M, -N, -P, -R, -U, -V and -W or trb genes trbA, -B, -C, -D, -E, -G, -H, and -I did not prevent JEL92 or JEL93 recognition of membrane pilin. However, Hfr deletion mutants that lacked the most-distal transfer region genes did not express pilin that reacted with JEL93. Nevertheless, all strains that retained traA and traQ did express JEL92-reactive pilin polypeptides. Analysis of strains expressing cloned tra segments showed that traA and traQ suffice for synthesis of JEL92-reactive pilin, but synthesis of JEL93-reactive pilin is additionally dependent on traX. We concluded that the traX product is required for acetylation of F pilin. Interestingly, our data also showed that TraA+ TraQ+ cells synthesize two forms of pilin which migrate at approximately 7 and 8 kDa. In TraX+ cells, both become acetylated and react with JEL93. Preparations of wild-type F-pilus filaments contain both types of subunits.  相似文献   

2.
Analysis of Escherichia coli K12 F factor transfer genes: traQ, trbA, and trbB   总被引:12,自引:0,他引:12  
J H Wu  D Moore  T Lee  K Ippen-Ihler 《Plasmid》1987,18(1):54-69
The genes that encode the transfer properties of plasmid F, the fertility factor of Escherichia coli K12, are known to be clustered over a large, 33.3-kb segment of F DNA. As the central segment of the transfer region has not previously been well characterized, we constructed a detailed restriction map of the large F EcoRI DNA fragment, fl, and isolated a series of plasmid derivatives that carry various overlapping segments of this F tra operon DNA. We also analyzed the protein products of those clones that carried DNA segments extending over the region between traF and traH. This region was known to include traQ, a gene required for efficient conversion of the direct product of traA to the 7000-Da pilin polypeptide. We identified the traQ product as a polypeptide that migrates as a 12,500-Da protein on sodium dodecyl sulfate-polyacrylamide gels. We also detected the products of two other new genes that we have named trbA and trbB. These polypeptides migrate with apparent molecular weights of 14,200 and 18,400, respectively. Analysis of plasmid deletion derivatives that we constructed in vitro shows that these genes map in the order traF trbA traQ trbB traH. The presence of a plasmid carrying a small 0.43-kb fragment that expressed only the 12,500 traQ product caused the traA product of a co-resident compatible plasmid to be converted to the 7000-Da pilin polypeptide, demonstrating that TraQ is the only tra operon product required for this step of F-pilin biosynthesis.  相似文献   

3.
F pilin is the subunit required for the assembly of conjugative pili on the cell surface of Escherichia coli carrying the F plasmid. Maturation of the F-pilin precursor, propilin, involves three F plasmid transfer products: TraA, the propilin precursor; TraQ, which promotes efficient propilin processing; and TraX, which is required for acetylation of the amino terminus of the 7-kDa pilin polypeptide. The mature pilin begins at amino acid 52 of the TraA propilin sequence. We performed experiments to determine the involvement of host cell factors in propilin maturation. At the nonpermissive temperature in a LepBts (leader peptidase B) host, propilin processing was inhibited. Furthermore, under these conditions, only full-length precursor was observed, suggesting that LepB is responsible for the removal of the entire propilin leader peptide. Using propilin processing as a measure of propilin insertion into the plasma membrane, we found that inhibition or depletion of SecA and SecY does not affect propilin maturation. Addition of a general membrane perturbant such as ethanol also had no effect. However, dissipation of the proton motive force did cause a marked inhibition of propilin processing, indicating that membrane insertion requires this energy source. We propose that propilin insertion in the plasma membrane proceeds independently of the SecA-SecY secretion machinery but requires the proton motive force. These results present a model whereby propilin insertion leads to processing by leader peptidase B to generate the 7-kDa peptide, which is then acetylated in the presence of TraX.  相似文献   

4.
Acetylation of F-pilin subunits has previously been shown to depend upon expression of the F plasmid transfer operon gene traX. To assess the requirement for pilin acetylation in conjugative transfer of F, we constructed traX::kan insertion mutations and crossed them onto the transmissible F derivative pOX38. Under standard conditions, the function of traX seemed to be dispensable. Although pilin synthesized by mutant plasmids pOX38-traX482 and pOX38-traX483 was not acetylated, F-pilus production and F-pilus-specific phage infection appeared to be normal and transfer occurred at wild-type frequency. Analysis of labeled products showed that TraX+ plasmids expressed two approximately 24- (TraX1) and 22-kDa (TraX2) polypeptides that localized in the cytoplasmic membranes of cells. No product that was similar in size to the product predicted from the traX open reading frame (27.5 kDa) was detected. Therefore, we used site-directed mutagenesis, stop codon linker insertions, and phoA fusion analysis to investigate traX expression. Both TraX1 and TraX2 appeared to be encoded by the traX open reading frame. Insertion of a stop codon linker into the traX C-terminal coding region led to synthesis of two correspondingly truncated products, and fusions to phoA indicated that only the traX reading frame was translated. Expression was also very dependent on the traX M1 start codon; when this was altered, no protein products were observed. However, pilin acetylation activity was still detectable, indicating that some other in-frame start codon(s) can also be used. All sequences that are essential for activity are contained between traX codons 29 and 225. Sequence analysis indicated that traX mRNA is capable of forming a variety of base-paired structures. We suggest that traX expression is translationally controlled and that F-pilin acetylation activity may be regulated by physiological conditions in cells.  相似文献   

5.
6.
Role of the propilin leader peptide in the maturation of F pilin.   总被引:1,自引:1,他引:0       下载免费PDF全文
F-pilin maturation and translocation result in the cleavage of a 51-amino-acid leader sequence from propilin and require LepB and TraQ but not the SecA-SecY secretion pathway. The unusual propilin leader peptide and the dependence of its cleavage on TraQ suggested that TraQ recognition may be specific for the leader peptide. An in vitro propilin cleavage assay yielded propilin (13 kDa), the pilin polypeptide (7 kDa), and a 5.5-kDa protein as the traA products. The 5.5-kDa protein comigrates with the full-length 51-amino-acid leader peptide, and [14C]proline labeling confirmed its identity since the only proline residues of propilin are found within the leader peptide. The in vitro and in vivo propilin-processing reactions proceed similarly in a single polypeptide cleavage step. Furthermore, TraQ dependence is a property of F-pilin maturation specifically rather than a property of the leader peptide. A propilin derivative with an amino-terminal signal sequence generated by deleting codons 2 to 28 required TraQ for processing in vivo. On the other hand, a chimeric protein with the propilin wild-type leader peptide fused to the mature portion of beta-lactamase was processed in a TraQ-independent manner. Thus, despite its unusual length, the propilin leader peptide seems to perform a function similar to that of the typical amino-terminal signal sequence. This work suggests that TraQ is not necessary for the proteolysis of propilin and therefore is likely to act as a chaperone-like protein that promotes the translocation of propilin.  相似文献   

7.
Synthesis of F-pilin polypeptide in the absence of F traJ product   总被引:12,自引:0,他引:12  
The products of a lambda transducing phage (ED lambda 101) which carries a segment of the F tra operon expressing F traA , traL , and traE activity from the lambda leftward promoter were examined using a uv-irradiated host system. After infection of an F- host, products of traE (19,500 Da) and traA (14,000 Da) were detectable among the lambda early proteins synthesized. Infection of an Flac host altered the pattern of polypeptides synthesized by the phage in that the 14,000-Da traA product became barely detectable and was replaced by a polypeptide which migrated at 7000 Da. A derivative of ED lambda 101 carrying the traA1 amber mutation was unable to synthesize either the 14,000-Da polypeptide in F- cells or the 7000-Da polypeptide in Flac cells. The 7000-Da polypeptide derived from ED lambda 101 was synthesized in the absence of traJ product in F- cells coinfected with a second transducing phage which carried a tra operon segment including traQ . It was also a product of ED lambda 134 which expresses genes traA through traH . The 7000-Da polypeptide, like F-pilin, associated primarily with the inner membrane, and could be immunoprecipitated with antiserum prepared against purified F-pili. Analysis of membranes from F- cells infected with ED lambda 101 indicated that the 14,000-Da traA product synthesized under these conditions accumulated in the inner membrane. These results show that both the 14,000-Da traA product might be processed to F-pilin in a traQ -dependent reaction which occurs in or on the inner membrane of the Escherichia coli host. However, the possibility that traQ encodes a regulatory product which affects expression of the traA sequence has not been excluded.  相似文献   

8.
Abstract The virB operon of the Agrobacterium tumefaciens Ti plasmid encodes 11 proteins. Specific antisera to VirB2, VirB3 and VirB9 were used to locate these virulence proteins in the A. tumefaciens cell. Immunoblot analysis located VirB2 protein to the inner and outer membranes; VirB3 and VirB9 were likewise associated with both membranes, but mainly in the outer membrane. VirB2 is processed from a 12.3-kDa protein into a 7.2-kDa polypeptide. Such sized protein results from cleavage at residue Ala47, upstream of which two additional alanine residues Ala45-Ala46 are contained and bearing resemblance to a signal peptide peptidase-I cleavage sequence. VirB2 and VirB3 sequences are strikingly similar to the pilin biosynthetic proteins TraA and TraL encoded by the tra operon of F and R1-19 plasmids. Since traA encodes a propilin that is cleaved into a 7.2-kDa conjugative pilin product and since this cleavage site is present in both TraA and VirB2, we propose that virB2 encodes a pilin-like protein which together with VirB3 and VirB9 as well as other VirB proteins may be used for interkingdom T-DNA transfer between bacteria and plants.  相似文献   

9.
The pED208 plasmid is a 90-kilobase conjugative plasmid which is the derepressed form of Fo lac plasmid (IncFV). A 3.3-kilobase HindIII-PstI fragment from the pED208 plasmid was cloned and sequenced and was found to contain four open reading frames which were highly homologous to the traA, traL, traE, and traY gene products of the F plasmid. The pED208 traA propilin protein was 119 amino acids in length, consisting of a leader sequence of 55 amino acids and a mature pilin subunit of 64 residues. The leader sequence contained a hydrophobic region followed by a classic signal peptidase cleavage site (Ala-Ser-Ala-55). F and pED208 pilin proteins shared 27 conserved residues and had similar predicted secondary structures. The pED208 traA and traL genes were separated by a single base pair, and no ribosome binding site preceded the traL gene. The pED208 traY gene contained an IS2 insertion element in orientation II 180 nucleotides (60 residues) upstream of the traY stop codon. This insertion of IS2 resulted in a predicted fusion peptide of 69 residues for traY which may provide the observed traY activity. Since IS2 is absent in the wild-type plasmid, Fo lac, derepression and concomitant multipiliation may be due to the insertion of IS2 providing constitutive expression of the pED208 tra operon.  相似文献   

10.
ColB2 is a colicin-producing, 96-kilobase plasmid which encodes a conjugative system that is similar, but not identical, to F. A restriction map of this plasmid was generated, and DNA homology studies between F and ColB2 plasmids revealed homology only between their transfer operons. The locations of the ColB2 transfer operon and ColB2 pilin gene were localized on this restriction map. The gene encoding ColB2 pilin, traA, was cloned and sequenced. The pilin protein of ColB2 is identical to F, except at the amino terminus, where ala-gln of ColB2 pilin corresponds to Ala-Gly-Ser-Ser of F pilin. This is due to a 6-base-pair deletion in the ColB2 pilin gene. Biochemical studies on tryptic peptides derived from ColB2 pilin demonstrate the location of this gene to be correct. There is a putative signal peptidase cleavage site after the sequence Ala-Met-Ala, giving a signal peptide of 51 amino acids and a mature pilin protein of 68 amino acids (7,000 daltons). The amino terminus is blocked, probably with an acetyl group. A chimera containing the ColB2 pilin gene was able to complement an F traA mutant, demonstrating that the pilus assembly proteins of F can utilize the ColB2 pilin protein to form a pilus.  相似文献   

11.
S K Farrand  I Hwang    D M Cook 《Journal of bacteriology》1996,178(14):4233-4247
The Ti plasmids of Agrobacterium tumefaciens encode two transfer systems. One mediates the translocation of the T-DNA from the bacterium to a plant cell, while the other is responsible for the conjugal transfer of the entire Ti plasmid from one bacterium to another. The determinants responsible for conjugal transfer map to two regions, tra and trb, of the nopaline-type Ti plasmid pTiC58. By using transposon mutagenesis with Tn3HoHo1, we localized the tra determinants to an 8.5-kb region that also contains the oriT region. Fusions to lacZ formed by transposon insertions indicated that this region is expressed as two divergently transcribed units. We determined the complete nucleotide sequence of an 8,755-bp region of the Ti plasmid encompassing the transposon insertions defining tra. The region contains six identifiable genes organized as two units divergently transcribable from a 258-bp inter-genic region that contains the oriT site. One unit encodes traA, traF, and traB, while the second encodes traC, traD, and traG. Reporter insertions located downstream of both sets of genes did not affect conjugation but were expressed, suggesting that the two units encode additional genes that are not involved in transfer under the conditions tested. Proteins of the predicted sizes were expressible from traA, traC, traD, and traG. The products of several Ti plasmid tra genes are related to those of other conjugation systems. The 127-kDa protein expressed from traA contains domains related to MobA of RSF1O1O and to the helicase domain of TraI of plasmid F. The translation product of traF is related to TraF of RP4, and that of traG is related to TraG of RP4 and to VirD4 of the Ti plasmid T-DNA transfer system. Genetic analysis indicated that at least traG and traF are essential for conjugal transfer, while sequence analysis predicts that traA also encodes an essential function. traB, while not essential, is required for maximum frequency of transfer. Patterns of sequence relatedness indicate that the oriT and the predicted cognate site-specific endonuclease encoded by traA share lineage with those of the transfer systems of RSF1010 and plasmid F, while genes of the Ti plasmid encoding other essential tra functions share common ancestry with genes of the RP4 conjugation system.  相似文献   

12.
Location of an F-pilin pool in the inner membrane.   总被引:21,自引:17,他引:4       下载免费PDF全文
Polyacrylamide gel analysis of [35S]methionine-labeled membrane preparations from Escherichia coli has revealed the presence of five polypeptides present only in the membranes of cells containing the conjugative plasmid F. In addition to the previously reported product of traT, polypeptides migrating with apparent molecular weights of 100,000, 23,500, 12,000, and 7,000 were resolved. Membrane preparations from F traJ mutants lacked these polypeptides, indicating that all of these proteins are tra gene products. The 7,000-molecular-weight polypeptide comigrated with unlabeled purified F-pilin protein. About 4 to 5% of the total radioactive label in whole membrane preparations was present in this polypeptide, indicating the existence of a substantial pool of membrane-associated F-pilin. The polypeptide could be extracted from whole membrane preparations with Triton X-100 and was found in the inner membrane fraction of membranes separated by sucrose density centrifugation.  相似文献   

13.
DNA sequence of the F traALE region that includes the gene for F pilin   总被引:8,自引:24,他引:8  
The complete sequence of a 1.4-kilobase PstI fragment containing the F transfer genes traA, -L, and -E is presented. The traA reading frame has been located both genetically and by comparing the primary structure of F pilin (the traA product) predicted by the DNA sequence to the amino acid composition and sequence of N- and C-terminal peptides isolated from purified F pilin. Taken together, these data show that there is a leader peptide of 51 amino acids and that F pilin contains 70 amino acids, giving molecular weights of 13,200 for F propilin and 7,200 for mature F pilin. Secondary structure predictions for F pilin revealed a reverse turn that precedes the sequence Ala-Met-Ala51, a classic signal peptidase cleavage site. The N-terminal alanine residue is blocked by an acetyl group as determined by 1H-nuclear magnetic resonance spectroscopy. The traL and traE genes encode proteins of molecular weights 10,350 and 21,200, respectively. According to DNA sequence predictions, these proteins do not contain signal peptide leader sequences. Secondary structure predictions for these proteins are in accord with traLp and traEp being membrane proteins in which hydrophobic regions capable of spanning the membrane are linked by sequences that form turns and carry positively charged residues capable of interacting with the membrane surface.  相似文献   

14.
F(+) strains of Escherichia coli infected with donor-specific bacteriophage such as M13 are sensitive to bile salts. We show here that this sensitivity has two components. The first derives from secretion of bacteriophage particles through the cell envelope, but the second can be attributed to expression of the F genes required for the formation of conjugative (F) pili. The latter component was manifested as reduced or no growth of an F(+) strain in liquid medium containing bile salts at concentrations that had little or no effect on the isogenic F(-) strain or as a reduced plating efficiency of the F(+) strain on solid media; at 2% bile salts, plating efficiency was reduced 10(4)-fold. Strains with F or F-like R factors were consistently more sensitive to bile salts than isogenic, plasmid-free strains, but the quantitative effect of bile salts depended on both the plasmid and the strain. Sensitivity also depended on the bile salt, with conjugated bile salts (glycocholate and taurocholate) being less active than unconjugated bile salts (deoxycholate and cholate). F(+) cells were also more sensitive to sodium dodecyl sulfate than otherwise isogenic F(-) cells, suggesting a selectivity for amphipathic anions. A mutation in any but one F tra gene required for the assembly of F pili, including the traA gene encoding F pilin, substantially restored bile salt resistance, suggesting that bile salt sensitivity requires an active system for F pilin secretion. The exception was traW. A traW mutant was 100-fold more sensitive to cholate than the tra(+) strain but only marginally more sensitive to taurocholate or glycocholate. Bile salt sensitivity could not be attributed to a generalized change in the surface permeability of F(+) cells, as judged by the effects of hydrophilic and hydrophobic antibiotics and by leakage of periplasmic beta-lactamase into the medium.  相似文献   

15.
16.
Relationships among the polypeptides of Newcastle disease virus.   总被引:11,自引:10,他引:1  
We have studied the relationships among the polypeptides of Newcastle disease virus by using both kinetic and tryptic peptide analyses. The results of our tryptic peptide analyses suggest that there are at least six unique viral polypeptides--L, HN, FO(F), NP, M, and a 47,000-dalton polypeptide. The small virion glycopolypeptide F is related to FO, a glycopolypeptide found only in infected cells. In addition, several smaller polypeptides, including a 53,000-dalton polypeptide found both in purified virions and in infected cells, are related to the nucleocaspid protein. Kinetic analysis of each viral polypeptide reveals that all of the major viral polypeptides, with the possible exception of L, are stable after an amino acid chase. A precursor-product relationship between FO and F was not demonstrable by pulse-chase experiments. Also, almost the same relative amount of F, the putative product, was present in infected cultures after either 5 or 30 min of radioisotopic labeling. These results suggest that FO is processed rapidly.  相似文献   

17.
The lac-tra operon fusion plasmid pTG801 contains the known F plasmid DNA transfer (tra) genes required by Escherichia coli to elaborate functional F pili (T. Grossman and P. M. Silverman, J. Bacteriol. 171:650-656, 1989). Here, we show that these pili are actually structural variants of normal F pili and that the F plasmid must contain additional genes that affect pilus structure and function. We confirmed a previous report that two monoclonal antibodies that recognize epitopes at and near the amino terminus of F pilin do not decorate the sides of normal F pili, as determined by immunogold electron microscopy. However, both antibodies laterally decorated pTG801 pili. The epitope for one of the antibodies has been shown to include the amino-terminal acetyl group of F pilin, which must therefore also be present on pTG801 pilin. Normal antibody staining was restored to pTG801 pili when cells contained, in addition to pTG801, the compatible plasmid pRS31, which must therefore include at least one gene affecting F-pilus structure. One candidate, traD, was excluded as the sole such gene, since traD+ derivatives of a pTG801 strain still elaborated pili that could be laterally decorated with antibody. Moreover, although traD alone restored RNA bacteriophage R17 infectivity to pTG801 cells, as expected, it did not mimic pRS31 in restoring to pTG801 pili other characteristics of normal F pili. We conclude that pRS31 contains as yet uncharacterized genes required for elaboration of structurally normal F pili. Finally, we identified vesicular material, especially abundant in cultures of pTG801 transformants, that stained heavily with the anti-F-pilin monoclonal antibodies. This material may reflect the inner membrane pool of F pilin.  相似文献   

18.
The purified Ca2+-pumping ATPase of the erythrocyte membrane has been exposed to trypsin at 37 degrees C, in the presence of different effectors of its activity. The control proteolytic pattern is characterized by a number of transient and of limit polypeptides (Zurini, M., Krebs, J., Penniston, J. T., and Carafoli, E. (1984) J. Biol. Chem. 259, 618-627). The effectors influence the pattern in the Mr region 90,000-76,000, which contains the calmodulin binding domain and the active site of the enzyme. In this region, polypeptides of 90, 85, 81, and 76 kDa are clearly visible in the controls. 1) Calmodulin plus Ca2+ induces the faster disappearance of the 90-kDa product and the relative accumulation of the 85-kDa with respect to the 81-kDa polypeptide. 2) Vanadate plus Mg2+ also accelerates the disappearance of the 90-kDa product. However, they induce the relative accumulation of the 81-kDa polypeptide. 3) Linoleic acid, which stimulates the activity of the enzyme to the same levels obtained with calmodulin, greatly accelerates the rate of trypsin proteolysis, causing the virtual disappearance of all polypeptides in the 90-76-kDa region. 4) The 81-kDa polypeptide has maximal ATPase activity and is insensitive to calmodulin; the 85-kDa polypeptide has lower ATPase activity and binds calmodulin, but is not stimulated (or is stimulated only negligibly) by the activator.  相似文献   

19.
Protein synthesis in isolated, intact pea chloroplasts was optimized and compared to translation within chloroplasts in vivo. Many polypeptides labeled with [35S]methionine in isolated intact chloroplasts did not comigrate with polypeptides which were labeled within chloroplasts in vivo. Antibodies to the large subunit of ribulose-1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) immunoprecipitated [35S]-labeled large subunit plus several lower-molecular-mass translation products of isolated chloroplasts. The lower-molecular-mass soluble translation products synthesized in pulse-labeled chloroplasts were converted into full-length large-subunit polypeptides during a subsequent chase period. This result suggests that many of the polypeptides observed in pulse-labeled chloroplasts are incomplete translation products which are the result of ribosome pausing at discrete points along chloroplast mRNAs. The pulse-chase technique was used to follow synthesis of the 34.5-kDa precursor of the psb A gene product and its processing to the mature 32-kDa polypeptide in isolated chloroplasts. Chloroplast translation profiles obtained using the pulse-chase assay were very similar to translation profiles obtained in vivo thus extending the utility of protein synthesis in isolated chloroplasts.  相似文献   

20.
Peripheral and integral subunits of the tonoplast H+-ATPase from oat roots   总被引:10,自引:0,他引:10  
The subunit organization of the tonoplast H+-pumping ATPase from oat roots (Avena sativa L. var. Lang) was investigated. Tonoplast vesicles were treated with low ionic strength solutions (0.1 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer or 0.1 mM Na EDTA), carbonate, or a chaotropic reagent (KI), and then centrifuged to give a soluble fraction and a pellet. Treatments with low ionic strength solutions or KI resulted in 70-80% reduction in the membrane-associated ATPase activity, but did not affect the K+-stimulated pyrophosphatase activity. Polypeptides of 72, 60, and 41 kDa were solubilized from tonoplast vesicles by these wash treatments. These polypeptides reacted with polyclonal antibodies against the holoenzyme of tonoplast ATPase (anti-ATPase) and copurified with the tonoplast ATPase activity during gel filtration chromatography (Sepharose CL-6B). Mono-specific antibody against the 72- or 60-kDa polypeptide reacted with the solubilized 72- or 60-kDa polypeptide, respectively. However, the N,N-[14C]dicyclohexylcarbodiimide-binding 16-kDa polypeptide and a 13-kDa polypeptide that also reacted with anti-ATPase and copurified with the tonoplast ATPase activity during gel filtration remained in the pellets after the wash treatments. We conclude that the 72- and 60-kDa polypeptides appear to be peripheral subunits of the tonoplast ATPase and that the 16-kDa polypeptide is probably embedded in the membrane bilayer. Additional subunits of the ATPase complex may include a 41-kDa (peripheral) and a 13-kDa (integral) polypeptide. Based on these results, a working model of the tonoplast ATPase analogous to the F1F0-ATPase is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号