首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Anthropogenic habitat loss and climate change are among the major threats to biodiversity. Bioclimatic zones such as the boreal and arctic regions are undergoing rapid environmental change, which will likely trigger changes in wildlife communities. Disentangling the effects of different drivers of environmental change on species is fundamental to better understand population dynamics under changing conditions. Therefore, in this study we investigate the synergistic effect of winter and summer weather conditions and habitat type on the abundance of 17 migratory boreal waterbird species breeding in Finland using three decades (1986–2015) of count data. We found that above‐average temperatures and precipitations across the western and northern range of the wintering grounds have a positive impact on breeding numbers in the following season, particularly for waterbirds breeding in eutrophic wetlands. Conversely, summer temperatures did not seem to affect waterbird abundance. Moreover, waterbird abundance was higher in eutrophic than in oligotrophic wetlands, but long term trends indicated that populations are decreasing faster in eutrophic than in oligotrophic wetlands. Our results suggest that global warming may apparently benefit waterbirds, e.g. by increased winter survival due to more favourable winter weather conditions. However, the observed population declines, particularly in eutrophic wetlands, may also indicate that the quality of breeding habitat is rapidly deteriorating through increased eutrophication in Finland which override the climatic effects. The findings of this study highlight the importance of embracing a holistic approach, from the level of a single catchment up to the whole flyway, in order to effectively address the threats that waterbirds face on their breeding as well as wintering grounds.  相似文献   

2.
M.N. McCULLOCH    G M. TUCKER  S.R. BAILLIE 《Ibis》1992,134(S1):55-65
The hunting of 20 species of migratory birds in Europe and countries bordering the Mediterranean Sea was investigated using ringing recovery data. The intensity of the hunting of birds in each country was measured by the calculation of an index which controls for ringing effort and reporting rates. The hunting of birds was shown to be consistently high in western Mediterranean countries, particularly in southern France, northern and southwestern Iberia, northern Italy and in northwest Africa. Geographical patterns in the relative magnitude of hunting indices for different breeding populations were species-specific. In Europe most birds are taken during autumn and winter but in North Africa hunting is almost equally prevalent in spring. All species investigated, other than those that remain legitimate quarry species, showed a general reduction in index values after 1980. Analysis of long-term trends in index values since 1950 indicated a statistically significant overall decrease in the hunting of the majority of species. These changes are thought to be at least partly attributable to a real decline in the taking of birds but they may also reflect changed attitudes to reporting the hunting of species which are now protected. This analysis provides the first quantitative Europe-wide assessment of geographical and temporal trends in the hunting of migratory birds.  相似文献   

3.
Annual Finnish breeding duck surveys over the last 30 years show declining abundance among several species and greater declines on eutrophic waters than oligotrophic lakes. It has been suggested that habitat-related differences in the rate of increase in predation pressure is a potential explanation for contrasting duck population trajectories between habitats. We assessed potential duck nest predation risk and predator presence in various duck breeding habitats in Finland and Denmark by monitoring 333 artificial duck nests with wildlife cameras during 2017–2019. Predation rates differed between landscapes and habitats: nest predation rate and predator diversity were lowest in forested and highest in agricultural landscapes. Forest nests further from water bodies survived better than nests around shorelines of permanent lakes. Of the 16 different predator species detected, the most common were Eurasian magpie (Picapica), hooded crow (Corvus corone) and raccoon dog (Nyctereutes procyonoides). While predation by specific native predator species was typically associated with particular habitats and landscapes, the alien raccoon dog appeared to be a true habitat generalist, ubiquitous and common across all habitats and landscapes. Based on these results, the higher duck nest predation pressure along shorelines, especially in agricultural landscape lakes, due to increased diversity and abundance within the predator community, may contribute to the declining population trends of ducks.  相似文献   

4.
Understanding why populations of some migratory species show a directional change over time, i.e. increase or decrease, while others do not, remains a challenge for ecological research. One possible explanation is that species with smaller non‐breeding ranges may have more pronounced directional population trends, and their populations are thus more sensitive to the variation in environmental conditions in their non‐breeding quarters. According to the serial residency hypothesis, this sensitivity should lead to higher magnitudes (i.e. absolute values) of population trends for species with smaller non‐breeding ranges, with the direction of trend being either positive or negative depending on the nature of the environmental change. We tested this hypothesis using population trends over 2001–2012 for 36 sub‐Saharan migratory passerine birds breeding in Europe. Namely, we related the magnitude of the species' population trends to the size of their sub‐Saharan non‐breeding grounds, whilst controlling for factors including number of migration routes, non‐breeding habitat niche and wetness, breeding habitat type and life‐history strategy. The magnitude of species' population trends grew with decreasing absolute size of sub‐Saharan non‐breeding ranges, and this result remained significant when non‐breeding range size was expressed relative to the size of the breeding range. After repeating the analysis with the trend direction, the relationship with the non‐breeding range size disappeared, indicating that both population decreases and increases are frequent amongst species with small non‐breeding range sizes. Therefore, species with small non‐breeding ranges are at a higher risk of population decline due to adverse factors such as habitat loss or climatic extremes, but their populations are also more likely to increase when suitable conditions appear. As non‐breeding ranges may originate from stochasticity of non‐breeding site selection in naive birds (‘serial‐residency’ hypothesis), it is crucial to maintain a network of stable and resilient habitats over large areas of birds’ non‐breeding quarters.  相似文献   

5.
Worldwide, local extinctions and severe declines in waterbird densities are being reported from many important waterbird sites. Waterbird sites often exist as a network, collectively providing crucial habitat for different life history stages of different species. Therefore, population changes at one site may strongly influence others. In Australia, many waterbird species are highly mobile, and move rapidly over long distances in response to rainfall. Large tidal wetlands often serve as drought refugia or alternative breeding habitat for these species. These sites are also the migration terminus of many species of shorebirds that spend their non‐breeding season in Australia. One such site in south‐eastern Australia is Western Port, a Ramsar‐listed tidal embayment forming part of the East Asian–Australasian Shorebird Site Network. We measured waterbird population trends over nearly 40 years in Western Port to see whether changes showed consistent trends over time across multiple species. Thirty‐nine species were recorded often enough to allow an analysis of trends over time using dynamic linear models and, where appropriate, piecewise linear regression. Twenty‐two species had declined, including four species of duck, five species of fish‐eating bird (cormorants, terns and pelicans), one species each of grebe, gull and heron, and 10 species of shorebird. Only two species (Australian pied oystercatcher Haematopus longirostris and straw‐necked ibis Threskiornis spinicollis) increased significantly over the same time period. Patterns of decline in non‐migratory waterbirds may reflect diminishing wetland availability, local reductions in fish prey, increased predation pressure and changes in inland wetland resources. Declines in migratory shorebirds are most likely related to loss of habitat elsewhere in their trans‐equatorial migration routes. These trends in waterbirds that use Western Port reflect widespread impacts on populations elsewhere in Australia and overseas, necessitating more than simply local management of this tidal embayment.  相似文献   

6.
Numerous studies have correlated the advancement of lay date in birds with warming climate trends, yet the fitness effects associated with this phenological response have been examined in only a small number of species. Most of these species–primarily insectivorous cavity nesters in Europe–exhibit fitness declines associated with increasing asynchrony with prey. Here, we use 25 years of demographic data, collected from 1986 to 2010, to examine the effects of spring temperature on breeding initiation date, double brooding, and annual fecundity in a Nearctic - Neotropical migratory songbird, the black-throated blue warbler (Setophaga caerulescens). Data were collected from birds breeding at the Hubbard Brook Experimental Forest, New Hampshire, USA, where long-term trends toward warmer springs have been recorded. We found that black-throated blue warblers initiated breeding earlier in warmer springs, that early breeders were more likely to attempt a second brood than those starting later in the season, and that double brooding and lay date were linked to higher annual fecundity. Accordingly, we found selection favored earlier breeding in most years. However, in contrast to studies of several other long-distance migratory species in Europe, this selection pressure was not stronger in warmer springs, indicating that these warblers were able to adjust mean lay date appropriately to substantial inter-annual variation in spring temperature. Our results suggest that this North American migratory songbird might not experience the same fecundity declines as songbirds that are unable to adjust their timing of breeding in pace with spring temperatures.  相似文献   

7.
Dependence on climate‐driven environmental cues in the initiation of life cycle stages is a critical attribute when assessing vulnerability of species to climate change impacts. This study focused on spring ice phenology as a cue to the settling of migratory waterbirds, asking whether there is an asynchrony between ice phenology and settling phenology that could affect breeding success of six species with divergent population trends. In the 37 study lakes in southeastern Finland, the ice‐out date not only varied considerably between years, but became progressively earlier during the study period, 1991–2018. Settling phenology of all species tracked inter‐annual variation in ice phenology. However, the degree of asynchrony between ice phenology and settling phenology varied between species, allowing discrimination between early and late settlers. Considerable inter‐annual variation also occurred within species, but in only one species did the degree of asynchrony correlate with the ice‐out date: for the horned grebe Podiceps auritus an earlier ice‐out date meant greater asynchrony between settling phenology and ice phenology. The degree of asynchrony between settling phenology and ice phenology did not affect breeding success in any species. However, ice phenology per se affected breeding success of horned grebes: earlier ice‐out was associated with lower annual breeding success. Breeding numbers of horned grebe showed a long‐term decline. Results suggest that short‐distance migratory birds are able to respond to climate change‐driven phenological changes in their breeding environments, and that this ability may not depend on the relative timing of breeding.  相似文献   

8.

Background

All organisms may be affected by humans'' increasing impact on Earth, but there are many potential drivers of population trends and the relative importance of each remains largely unknown. The causes of spatial patterns in population trends and their relationship with animal responses to human proximity are even less known.

Methodology/Principal Finding

We investigated the relationship between population trends of 193 species of bird in North America, Australia and Europe and flight initiation distance (FID); the distance at which birds take flight when approached by a human. While there is an expected negative relationship between population trend and FID in Australia and Europe, we found the inverse relationship for North American birds; thus FID cannot be used as a universal predictor of vulnerability of birds. However, the analysis of the joint explanatory ability of multiple drivers (farmland breeding habitat, pole-most breeding latitude, migratory habit, FID) effects on population status replicated previously reported strong effects of farmland breeding habitat (an effect apparently driven mostly by European birds), as well as strong effects of FID, body size, migratory habit and continent. Farmland birds are generally declining.

Conclusions/Significance

Flight initiation distance is related to population trends in a way that differs among continents opening new research possibilities concerning the causes of geographic differences in patterns of anti-predator behavior.  相似文献   

9.
A growing body of work shows that climate change is the cause of a number of directional shifts in the spring phenology of migratory birds. However, changes in autumn phenology are well studied and their consistency across species, as well as their link with population trends, remains uncertain. We investigate changes in the autumn migration dates of 11 species of soaring birds over the Strait of Gibraltar over a 16‐year period. Using models corrected for phylogeny, we assessed whether ecological and morphological characteristics, as well as population trends, account for interspecific shifts in migration times. We recorded different phenological changes in different periods of the migration season and suggest that these differences are due to age‐dependent responses. The variable best predicting advances in migration dates was population trend: species that did not advance their autumn migration dates were those showing a decline in their European breeding populations. We repeated our tests on a dataset representing the migration date of soaring birds across the Pyrenees Mountains and found that population trends at this site also predicted phenological shifts. Our results suggest that flexibility in migratory strategy and population trends may be related, such that different adaptive capacity in migration timing may be more relevant than other ecological traits in determining the conservation status of migratory birds in Europe and perhaps other regions.  相似文献   

10.
Monogenean parasites were examined from the gills of 660 roach (Rutilus rutilus) in four interconnected lakes in Central Finland between February and November 1986 and in three of the same lakes between February and December 1988. One of the lakes is eutrophic and polluted due to a paper and pulp mill, one is oligotrophic and in a natural state, and the other two lakes are eutrophic. The prevalence of Dactylogyrus infection was always high. Differences between the lakes and the years were observed in the intensity of infection, which was significantly higher in the polluted lake. The intensity was also higher in older fish. Nine Dactylogyrus species were found, and of these D. crucifer and D. nanus were numerically dominant in all of the lakes studied, especially in the oligotrophic lake. In 1986 D. fallax, D. similis and D. suecicus constituted significant proportions of the fauna in the polluted lake. D. micracanthus was most common in the eutrophic lakes. In 1988 the species composition in the polluted lake was most similar to that in the eutrophic lake.  相似文献   

11.
Many migratory bird species have undergone recent population declines, but there is considerable variation in trends between species and between populations employing different migratory routes. Understanding species-specific migratory behaviours is therefore of critical importance for their conservation. The Common Sandpiper Actitis hypoleucos is an Afro-Palaearctic migratory bird species whose European populations are in decline. We fitted geolocators to individuals breeding in England or wintering in Senegal to determine their migration routes and breeding or non-breeding locations. We used these geolocator data in combination with previously published data from Scottish breeding birds to determine the distributions and migratory connectivity of breeding (English and Scottish) and wintering (Senegalese) populations of the Common Sandpiper, and used simulated random migrations to investigate wind assistance during autumn and spring migration. We revealed that the Common Sandpipers tagged in England spent the winter in West Africa, and that at least some birds wintering in Senegal bred in Scandinavia; this provides insights into the links between European breeding populations and their wintering grounds. Furthermore, birds tagged in England, Scotland and Senegal overlapped considerably in their migration routes and wintering locations, meaning that local breeding populations could be buffered against habitat change, but susceptible to large-scale environmental changes. These findings also suggest that contrasting population trends in England and Scotland are unlikely to be the result of population-specific migration routes and wintering regions. Finally, we found that birds used wind to facilitate their migration in autumn, but less so in spring, when the wind costs associated with their migrations were higher than expected at random. This was despite the wind costs of simulated migrations being significantly lower in spring than in autumn. Indeed, theory suggests that individuals are under greater time pressures in spring than in autumn because of the time constraints associated with reproduction.  相似文献   

12.
Declines in migratory species are a pressing concern worldwide, but the mechanisms underpinning these declines are not fully understood. We hypothesised that species with greater within‐population variability in migratory movements and destinations, here termed ‘migratory diversity’, might be more resilient to environmental change. To test this, we related map‐based metrics of migratory diversity to recent population trends for 340 European breeding birds. Species that occupy larger non‐breeding ranges relative to breeding, a characteristic we term ‘migratory dispersion’, were less likely to be declining than those with more restricted non‐breeding ranges. Species with partial migration strategies (i.e. overlapping breeding and non‐breeding ranges) were also less likely to be declining than full migrants or full residents, an effect that was independent of migration distance. Recent rates of advancement in Europe‐wide spring arrival date were greater for partial migrants than full migrants, suggesting that migratory diversity may also help facilitate species responses to climate change.  相似文献   

13.
Nummi  P.  Pöysä  H.  Elmberg  J.  Sjöberg  K. 《Hydrobiologia》1994,(1):247-252
The mallard (Anas platyrhynchos Linnaeus) is a generalist feeder, breeding in a wide range of habitats, yet showing considerable between site differences in density. Variations in density and habitat use may result from inter- and intea-specific competition, habitat structure or food.We studied habitat selection of the mallard in four regions of Finland and Sweden. In each region, ten lakes were chosen ranging from oligotrophic to eutrophic. Habitat distribution of the mallard did not differ between regions despite variation in the density of the species and congenerics. Mallard density did not correlate with vegetation structure, but increased with food abundance and the number and density of congenerics although there were regional differences in mallard response.  相似文献   

14.
Vertebrate responses to hunting are widely variable for target and nontarget species depending on the history of hunting and productivity of any given site and the life history traits of game species. We provide a comprehensive meta-analysis of changes in population density or other abundance estimates for 30 mid-sized to large mammal, bird and reptile species in 101 hunted and nonhunted, but otherwise undisturbed, Neotropical forest sites. The data set was analyzed using both an unnested approach, based on population density estimates, and a nested approach in which pairwise comparisons of abundance metrics were restricted to geographic groups of sites sharing similar habitat and soil conditions. This resulted in 25 geographic clusters of sites within which 1811 population abundance estimates were compared across different levels of hunting pressure. Average nested changes in abundance across increasingly greater levels of hunting pressure ranged from moderately positive to highly negative. Populations of all species combined declined across greater differences in hunting pressure by up to 74.8 percent from their numeric abundance in less intensively hunted sites, but harvest-sensitive species faired far worse. Of the 30 species examined, 22 declined significantly at high levels of hunting. Body size significantly affected the direction and magnitude of abundance changes, with large-bodied species declining faster in overhunted sites. Frugivorous species showed more marked declines in abundance in heavily hunted sites than seed predators and browsers, regardless of the effects of body size. The implications of hunting for seed dispersal are discussed in terms of community dynamics in semi-defaunated tropical forests.  相似文献   

15.
Every year, migratory species undertake seasonal movements along different pathways between discrete regions and habitats. The ability to assess the relative demographic contributions of these different habitats and pathways to the species’ overall population dynamics is critical for understanding the ecology of migratory species, and also has practical applications for management and conservation. Metrics for assessing habitat contributions have been well‐developed for metapopulations, but an equivalent metric is not currently available for migratory populations. Here, we develop a framework for estimating the demographic contributions of the discrete habitats and pathways used by migratory species throughout the annual cycle by estimating the per capita contribution of cohorts using these locations. Our framework accounts for seasonal movements between multiple breeding and non‐breeding habitats and for both resident and migratory cohorts. We illustrate our framework using a hypothetical migratory network of four habitats, which allows us to better understand how variations in habitat quality affect per capita contributions. Results indicate that per capita contributions for any habitat or pathway are dependent on habitat‐specific survival probabilities in all other areas used as part of the migratory circuit, and that contribution metrics are spatially linked (e.g. reduced survival in one habitat also decreases the contribution metric for other habitats). Our framework expands existing theory on the dynamics of spatiotemporally structured populations by developing a generalized approach to estimate the habitat‐ and pathway‐specific contributions of species migrating between multiple breeding and multiple non‐breeding habitats for a range of life histories or migratory strategies. Most importantly, it provides a means of prioritizing conservation efforts towards those migratory pathways and habitats that are most critical for the population viability of migratory species.  相似文献   

16.
Few studies have covered both the effects of climate and land‐use change on animal populations under a single framework. Besides, the scarce multi‐species studies conducted have focused on breeding data, and there is little information published on changes in wintering populations. Here, we relate the pattern of long‐term temporal trends of wintering bird populations in Finland, north Europe, to covariates associated with climate and land‐use change. Finnish wintering populations have been monitored using ca 10 km winter bird census routes (> 420 routes counted annually) during 1959–2012. Population trends of 63 species were related to migratory strategy, urbanity, and thermal niche measured as species‐specific centre of gravity of the wintering distribution. Waterbird trends have shown a marked increase compared to landbirds. Among landbirds, forest species have suffered severe declines, whereas urban species have considerably increased in their wintering numbers. To follow up these results, we produced three multi‐species indices (for waterbirds, forest and urban species, respectively), which can improve our ability to detect and monitor the specific consequences of climate change and changes in land‐use, but at the same time act as a feedback to track the conservation status of the species. Our results suggest that waterbirds are responding to climate change, given their dependence on open water and the correlation with early‐winter temperature over the last decades. On the other hand, we believe trends of landbirds have been mainly driven by human‐induced land‐use changes. While urban species have likely benefited from the increase of supplementary feeding, forest species have probably suffered from the loss of native habitats.  相似文献   

17.
Many shorebirds that breed in North America are declining. These trends reflect global patterns in shorebird populations. Here we ask what factors make some shorebird species more prone to decline than others. Specifically, we test the influence of migratory behaviour (route and distance), biogeography (population size and range), life history (body size, clutch size) and sexual selection (social mating system and testis size) on population trends in North American breeding shorebirds. Using phylogenetic comparative methods, we show that species that migrate across continental North America are more prone to decline than species that do not. Our finding that continental migrants are associated with population decline indicates that intrinsic factors may play an important role in predisposing a species to decline. Previous studies within the class Aves have failed to identify migration route as a correlate of decline or extinction risk. Two other intrinsic factors (oceanic migrants and threats on the non-breeding grounds) were also important in our overall models, although neither was significant alone. The moderate explanatory power of our variables indicates that other factors are also important for explaining shorebird declines. We suggest that contemporary threats, most notably habitat loss and degradation at migratory stopover sites, are likely to be important.  相似文献   

18.
Indicator classifications help us to focus on the most relevant groups of species in monitoring the effects of land use changes on biodiversity. We studied changes in distribution area of 74 butterfly species preferring one of the three common habitats of boreal agricultural landscapes: semi-natural grasslands (35 species), arable field margins (7) and forest edges (32). Using extensive atlas data from four time periods during the last 50 years in Finland, we quantified trends in the occupancy of the species in 10 km grid squares, and classified them into four classes: declining (23), stable (17), increasing (27) and fluctuating (7) species. Trends among the species favouring three habitats were different: 60% of the species of semi-natural grasslands had declined, whereas 86% of the species typical of open field margins had increased. An increase also predominated in species associated with forest edges. Declining and increasing species differed in three ecological characteristics: increasing species were more mobile, utilized a wider range of habitats and, based on their larval host plants, lived in more eutrophic habitats than declining species. Species overwintering as adults showed more positive trends in occupancy than species overwintering as eggs, larvae or pupae. Observed trends in occupancy are in good agreement with long-term changes in land use and habitat availability in Finland: a long-continued decrease in the area of semi-natural grasslands and an increased amount of open forest edges and clearings due to modern forestry during the past 50 years.  相似文献   

19.
Aim To test whether the genetic diversity of diadromous and landlocked populations of the small puyen Galaxias maculatus (known as jollytail in Australia and inanga in New Zealand) follow the same structuring patterns observed for migratory and non‐migratory species of the genus Galaxias. This work also aimed to test whether the genetic structuring of a group of populations could be predicted from differences in the geomorphologic history of the region they inhabit. Location Eight landlocked populations were sampled from cold‐temperate lakes in north‐western Patagonia. The study area could be split latitudinally into two sectors that differed in their geomorphology, each of them hosting four populations. The southern sector shows evidence of a higher degree of glacial coverage, and the lakes are probably remnants of a big proglacial palaeolake. Lakes in the northern sector, on the other hand, suggest no common origin. Results Significant genetic structuring was found among the studied populations (Θ = 0.188), being the highest value reported to date for the species. Significant correlation was found between genetic diversity and lake area and perimeter. Diversity also showed a slight latitudinal variation suggesting the presence of genetically distinct groups of populations. The comparison of populations from the two geographical sectors showed that those from the north had a higher diversity, more private alleles and strong structuring, while those from the south were less diverse and much more homogeneous. Main conclusions Non‐migratory populations of G. maculatus show much higher values of genetic structuring than those reported for diadromous populations. This follows the pattern seen when comparing migratory and non‐migratory species of Galaxias. This agrees with population genetics theory which predicts that restricted gene flow would result in greater among‐population divergence. Also, differences between northern and southern populations agreed with what was predicted by the geomorphologic history of the study area. During the Last Glacial Maximum ice cover in that region may have reduced the habitat of G. maculatus to a refuge with an impoverished gene pool. When the ice receded, leaving a great proglacial lake, that former population expanded and became fragmented after water levels descended. This resulted in present day lakes harbouring homogeneous populations with reduced diversity. The northern sector, in contrast, was less affected by glaciers, resulting in more geomorphologically stable lakes holding genetically diverse populations.  相似文献   

20.

Several alien predator species have spread widely in Europe during the last five decades and pose a potential enhanced risk to native nesting ducks and their eggs. Because predation is an important factor limiting Northern Hemisphere duck nest survival, we ask the question, do alien species increase the nest loss risk to ground nesting ducks? We created 418 artificial duck nests in low densities around inland waters in Finland and Denmark during 2017–2019 and monitored them for seven days after construction using wildlife cameras to record whether alien species visit and prey on the nests more often than native species. We sampled various duck breeding habitats from eutrophic agricultural lakes and wetlands to oligotrophic lakes and urban environments. The results differed between habitats and the two countries, which likely reflect the local population densities of the predator species. The raccoon dog (Nyctereutes procyonoides), an alien species, was the most common mammalian nest visitor in all habitats and its occurrence reduced nest survival. Only in wetland habitats was the native red fox (Vulpes vulpes) an equally common nest visitor, where another alien species, the American mink (Neovison vison), also occurred among nest visitors. Although cautious about concluding too much from visitations to artificial nests, these results imply that duck breeding habitats in Northern Europe already support abundant and effective alien nest predators, whose relative frequency of visitation to artificial nests suggest that they potentially add to the nest predation risk to ducks over native predators.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号