首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Accurate assessment of fat intake is essential to examine the relationships between diet and disease risk but the process of estimating individual intakes of fat quality by dietary assessment is difficult. Tissue and blood fatty acids, because they are mainly derived from the diet, have been used as biomarkers of dietary intake for a number of years. We review evidence from a wide variety of cross-sectional and intervention studies and summarise typical values for fatty acid composition in adipose tissue and blood lipids and changes that can be expected in response to varying dietary intake. Studies in which dietary intake was strictly controlled confirm that fatty acid biomarkers can complement dietary assessment methodologies and have the potential to be used more quantitatively. Factors affecting adipose tissue and blood lipid composition are discussed, such as the physical properties of triacylglycerol, total dietary fat intake and endogenous fatty acid synthesis. The relationship between plasma lipoprotein concentrations and total plasma fatty acid composition, and the use of fatty acid ratios as indices of enzyme activity are also addressed.  相似文献   

2.
Tuatara (Sphenodon) are rare reptiles endemic to New Zealand. Wild tuatara on Stephens Island (study population) prey on insects as well as the eggs and chicks of a small nesting seabird, the fairy prion (Pachyptila turtur). Tuatara in captivity (zoos) are fed diets containing different insects and lacking seabirds. We compared the fatty acid composition of major dietary items and plasma of wild and captive tuatara. Fairy prions (eaten by tuatara in the wild) were rich in C20 and C22 polyunsaturated fatty acids (PUFA), especially the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In contrast, items from the diet of captive tuatara contained no C20 and C22 PUFA and were higher in medium-chain and less unsaturated fatty acids. Plasma from wild tuatara was higher in n-3 PUFA [including alpha-linoleic acid (C18:3n-3), EPA and DHA], and generally lower in oleic acid (C18:1) and palmitic acid (C16:0), than plasma from captive tuatara in the various fractions (phospholipid, triacylglycerol, cholesterol ester and free fatty acids). Plasma from wild adult tuatara showed strong seasonal variation in fatty acid composition, reflecting seasonal consumption of fairy prions. Differences in the composition of diets and plasma between wild and captive tuatara may have consequences for growth and reproduction in captivity. Accepted: 3 August 1998  相似文献   

3.
Abstract

Metabolic homeostasis of fatty acids is complex and well-regulated in all organisms. The biosynthesis of saturated fatty acids (SFA) in mammals provides substrates for β-oxidation and ATP production. Monounsaturated fatty acids (MUFA) are products of desaturases that introduce a methylene group in cis geometry in SFA. Polyunsaturated fatty acids (n-6 and n-3 PUFA) are products of elongation and desaturation of the essential linoleic acid and α-linolenic acid, respectively. The liver processes dietary fatty acids and exports them in lipoproteins for distribution and storage in peripheral tissues. The three types of fatty acids are integrated in membrane phospholipids and determine their biophysical properties and functions. This study was aimed at investigating effects of fatty acids on membrane biophysical properties under varying nutritional and pathological conditions, by integrating lipidomic analysis of membrane phospholipids with functional two-photon microscopy (fTPM) of cellular membranes. This approach was applied to two case studies: first, pancreatic beta-cells, to investigate hormetic and detrimental effects of lipids. Second, red blood cells extracted from a genetic mouse model defective in lipoproteins, to understand the role of lipids in hepatic diseases and metabolic syndrome and their effect on circulating cells.  相似文献   

4.
Although epidemiologic studies suggest a role for alpha-linolenic acid (ALA) in the prevention of coronary heart disease and certain types of cancer, the findings of clinical studies suggest that ALA is inferior biologically to the n-3 long-chain fatty acids because its bioconversion to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is limited in humans and because the magnitude of its biologic effects is smaller than that of EPA and DHA. This paper reviews several methodologic issues that may confound the findings of clinical studies and complicate our interpretations of them: the ALA and EPA + DHA dietary enrichment levels; the choice of tissue; the choice of lipid species; and the method of reporting fatty acid composition. Although the ALA enrichment levels used in most clinical studies can be achieved by consuming ground flaxseed, flaxseed oil, canola oil and other ALA-rich plants as part of a typical dietary pattern, the EPA + DHA enrichment levels are not practical and can only be obtained from fish oil supplements. The lack of consistency in the choice of lipids species and the reporting of data makes it difficult to compare outcomes across studies. The choice of tissue (blood) for analysis is a limitation that probably cannot be overcome. The use of practical ALA and EPA+ DHA dietary enrichment levels and some standardization of clinical study design would allow for greater comparisons of outcomes across studies and ensure a more realistic analysis of how individual n-3 fatty acids differ in their biologic effects in humans.  相似文献   

5.
The aim of this study was to investigate the effects of different levels of substitution of fish oil by vegetable oils rich in oleic, linoleic and linolenic acids on gilthead seabream plasma and leukocyte fatty acid compositions and prostaglandin (PG) and leptin production. Juvenile seabream of 24 g initial body mass were fed four iso-energetic and iso-proteic experimental diets for 281 days. Fatty acid composition of plasma lipids was markedly affected by the inclusion of vegetable oils (VO). ARA (arachidonate), EPA (eicosapentaenoate) and DHA (docosahexaenoate) were preferentially incorporated into polar lipids of plasma, and DHGLA (di-homogammalinoleate) accumulated with increased vegetable oil inclusion. Dietary treatments resulted in alterations of DHGLA/ARA ratios, but not ARA/EPA. ARA-derived PGE2 production in plasma was not affected by vegetable oils, in agreement with similar eicosanoid precursor ratio (ARA/EPA) in leukocytes total lipids and plasma phospholipids among fish fed with the different dietary treatments. Feeding vegetable oils leads to a decrease in plasma EPA which in turn reduced plasma PGE3 concentration. Moreover, PGE3 was the major prostaglandin produced in plasma of fish fed fish oil based diet. Such findings point out the importance of EPA as a precursor of prostaglandins in marine fish, at least for the correct function of the blood cells, and correlates well with the predominant role of this fatty acid in immune regulation in this species. A negative correlation was found between plasma PGE2 and leptin plasma concentration, suggesting that circulating levels of leptin may act as a metabolic signal modulating PGE2 release. The present study has shown that increased inclusion of vegetable oils in diet for gilthead seabream may profoundly affect the fatty acid composition of plasma and leukocytes, specially HUFA (highly unsaturated fatty acids), and consequently the production of PGE3, which can be a major PG in plasma. Alteration in the amount and type of PG produced can be at least partially responsible for the changes in the immune system and health parameters of fish fed diets with high inclusion of VO.  相似文献   

6.
The purpose of the present study was to compare the influence of adding no or 8% fat of varying sources (coconut oil, fish oil, rapeseed oil and sunflower oil) to diets for sows 1 week prior to farrowing and during lactation on the composition of fatty acids in plasma and tissues of the progeny while sucking and 3 weeks after weaning from the sow. A control diet without supplemental fat and four diets supplemented with 8% of coconut oil, rapeseed oil, fish oil or sunflower oil were provided to lactating sows (n = 15), and during the post-weaning period the same weaner diet was provided to all piglets (n = 15 litters), which were housed litterwise. The dietary ratio of n-6:n-3 fatty acids of the maternal diets largely influenced the progeny, as the ratio varying from 1.2 (fish oil) to 12.2 (sunflower oil) in the sow milk was reflected in plasma and adipose tissues of the sucking progeny. The liver showed similar variations according to dietary treatments, but a lower n-6:n-3 fatty acids ratio. From day 4 to later on during the suckling period, the concentration of C14:0, C16:0 and C18:1 in the liver of the piglets decreased, irrespective of the dietary treatments of sows. In plasma and liver, the total concentration of saturated fatty acids (SAFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) did not differ markedly in piglets sucking sows fed different dietary fatty acids, whereas the adipose tissue of piglets sucking sows fed sunflower oil and coconut oil showed the highest proportion of PUFA and SAFA, respectively. Weaning lowered the concentration of lipid-soluble extracts in plasma and the concentration of fatty acids in the liver of the piglets. Within the post-weaning period, dietary treatments of sows, rather than age of piglets, influenced the fatty acid composition of plasma and adipose tissue of the piglets, whereas the hepatic fatty acid profile was more affected by the age of the piglets during the post-weaning period. This study shows that the fatty acid profile of plasma and tissues of the progeny is highly dependent on the maternal dietary composition, and that the dietary impact persists for up to 3 weeks after the suckling period.  相似文献   

7.
The plasma-borne long-chain free fatty acids (FFA) enter skeletal muscle cells. Upon entering they are oxidized or esterified and a fraction remains free (non-esterified). The data on free fatty acids in skeletal muscles remain highly controversial. Furthermore, the composition of individual fatty acids in various lipid fractions including free fatty acids, monoglyceride and diglyceride in muscles has not been characterized. Also data on the composition of fatty acids esterified into muscle triglycerides and phospholipids are incomplete. The present study was undertaken to examine a composition of fatty acids in lipid fractions of different skeletal muscle types. For this purpose, samples of the rat soleus, red and white portions of gastrocnemius were excised, trimmed of visible fat and fascias and immediately frozen in liquid nitrogen. Samples were then pulverized and, lipids were extracted and fractionated by thin-layer chromatography. Individual long-chain fatty acids in different fractions were identified, characterized and quantitated by gas-liquid chromatography. FFA composition in the plasma was also determined. The total FFA content in the soleus, red and white gastrocnemius was 69.1 ± 10.8, 49.0 ± 13.6 and 22.7 ± 8.6 nmol/g, respectively. Palmitic and oleic acids were the major fatty acids in the muscles FFA fraction. Monoglyceride fraction of each muscle contained palmitic, stearic and linoleic acid as the major fatty acids, Diglyceride fraction contained mostly palmitic and oleic acid whereas triglyceride fraction mostly palmitic and linoleic acid.. The fraction of phospholipids was composed mostly of palmitic and linoleic acid but contained also considerable percentage of archidonic acid. Total plasma FFA/muscle FFA ratio depended on a muscle type and was: 2.4 in the soleus, 3.5 in the red and 7.4 in the white gastrocnemius. This assured transport of FFA to the myocytes. However, there were great differences in the ratio between particular FFA within the same muscle as well between the muscles. It indicates that individual FFA are either selectively transported from the plasma to the muscles or selectively used within the myocytes or both.  相似文献   

8.
The larval fatty acid composition of neutral lipids and membrane lipids was determined in three ethanol-tolerant strains ofDrosophila melanogaster. Dietary ethanol promoted a decrease in long-chain fatty acids in neutral lipids along with enhanced alcohol dehydrogenase (EC 1.1.1.1) activity in all of the strains. Dietary ethanol also increased the incorporation of14C-ethanol into fatty acid ethyl esters (FAEE) by two- to threefold and decreased the incorporation of14C-ethanol into free fatty acids (FFA). When cultured on sterile, defined media with stearic acid at 0 to 5 mM, stearic acid decreased ADH activity up to 33%. In strains not selected for superior tolerance to ethanol, dietary ethanol promoted a loss of long-chain fatty acids in membrane lipids. The loss of long-chain fatty acids in membranes was strongly correlated with increased fluidity in hydrophobic domains of mitochondrial membranes as determined by electron spin resonance and correlated with a loss of ethanol tolerance. In the ethanol-tolerant E2 strain, which had been exposed to ethanol for many generations, dietary ethanol failed to promote a loss of long-chain fatty acids in membrane lipids. We are grateful for the support of National Institutes of Health Grant AA06702 (B.W.G.) and National Science Foundation Grant CHE-891987 (R.G.K.).  相似文献   

9.
Abstract The polar lipids of 5 species of Thiobacillus were extracted and purified. An analysis of the fatty acid composition of the polar lipids documented the presence of methoxy, cyclopropyl, monounsaturated and hydroxycyclopropyl fatty acids of sufficiently unusual structure to serve as 'signatures' for the presence of these organisms in environmental samples. The structures of the unusual fatty acids of the polar lipids were confirmed by mass spectrometry (MS) after isolation by capillary gas chromatography (GC).  相似文献   

10.
The relationship between chilling tolerance of six rice cultivars – Facagro 57, Facagro 76, Fujisaka 5, Kirundo 3, Kirundo 9 and IR64 -and the fatty acid composition in total lipids, phospholipids, galactolipids and neutral lipids from leaves was studied. Higher double bond index and proportions of linolenic acid in the phospholipid and galactolipid classes were related to cultivar chilling tolerance, but this was not so for the total lipids nor the neutral lipid class. The somaclonal families derived from Facagro 76, Kirundo 3 and Kirundo 9 that showed enhanced chilling tolerance as compared to their original parental cultivar were analyzed for fatty acid composition in phospholipids and galactolipids from leaves. Altered proportions in fatty acid composition in phospholipids, galactolipids or both were found in the somaclonal families derived from Facagro 76 and Kirundo 9, but not from Kirundo 3. These changes most usually resulted in higher double bond index and higher proportions in linoleic and linolenic acids which were related either to lower ratio of C16 to C18 fatty acids or to higher unsaturation in the C18 fatty acid fraction. Different mechanisms thus seem to be implicated in the altered fatty acid composition of somaclones, which may be related to the chilling tolerance improvement of some somaclonal families.  相似文献   

11.
Gas chromatography (GC) is a highly sensitive method used to identify and quantify the fatty acid content of lipids from tissues, cells, and plasma/serum, yielding results with high accuracy and high reproducibility. In metabolic and nutrition studies GC allows assessment of changes in fatty acid concentrations following interventions or during changes in physiological state such as pregnancy. Solid phase extraction (SPE) using aminopropyl silica cartridges allows separation of the major lipid classes including triacylglycerols, different phospholipids, and cholesteryl esters (CE). GC combined with SPE was used to analyze the changes in fatty acid composition of the CE fraction in the livers of virgin and pregnant rats that had been fed various high and low fat diets. There are significant diet/pregnancy interaction effects upon the omega-3 and omega-6 fatty acid content of liver CE, indicating that pregnant females have a different response to dietary manipulation than is seen among virgin females.  相似文献   

12.
Lipid classes and their fatty acids were studied in the major lipoprotein fractions from canine, in comparison with human, plasma. In dogs, high-density-lipoprotein (HDL), the main carrier of plasma phospholipid (PL), cholesterol ester (CE) and free cholesterol, was the most abundant lipoprotein, followed by low and very-low density lipoproteins (LDL and VLDL). Notably, LDL and VLDL contributed similarly to the total dog plasma triacylglycerol (TG). The PL composition was similar in all three lipoproteins, dominated by phosphatidylcholine (PC). Even though the content and composition of lipids within and among lipoproteins differed markedly between dog and man, the total amount of circulating lipid was similar. All canine lipoproteins were relatively richer than those from humans in long-chain (C20-C22) n-6 and n-3 polyunsaturated fatty acids (PUFA) but had comparable proportions of total saturated and monoenoic fatty acids, with 18:2n-6 being the main PUFA in both mammals. The fatty acid profile of canine and human lipoproteins differed because they had distinct proportions of their major lipids. There were more n-3 and n-6 long-chain PUFA in canine than in human plasma, because dogs had more HDL, their HDL had more PC and CE, and both these lipids were richer in such PUFA.  相似文献   

13.
Competition between the (n ? 3) and (n ? 6) types of highly unsaturated fatty acids can diminish the abundance of (n ? 6) eicosanoid precursors in a tissue, which in turn can diminish the intensity of tissue responses that are mediated by (n ? 6) eicosanoids. The mixture of 20- and 22-carbon highly unsaturated fatty acids maintained in the phospholipids of human plasma is related to the dietary intake of 18:2 (n ? 6) and 18:3 (n ?3) by empirical hyperbolic equations in a manner very similar to the relationship reported for laboratory rats (Lands, W.E.M., Morris, A. and Libelt, B. (1990) Lipids 25, 505–516). Analytical results from volunteers ingesting self-selected diets showed an inter-individual variance for the proportion of (n ? 6) eicosanoid precursors in the fatty acids of plasma phospholipids of about 5%, but the variance among multiple samples taken from the same individual throughout the day was less (about 3%), closer to the experimental variance of the analytical procedure (about 1%). The reproducibility of the results makes it likely that analysis of fatty-acid composition of plasma lipids from individuals will prove useful in estimating the diet-related tendency for severe thrombotic, arthritic of other disorders that are mediated by (n ? 6) eicosanoids. Additional constants and terms were included in the equations to account for the effects of 20- and 22-carbon highly unsaturated (n ? 3) fatty acids in the diet. A lower constant for the 20- and 22-carbon (n ? 3) fatty acids compared to that for the 18-carbon (n ? 3) fatty acid in decreasing the ability of dietary 18:2 (n ? 6) to maintain 20:4 (n ? 6) in tissue lipids confirmed the greater competitive effectiveness of the more highly unsaturated n ? 3 fatty acids in the elongation/ desaturation process. Also, a lower constant for direct incorporation of 20-carbon fatty acids of the n ? 6 vs. the n ? 3 type indicated a greater competitive effectiveness of 20:4 (n ? 6) relative to 20:5 (n ? 3) in reesterification after release from tissue lipids. The equations may be used in reverse to estimate the dietary intakes of the (n ? 3) and (n ? 6) fatty acids by using the composition of the fatty acids that had been maintained in plasma lipids.  相似文献   

14.
Effects of high dietary cholesterol on erythrocyte membrane lipids were studied. Feeding rats with a diet containing 0.5% cholesterol and 0.15% sodium cholate for two weeks induced changes in erythrocyte membrane lipids including a decrease in cholesterol, an increase in α-tocopherol (α-Toc) and changes in the fatty acid composition of phospholipids. Oleic acid and linoleic acid increased, while arachidonic acid decreased in phosphatidylcholine. Saturated fatty acids decreased and unsaturated fatty acids increased in phosphatidylethanolamine. Almost the same changes in membrane lipids were also noted after six weeks of feeding rats with the diet. A diet containing 0.5% cholesterol but without sodium cholate caused a decrease in erythrocyte cholesterol and an increase in erythrocyte α-Toc after two weeks of feeding, as compared to the basal diet, indicating that high dietary cholesterol, but not sodium cholate, was responsible for these changes in the erythrocyte membrane.  相似文献   

15.
目的:利用硝酸银硅胶填料有效分离出血浆混合脂肪酸中的亚油酸。方法:通过改进的FOLCH法提取血浆总脂后,再采用皂化、酸化水解的方法将总脂转化为混合脂肪酸。用ghosh法将硅胶改性为硝酸银硅胶后,以亚油酸为对象,通过静态吸附试验了解硝酸银硅胶对不饱和脂肪酸的吸附特性,采用柱层析的方法分离血浆混合脂肪酸中的亚油酸。结果:血浆与有机溶剂在1∶5时既能有效萃取血浆总脂,用正己烷∶二氯甲烷∶乙醚=89∶10∶1作为洗脱剂,将洗脱液甲酯化后进行GC和GC-MS检测,硝酸银硅胶柱的洗脱液中亚油酸的纯度60.74%,硅胶柱的为23.65%,不饱和脂肪酸得到了较好的纯化。  相似文献   

16.
As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.  相似文献   

17.
In ruminants, dietary lipids are extensively hydrogenated by rumen micro-organisms, and the extent of this biohydrogenation is a major determinant of long-chain fatty acid profiles of animal products (milk, meat). This paper reports on the duodenal flows of C18 fatty acids and their absorption in the small intestine, using a meta-analysis of a database of 77 experiments (294 treatments). We established equations for the prediction of duodenal flows of various 18-carbon (C18) fatty acids as a function of the intakes of their precursors and other dietary factors (source and/or technological treatment of dietary lipids). We also quantified the influence of several factors modifying rumen metabolism (pH, forage : concentrate ratio, level of intake, fish oil supplementation). We established equations for the apparent absorption of these fatty acids in the small intestine as a function of their duodenal flows. For all C18 unsaturated fatty acids, apparent absorption was a linear function of duodenal flow. For 18:0, apparent absorption levelled off for high duodenal flows. From this database, with fatty acid flows expressed in g/kg dry matter intake, we could not find any significant differences between animal categories (lactating cows, other cattle or sheep) in terms of rumen metabolism or intestinal absorption of C18 fatty acids.  相似文献   

18.
Wild-type Drosophila melanogaster were axenically raised on a completely synthetic fatty acid-free diet for at least ten consecutive generations, confirming that these insects do not require dietary polyunsaturated fatty acids. Capillary column gas-chromatographic analysis of lipids extracted from adults reared on yeast medium showed a peak which cochromatographed with linoleic acid, representing about 1.2% and 0.15% of all fatty acids in phospholipids and triacylglycerols, respectively. In flies reared on the synthetic diet for one generation or for five or more generations, the linoleic acid peak was still present but in about tenfold lower proportions of total fatty acids. This was true of both phospholipid and triglyceride fractions.  相似文献   

19.
As part of the Keewatin Health Assessment Study, a comprehensive health interview and examination survey of Inuit and non-Inuit in the central Canadian Arctic during 1990–91, plasma samples were analyzed for phospholipid fatty acid composition. Compared to non-Inuit, the Inuit have reduced levels of dihomo-gamma-linoleic (DGLA) and arachidonic acid (ratios of 0.41 and 0.46) and the sum of all n-6 fatty acids (ratio of 0.65), but increased level of eicosapentaenoic (EPA) acid (ratio of 1.37). These trends are consistent with those reported from other circumpolar Inuit populations, especially the reduced arachidonic acid and increased EPA, although the Inuit excess in EPA is much less pronounced due to the greater importance of caribou rather than sea mammals in most of the Keewatin communities. The high linoleic/arachidonic acid ratio suggests increased inhibition of the metabolic pathway regulated by the enzyme Δ-5 desaturase, which can be explained by the presence of high levels of highly unsaturated fatty acids of dietary origin, and/or a genetic deficiency. In multiple linear regression models with the independent variable list consisting of Inuit status, age, sex, education, physical activity, spending time on the land and consumption of wild meat and local fish, Inuit status is independently associated with lower levels of the n-6 acids but not the n-3 acids. This indicates that factors other than diet and lifestyle, perhaps genetic ones, may account for the observed “ethnic” differences. However, for those fatty acids in which Inuit differ from non-Inuit, there is no dose-response relationship in terms of self-reported degree of non-Inuit admixture. Dietary fatty acids play an important role in the risk of cardiovascular diseases and diabetes, diseases of increasing importance in the health transition experienced by the Inuit. Association studies of plasma fatty acids and DNA markers of candidate genes for atherosclerosis and insulin resistance may provide a clearer picture of the genetic basis for the observed differences in plasma fatty acid composition between Inuit and non-Inuit. Am J Phys Anthropol 109:9–18, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

20.
The fatty acid composition of various mutant strains of the moss Physcomitrella patens has been compared to the wild-type. These included strains defective in their responses to auxins and/or cytokinins, one which releases much more cytokinin into the medium than the wild-type, and two aphototropic strains. The lipids of the aphototropic mutants were also studied after culture in different light regimes. Although some differences in fatty acid composition have been found between strains, these alone are probably not responsible for their physiological differences. Considerable changes occur in many fatty acids in senescent or dark-grown material, including changes in the proportion of C20 polyenoic fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号