首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 535 毫秒
1.
Symptomatic infection with Neisseria gonorrhoeae (Gc) results in a potent polymorphonuclear leukocyte (PMN)-driven inflammatory response, but the mechanisms by which Gc withstands PMN attack are poorly defined. Here we report that Gc can suppress the PMN oxidative burst, a central component of the PMN antimicrobial arsenal. Primary human PMNs remained viable after exposure to liquid-grown, exponential-phase, opacity-associated protein (Opa)-negative Gc of strains FA1090 and MS11 but did not generate reactive oxygen species (ROS), even after bacterial opsonization. Liquid-grown FA1090 Gc expressing OpaB, an Opa protein previously correlated with PMN ROS production, elicited a minor PMN oxidative burst. PMN ROS production in response to Opa(-) and OpaB+ Gc was markedly enhanced if bacteria were agar-grown or if liquid-grown bacteria were heat-killed. Liquid-grown Opa(-) Gc inhibited the PMN oxidative burst elicited by isogenic dead bacteria, formylated peptides or Staphylococcus aureus but did not inhibit PMN ROS production by OpaB+ Gc or phorbol esters. Suppression of the oxidative burst required Gc-PMN contact and bacterial protein synthesis but not phagocytosis. These results suggest that viable Gc directly inhibits PMN signalling pathways required for induction of the oxidative burst, which may contribute to gonococcal pathogenesis during inflammatory stages of gonorrhoeal disease.  相似文献   

2.
《Phytomedicine》2014,21(2):164-171
Oxidative stress is considered to be critically involved in the normal aging process but also in the development and progression of various human pathologies like cardiovascular and neurodegenerative diseases, as well as of infections and malignant tumors. These pathological conditions involve an overwhelming production of reactive oxygen species (ROS), which are released as part of an anti-proliferative strategy during pro-inflammatory immune responses. Moreover, ROS themselves are autocrine forward regulators of the immune response.Most of the beneficial effects of antioxidants are considered to derive from their influence on the immune system. Due to their antioxidant and/or radical scavenging nature, phytochemicals, botanicals and herbal preparations can be of great importance to prevent oxidation processes and to counteract the activation of redox-regulated signaling pathways. Antioxidants can antagonize the activation of T-cells and macrophages during the immune response and this anti-inflammatory activity could be of utmost importance for the treatment of above-mentioned disorders and for the development of immunotolerance.Herein, we provide an overview of in vitro assays for the measurement of antioxidant and anti-inflammatory activities of plant-derived substances and extracts, by discussing possibilities and limitations of these methods. To determine the capacity of antioxidants, the oxygen radical absorbance capacity (ORAC) assay and the cell-based antioxidant activity (CAA) assay are widely applied. To examine the influence of compounds on the human immune response more closely, the model of mitogen stimulated human peripheral blood mononuclear (PBMC) cells can be applied, and the production of the inflammatory marker neopterin as well as the breakdown of the amino acid tryptophan in culture supernatants can be used as readout to indicate an immunomodulatory potential of the tested compound. These two biomarkers of immune system activation are robust and correlate with the course of cardiovascular, neurodegenerative and malignant tumor diseases, but also with the normal aging process, and they are strongly predictive. Thus, while the simpler ORAC and CAA assays provide insight into one peculiar chemical aspect, namely the neutralization of peroxyl radicals, the more complex PBMC assay is closer to the in vivo conditions as the assay comprehensively enlights several properties of immunomodulatory test compounds.  相似文献   

3.
An increased number of sperm undergoing apoptosis has been observed during inflammatory processes in the male genital tract, which might be associated with elevated reactive oxygen species (ROS) levels. However, another factor to stimulate apoptosis could be the direct contact with bacteria or its products, even in the absence of ROS. The aim of this study was to investigate whether bacteria can directly initiate apoptosis in human spermatozoa. Human spermatozoa selected by density gradient centrifugation were incubated with polymorphonuclear granulocytes (PMN) isolated from blood and/or E. faecalis, E. coli or S. aureus. As ROS inductor in PMN, phorbol-12-myristate-13-acetate was used. After incubating the cells for 60 min at 37C, ROS were determined by chemiluminescence and phosphatidyl serine (PS) externalization was analyzed by flow cytometry with Annexin V-FITC and propidium iodide (PI). The increase in the percentage of spermatozoa Annexin V-FITC-positive/ PI-negative (early event of late apoptosis) was significant after the incubation with PMN plus PMA, PMN plus E. coli and E. coli alone. The percentage of spermatozoa Annexin V-FITC-positive/ PI-positive (apoptosis/necrosis) increased significantly in sperm incubated with E. coli and S. aureus(20.3% ± 3 and 13.6% ± 3.2 compared to sperm alone, 6% ± 0.5). Sperm incubated with PMN-PMA activated showed only a relative increase in apoptosis/necrosis (8.4% ± 1). Our results show that bacteria directly increase the PS externalisation in ejaculated human sperm. This way of inducing apoptosis does not require external ROS and may result from anyone of the molecular mechanisms that account for changes in motility, vitality and DNA integrity, that are characteristics of spermatozoa in male genital tract infection.  相似文献   

4.
Inflammatory diseases are associated with the accumulation of activated inflammatory cells, particularly polymorphonuclear neutrophils (PMNs), which release reactive oxygen species (ROS) to eradicate foreign bodies and microorganisms. To assess the location and extent of localized inflammatory responses, L-012, a highly sensitive chemiluminescent probe, was employed to noninvasively monitor the production of ROS. We found that L-012-associated chemiluminescence imaging can be used to identify and to quantify the extent of inflammatory responses. Furthermore, regardless of differences among animal models, there is a good linear relationship between chemiluminescence intensity and PMN numbers surrounding inflamed tissue. Depletion of PMNs substantially diminished L-012-associated chemiluminescence in vivo. Finally, L-012-associated chemiluminescence imaging was found to be a powerful tool for assessing implant-mediated inflammatory responses by measuring chemiluminescence intensity at the implantation sites. These results support the use of L-012 for monitoring the kinetics of inflammatory responses in vivo via the detection and quantification of ROS production.  相似文献   

5.

Introduction

Polymorphonuclear leukocytes (PMN) are main effector cells in the acute immune response. While the specific role of PMN in systemic lupus erythematosus (SLE) and autoimmunity is still unclear, their importance in chronic inflammation is gaining more attention. Here we investigate aspects of function, bone marrow release and activation of PMN in patients with SLE.

Methods

The following PMN functions and subsets were evaluated using flow cytometry; (a) production of reactive oxygen species (ROS) after ex vivo stimulation with phorbol 12-myristate 13-acetate (PMA) or Escherichia coli (E. coli); (b) capacity to phagocytose antibody-coated necrotic cell material; (c) PMN recently released from bone marrow, defined as percentage of CD10D16low in peripheral blood, and (d) PMN activation markers; CD11b, CD62L and C5aR.

Results

SLE patients (n = 92) showed lower ROS production compared with healthy controls (n = 38) after activation ex vivo. The ROS production was not associated with corticosteroid dose or other immunotherapies. PMA induced ROS production was significantly reduced in patients with severe disease. In contrast, neither ROS levels after E. coli activation, nor the capacity to phagocytose were associated with disease severity. This suggests that decreased ROS production after PMA activation is a sign of changed PMN behaviour rather than generally impaired functions. The CD10CD16low phenotype constitute 2% of PMN in peripheral blood of SLE patients compared with 6.4% in controls, indicating a decreased release of PMN from the bone marrow in SLE. A decreased expression of C5aR on PMN was observed in SLE patients, pointing towards in vivo activation.

Conclusions

Our results indicate that PMN from SLE patients have altered function, are partly activated and are released abnormally from bone marrow. The association between low ROS formation in PMN and disease severity is consistent with findings in other autoimmune diseases and might be considered as a risk factor.  相似文献   

6.
The role of the innate immunity in the pathogenesis of Crohn’s disease (CD), an inflammatory bowel disease, is a subject of increasing interest. Neutrophils (PMN) are key members of the innate immune system which migrate to sites of bacterial infection and initiate the defence against microbes by producing reactive oxygen species (ROS), before undergoing apoptosis. It is believed that impaired innate immune responses contribute to CD, but it is as yet unclear whether intrinsic defects in PMN signal transduction and corresponding function are present in patients with quiescent disease. We isolated peripheral blood PMN from CD patients in remission and healthy controls (HC), and characterised migration, bacterial uptake and killing, ROS production and cell death signalling. Whereas IL8-induced migration and signalling were normal in CD, trans-epithelial migration was significantly impaired. Uptake and killing of E. coli were normal. However, an increased ROS production was observed in CD PMN after stimulation with the bacterial peptide analogue fMLP, which was mirrored by an increased fMLP-triggered ERK and AKT signal activation. Interestingly, cleavage of caspase-3 and caspase-8 during GMCSF-induced rescue from cell-death was decreased in CD neutrophils, but a reduced survival signal emanating from STAT3 and AKT pathways was concomitantly observed, resulting in a similar percentage of end stage apoptotic PMN in CD patients and HC. In toto, these data show a disturbed signal transduction activation and functionality in peripheral blood PMN from patients with quiescent CD, which point toward an intrinsic defect in innate immunity in these patients.  相似文献   

7.
A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1–240) and truncated (residues 19–240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.  相似文献   

8.
Neutrophil extracellular traps (NETs) that bind invading microbes are pivotal for innate host defense. There is a growing body of evidence for the significance of NETs in the pathogenesis of infectious and inflammatory diseases, but the mechanism of NET formation remains unclear. Previous observation in neutrophils of chronic granulomatous disease (CGD) patients, which defect NADPH oxidase (Nox) and fail to produce reactive oxygen species (ROS), revealed that ROS contributed to the formation of NETs. However, the active species were not identified. In this study, we discovered that singlet oxygen, one of the ROS, mediated Nox-dependent NET formation upon stimulation with phorbol myristate acetate. We also revealed that singlet oxygen itself could induce NET formation by a distinct system generating singlet oxygen with porfimer sodium (Photofrin) in CGD neutrophils, as well as healthy neutrophils. This was independent of Nox activation. These results show that singlet oxygen is essential for NET formation, and provide novel insights into the pathogenesis of infectious and inflammatory diseases.  相似文献   

9.
Mitochondrial metabolism of reactive oxygen species   总被引:22,自引:0,他引:22  
Oxidative stress is considered a major contributor to etiology of both normal senescence and severe pathologies with serious public health implications. Mitochondria generate reactive oxygen species (ROS) that are thought to augment intracellular oxidative stress. Mitochondria possess at least nine known sites that are capable of generating superoxide anion, a progenitor ROS. Mitochondria also possess numerous ROS defense systems that are much less studied. Studies of the last three decades shed light on many important mechanistic details of mitochondrial ROS production, but the bigger picture remains obscure. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal. An integrative, systemic approach is applied to analysis of mitochondrial ROS metabolism, which is now dissected into mitochondrial ROS production, mitochondrial ROS removal, and mitochondrial ROS emission. It is suggested that mitochondria augment intracellular oxidative stress due primarily to failure of their ROS removal systems, whereas the role of mitochondrial ROS emission is yet to be determined and a net increase in mitochondrial ROS production in situ remains to be demonstrated.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 246–264.Original Russian Text Copyright © 2005 by Andreyev, Kushnareva, Starkov.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

10.
Malondialdehyde (MDA) is a product of oxidative damage to lipids, amino acids and DNA, and accumulates with aging and diseases. MDA can possibly react with amines so as to modify proteins and inactivate enzymes; it can also modify nucleosides so as to cause mutagenicity. Brain mitochondrial dysfunction is a major contributor to aging and neurodegenerative diseases. We hypothesize that MDA accumulated during aging targets mitochondrial enzymes so as to cause further mitochondrial dysfunction and additional contributions to aging and neurodegeneration. Herein, we investigated the neuronal mitochondrial toxic effects of MDA on mitochondrial respiration and activities of enzymes (mitochondrial complexes I–V, α-ketoglutarate dehydrogenase (KGDH) and pyruvate dehydrogenase (PDH)), in isolated rat brain mitochondria. MDA depressed mitochondrial membrane potential, and also showed a dose-dependent inhibition of mitochondrial complex I- and complex II-linked respiration. Complex I and II, and PDH activities were depressed by MDA at ≥0.2 μmol/mg; KGDH and complex V were inhibited by ≥0.4 and ≥1.6 μmol MDA/mg, respectively. However, MDA did not have any toxic effects on complex III and IV activities over the range 0–2 μmol/mg. MDA significantly elevated mitochondrial reactive oxygen species (ROS) and protein carbonyls at 0.2 and 0.002 μmol/mg, respectively. As for the antioxidant defense system, a high dose of MDA slightly decreased mitochondrial GSH and superoxide dismutase. These results demonstrate that MDA causes neuronal mitochondrial dysfunction by directly promoting generation of ROS and modifying mitochondrial proteins. The results suggest that MDA-induced neuronal mitochondrial toxicity may be an important contributing factor to brain aging and neurodegenerative diseases. Special issue article in honor of Dr. Akitane Mori.  相似文献   

11.
Antimicrobial peptides (AMPs), Os and Os‐C, have been identified as multifunctional peptides with antibacterial, antiendotoxin, and anti‐inflammatory properties. For further development of Os and Os‐C as therapeutic peptides, it is essential to evaluate these effects in human mononuclear (MN) and polymorphonuclear (PMN) leukocytes. The cytotoxicity and the effects of both peptides on MN and PMN morphology were determined with the Alamar‐Blue assay and scanning electron microscopy, respectively. The ability of Os and Os‐C to induce reactive oxygen species (ROS) and to protect against 2,2′‐azobis(2‐amidinopropane) dihydrochloride–induced oxidative damage in both cell populations was evaluated using 2′,7′‐dichlorofluorescin diacetate (DCFH‐DA). Using fluorescently labeled peptides, the ability of the peptides to cross the cell membranes of MN and PMN was also evaluated. At the minimum bactericidal concentrations of Os and Os‐C, neither peptide was cytotoxic. Os caused morphological features of toxicity at 100 μM, entered MN cells, and also protected these cells against oxidative damage. Os‐C caused MN and PMN leukocyte activation associated with ROS formation and was unable to penetrate cell membranes, indicating extracellular membrane interactions. This study confirms that both Os and Os‐C at less than 100 μM are not cytotoxic. The MN‐specific uptake of Os identifies it as a cell‐specific cargo‐carrier peptide, with additional anti‐inflammatory properties. In contrast, the ability of Os‐C to activate MN and PMN cells implies that this peptide should be further evaluated as an AMP, which, in addition to its ability to eradicate infection, can further enhance host immunity. These novel characteristics of Os and Os‐C indicate that these AMPs as peptides can be further developed for specific applications.  相似文献   

12.
Effects of various antigens on the secretory and diagnostically important functions of neutrophilic leukocytes were studied in peripheral venous blood samples of 106 patients with inflammatory periodontal diseases without any internal pathologies. Their neutrophils, stimulated by phagocytosable particles, were found to secrete increased amounts of alkaline phosphatase, β-glucuronidase, and lysozyme. This phenomenon suggests a general activation of lysosomal enzyme secretion and shows that the destruction of periodontal tissues may be caused by these proteases.  相似文献   

13.
《Cytokine》2010,51(3):234-242
B lymphocytes play roles in many auto-immune diseases characterized by unresolved inflammation, and B cell ablation is proving to be a relatively safe, effective treatment for such diseases. B cells function, in part, as important sources of regulatory cytokines in auto-immune disease, but B cell cytokines also play roles in other non-auto-immune inflammatory diseases. B cell ablation may therefore benefit inflammatory disease patients in addition to its demonstrated efficacy in auto-immune disease. Current ablation drugs clear both pro- and anti-inflammatory B cell subsets, which may unexpectedly exacerbate some pathologies. This possibility argues that a more thorough understanding of B cell function in human inflammatory disease is required to safely harness the clinical promise of B cell ablation. Type 2 diabetes (T2D) and periodontal disease (PD) are two inflammatory diseases characterized by little autoimmunity. These diseases are linked by coincident presentation and alterations in toll-like receptor (TLR)-dependent B cell cytokine production, which may identify B cell ablation as a new therapy for co-affected individuals. Further analysis of the role B cells and B cell cytokines play in T2D, PD and other inflammatory diseases is required to justify testing B cell depletion therapies on a broader range of patients.  相似文献   

14.
Reactive oxygen species and antioxidant status in periodontal diseases and periodontal-related pathologies is an item of growing interest. Immunohistochemical approach may be usefully employed in the study of soft tissues affected by periodontal disease, giving valuable information on tissue morphology and vascular proliferation that depends directly on the inflammatory state. In order to study CoQ(10) and vitamin E content in healthy gingiva and in gingivitis a new adaptation to previously published methods for their determination was adopted. During gingivitis tissue displayed a large inflammatory infiltration in the lamina propria and a VEGF positive squamous epithelium. The inflammatory infiltration consisted mainly of lymphocytes, plasma cells and neutrophils. Vitamin E dramatically decreased and CoQ(10) remained unchanged despite the increased amount of cells present in the periodontally affected tissues, indicating that continuous oxidative stress which occurred in these structure affected the antioxidant pattern of the tissue.  相似文献   

15.
Mitochondrial redox control of matrix metalloproteinases   总被引:9,自引:0,他引:9  
Reactive oxygen species (ROS) are constantly generated in aerobic organisms during normal metabolism and in response to both internal and external stimuli. Imbalances in the production and removal of ROS have been hypothesized to play a causative role in numerous disease pathologies such as cancer, ischemia/reperfusion injury, and degenerative diseases such as photoaging, atherosclerosis, arthritis, and neurodegeneration. A feature often associated with these diseases is a malfunctioning of the connective tissue remodeling process due to increased activity of extracellular matrix-degrading metalloproteinases (MMPs). This review summarizes the evidence that implicates ROS as key regulators of MMP production and the importance of these interactions in disease pathologies.  相似文献   

16.

Background  

During infections, polymorphonuclear neutrophilic granulocytes (PMN) are mobilized from their bone marrow stores, travel with blood to the affected tissue, and kill invading microbes there. The signal(s) from the inflammatory site to the marrow are unknown, even though a number of humoral factors that can mobilize PMN, are well known. We have employed a standardized, non-infectious human model to elucidate relevant PMN mobilizers. Well-trained athletes performed a 60-min strenuous strength workout of leg muscles. Blood samples were drawn before, during and just after exercise, and then repeatedly during the following day. Cortisol, GH, ACTH, complement factors, high-sensitive CRP (muCRP), IL-6, G-CSF, IL-8 (CXCL8) and MIP-1β (CCL4) were measured in blood samples. PMN chemotaxins in test plasma was assessed with a micropore membrane technique.  相似文献   

17.
Summary Neutral proteases can be released from PMN neutrophils in blood smears from healthy subjects by incubation with NaCl-borate buffer. The activity of the PMN proteases can be revealed by the degradation of erythrocytes and plasma within ring-shaped areas centered around each neutrophil (halo effect). During the acute stage of various inflammatory diseases (pneumonia, meningitis, cholecystitis, etc.) the activity of neutral PMN proteases is substantially reduced, as reflected by reduced halo formation. After recovery, halo formation returns to normal. Temporary lowering of neutral PMN proteases is thus one of a series of functional defects of PMN neutrophils which are detectable in the course of acute infectious diseases. These include reduced phagocytosis, altered chemotaxis and reduced bactericidal function. The cytochemical test for neutrophilic granulocyte function used in the present investigation is especially practical by comparison with the other techniques: it saves time and is simple to perform.Dedicated to Prof. W. Graumann on the occasion of his 65th birthday  相似文献   

18.
Reactive oxygen species (ROS) have been implicated in the progression of inflammatory diseases including inflammatory bowel diseases (IBD). Meanwhile, several studies suggested the protective role of ROS in immune-mediated inflammatory diseases, and it was recently reported that dextran sodium sulfate (DSS)-induced colitis was attenuated in mice with an elevated level of ROS due to deficiency of peroxiredoxin II. Regulatory T cells (Tregs) are critical in the prevention of IBD and Treg function was reported to be closely associated with ROS level, but it has been investigated only in lowered levels of ROS so far. In the present study, in order to clarify the relationship between ROS level and Treg function, and their role in the pathogenesis of IBD, we investigated mice with an elevated level of ROS due to deficiency of both glutathione peroxidase (GPx)-1 and catalase (Cat) for the susceptibility of DSS-induced colitis in association with Treg function. The results showed that DSS-induced colitis was attenuated and Tregs were hyperfunctional in GPx1−/− × Cat−/− mice. In vivo administration of N-acetylcysteine (NAC) aggravated DSS-induced colitis and decreased Treg function to the level comparable to WT mice. Attenuated Th17 cell differentiation from naïve CD4+ cells as well as impaired production of IL-6 and IL-17A by splenocytes upon stimulation suggested anti-inflammatory tendency of GPx1−/− × Cat−/− mice. Suppression of Stat3 activation in association with enhancement of indoleamine 2,3-dioxygenase and FoxP3 expression might be involved in the immunosuppressive mechanism of GPx1−/− × Cat−/− mice. Taken together, it is implied that ROS level is critical in the regulation of Treg function, and IBD may be attenuated in appropriately elevated levels of ROS.  相似文献   

19.
The cysteine protease inhibitor cystatin C is thought to be secreted by most cells and eliminated in the kidneys, so its concentration in plasma is diagnostic of kidney function. Low extracellular cystatin C is linked to pathologic protease activity in cancer, arthritis, atherosclerosis, aortic aneurism, and emphysema. Cystatin C forms non-inhibitory dimers and aggregates by a mechanism known as domain swapping, a property that reportedly protects against Alzheimer disease but can also cause amyloid angiopathy. Despite these clinical associations, little is known about the regulation of cystatin C production, dimerization, and secretion. We show that hematopoietic cells are major contributors to extracellular cystatin C levels in healthy mice. Among these cells, macrophages and dendritic cells (DC) are the predominant producers of cystatin C. Both cell types synthesize monomeric and dimeric cystatin C in vivo, but only secrete monomer. Dimerization occurs co-translationally in the endoplasmic reticulum and is regulated by the levels of reactive oxygen species (ROS) derived from mitochondria. Drugs or stimuli that reduce the intracellular concentration of ROS inhibit cystatin C dimerization. The extracellular concentration of inhibitory cystatin C is thus partly dependent on the abundance of macrophages and DC, and the ROS levels. These results have implications for the diagnostic use of serum cystatin C as a marker of kidney function during inflammatory processes that induce changes in DC or macrophage abundance. They also suggest an important role for macrophages, DC, and ROS in diseases associated with the protease inhibitory activity or amyloidogenic properties of cystatin C.  相似文献   

20.
The role of polymorphonuclear neutrophils (PMN) in mediating diabetic tissue damage to the periodontium was investigated in a novel model of chronic hyperglycemia, the Akita mouse. Induction of acute peritoneal inflammation in wild-type (WT) and Akita mice resulted in exaggerated IL-6 response in Akita mice (2.9-fold increase over WT values) and a markedly increased chemokine response (KC, 2.6-fold; MCP-1, 2.6-fold; and MIP-1alpha, 4.4-fold increase over WT values). Chemotaxis to both fMLP and WKYMVm was significantly reduced in isolated Akita PMN compared with WT PMN as measured in a Boyden chamber. Superoxide release in contrast was significantly increased in Akita PMN as measured with cytochrome c reduction. Bone marrow-derived Akita PMN showed partial translocation of p47phox to the cell membrane without external stimulation, suggesting premature assembly of the superoxide-producing NADPH oxidase in hyperglycemia. In vivo studies revealed that ligature-induced periodontal bone loss is significantly greater in Akita mice compared with WT. Moreover, intravital microscopy of gingival vessels showed that leukocyte rolling and attachment to the vascular endothelium is enhanced in periodontal vessels of Akita mice. These results indicate that chronic hyperglycemia predisposes to exaggerated inflammatory response and primes leukocytes for marginalization and superoxide production but not for transmigration. Thus, leukocyte defects in hyperglycemia may contribute to periodontal tissue damage by impairing the innate immune response to periodontal pathogens as well as by increasing free radical load in the gingival microvasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号