首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Zhang J  Mao Z  Xue W  Li Y  Tang G  Wang A  Zhang Y  Wang H 《Current microbiology》2011,62(4):1342-1346
In this study, the ku70 and ku80 homologs from the Aspergillus niger genome were identified and their function was analyzed using targeted mutagenesis. The role of the ku80 gene in non-homologous end-joining (NHEJ) was investigated by calculating the frequency of homologous recombination. The transformation test verified that the frequency of homologous recombination significantly increased, from 1.78 to 65.6% in ku80 single deletion strains and to 100% in ku70/ku80 double deletion strains. These results suggest that the ku80 gene is important for non-homologous end-joining. Although the morphology of the ku deletion strains colonies was similar to that of the wildtype strain, mutants were more sensitive to the mutagen phleomycin. Furthermore, the purified ku80 deletion strain produced some sectored colonies on hygromycin B-containing plates. This result suggests that the ku80 gene deletion leads to genomic instability in A. niger.  相似文献   

2.
In Penicillium chrysogenum, the industrial producer of the β-lactam antibiotic penicillin, generating gene replacements for functional analyses is very inefficient. Here, we constructed a recipient strain that allows efficient disruption of any target gene via homologous recombination. Following isolation of the Pcku70 (syn. hdfA) gene encoding a conserved eukaryotic DNA-binding protein involved in non-homologous end joining (NHEJ), a Pcku70 knockout strain was constructed using a novel nourseothricin-resistance cassette as selectable marker. In detailed physiological tests, strain ΔPcku70 showed no significant reduction in vegetative growth due to increased sensitivity to different mutagenic substances. Importantly, deletion of the Pcku70 gene had no effect on penicillin biosynthesis. However, strain ΔPcku70 exhibits higher sensitivity to osmotic stress than the parent strain. This correlated well with comparative data from microarray analyses: Genes related to the stress response are significantly up-regulated in the Pcku70 deletion mutant. To demonstrate the applicability of strain ΔPcku70, three genes related to β-lactam antibiotic biosynthesis were efficiently disrupted, indicating that this strain shows a low frequency of NHEJ, thus promoting efficient homologous recombination. Furthermore, we discuss strategies to reactivate Pcku70 in strains successfully used for gene disruptions.  相似文献   

3.
4.
5.
黑曲霉(Aspergillus niger)是一种重要的工业生产菌株,被广泛地应用于生产酶制剂和有机酸,但仍需要进行基因组改造提高它的应用潜力。CRISPR/Cas9技术是一种被广泛采用的黑曲霉基因组编辑技术,但由于需要在基因组中整合选择标记或基因编辑效率还有待提高,影响了其在工业菌株改造中的应用。本研究建立了一种基于CRISPR/Cas9技术的高效无选择标记的基因编辑方法。首先,利用5S rRNA启动子启动sgRNA的表达,构建了一个含有AMA1(autonomously maintained in Aspergillus)复制起始片段的sgRNA和Cas9共表达质粒;同时通过敲除kusA基因构建非同源末端连接(non-homologous end joining pathway,NHEJ)修复缺陷的高效同源重组菌株;最后利用含有AMA1片段质粒的不稳定性,通过无抗平板传代丢失含有sgRNA和Cas9共表达质粒。利用该方法,在采用同源臂长度仅为20bp的无选择标记供体DNA进行基因编辑时,基因编辑效率可达到100%。该方法为黑曲霉基因功能的研究和细胞工厂的构建奠定了基础。  相似文献   

6.
With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which had previously been identified by using genome-scale stoichiometric metabolic model simulations. The acl gene was deleted using the bipartite gene-targeting method, and the mutant was characterized in batch cultivation. It was found that the succinic acid yield was increased threefold by deleting the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger.  相似文献   

7.
The efficiency of gene targeting by integration through homologous recombination (homologous integration, HI) in the human pathogen Cryptococcus neoformans remains unsatisfactory. In order to achieve a much more efficient gene targeting system in C. neoformans, a new double knockout strain in genes involved in the non-homologous end joining (NHEJ) pathway was constructed. HI frequency was elevated by as much as approximately fivefold in the single or double knockout strains in NHEJ genes, and the frequency depended on the gene targeted. None of the NHEJ gene knockouts showed significant differences in regular growth, sensitivity to DNA-damaging drugs or UV, and virulence compared to the wild-type control, suggesting that the NHEJ pathway does not play a significant role in these biological stresses in C. neoformans. It was also suggested that the genes analyzed in this study are components of a single NHEJ pathway, as the mutants (including the double mutant) displayed the same phenotypes.  相似文献   

8.
Endoplasmic reticulum associated degradation (ERAD) is a conserved mechanism to remove misfolded proteins from the ER by targeting them to the proteasome for degradation. To assess the role of ERAD in filamentous fungi, we have examined the consequences of disrupting putative ERAD components in the filamentous fungus Aspergillus niger. Deletion of derA, doaA, hrdC, mifA, or mnsA in A. niger yields viable strains, and with the exception of doaA, no significant growth phenotype is observed when compared to the parental strain. The gene deletion mutants were also made in A. niger strains containing single- or multicopies of a glucoamylase–glucuronidase (GlaGus) gene fusion. The induction of the unfolded protein response (UPR) target genes (bipA and pdiA) was dependent on the copy number of the heterologous gene and the ERAD gene deleted. The highest induction of UPR target genes was observed in ERAD mutants containing multiple copies of the GlaGus gene. Western blot analysis revealed that deletion of the derA gene in the multicopy GlaGus overexpressing strain resulted in a 6-fold increase in the intracellular amount of GlaGus protein detected. Our results suggest that impairing some components of the ERAD pathway in combination with high expression levels of the heterologous protein results in higher intracellular protein levels, indicating a delay in protein degradation.  相似文献   

9.
《Fungal biology》2014,118(9-10):846-854
Inactivating the non-homologous end joining (NHEJ) pathway is a well established method to increase gene replacement frequency (GRF) in filamentous fungi because NHEJ is predominant for the repair of DNA double strand breaks (DSBs), while gene targeting is based on homologous recombination (HR). DNA ligase IV, a component of the NHEJ system, is strictly required for the NHEJ in Saccharomyces cerevisiae and Neurospora crassa. To enhance the GRF in Monascus ruber M7, we deleted the Mrlig4 gene encoding a homolog of N. crassa DNA ligase IV. The obtained mutant (MrΔlig4) showed no apparent defects in vegetative growth, colony phenotype, microscopic morphology, spore yield, and production of Monascus pigments and citrinin compared with the wild-type strain (M. ruber M7). Gene targeting of ku70 and triA genes revealed that GRF in the MrΔlig4 strain increased four-fold compared with that in the wild-type strain, reached 68 % and 85 %, respectively. Thus, the MrΔlig4 strain is a promising host for efficient genetic manipulation. In addition, the MrΔlig4 strain is more sensitive than M. ruber M7 to a DNA-damaging agent, methyl methanesulfonate.  相似文献   

10.
The list of fungal species with known complete genome and/or expressed sequence tag collections is extending rapidly during the last couple of years. Postgenomic gene function assignment is an obvious follow-up and depends on methodologies to test gene function in vivo. One of such methods is the generation of null mutants via homologous recombination at the wild–type loci by using inactivation cassettes. In this paper, the ability of Agrobacterium tumefaciens to genetically transform filamentous fungi was exploited to drive homologous recombination at the trp1 locus of the enthomopathogenic fungus Metarhizium anisopliae. The trp1 disruptants exhibited a clearly distinguishable phenotype from wild-type cells and were recovered with high efficiency of homologous recombination (22%). The complementation of such mutants with the wild-type gene generates only transformants with homologous integration.  相似文献   

11.
12.
Summary Aspergillus niger mutants defective in arginine or proline biosynthesis have been isolated and 12 genetic loci were identified. Mutation was induced by low doses UV, and mutants were isolated after filtration enrichment. The mutants were classified according to their phenotype in growth tests and were further characterized in complementation tests. The arginine auxotrophic mutants represent nine complementation groups. Three additional complementation groups were found for mutants that could grow on proline (two of them on arginine too). Linkage group analysis was done in somatic diploids obtained from a mutant and a master strain with genetic markers on six chromosomes. Thearg genes belong to six different linkage groups and thepro genes to two. Onearg-mutant could be complemented by transformation with theA. nidulans arg B + gene, and thisA. niger gene thus appeared to be homologous to theA. nidulans arg B. We isolated anA. niger strain with theargB gene tightly linked with thenicA1 marker. This strain is very suitable as acceptor for transformation with anargB-plasmid, because transformants with inserts on the homologous site can be recognized and analyzed genetically using thenicA1 marker gene.  相似文献   

13.
Filamentous fungi from the marine environment have shown great potential as cell factories for the production of pharmacologically active metabolites, but extremely low frequency of homologous recombination brings difficulty to further molecular biology studies. To bypass this problem and develop a highly efficient gene targeting system in marine-derived filamentous fungus Aspergillus glaucus, LigD, a homolog of Neurospora crassa Mus-53 which is considered to play a significant role in nonhomologous end joining (NHEJ), was coloned and deleted, and frequency of targeted gene replacement (TGR) increased dramatically from <2% to 85% in comparison with that in the wild type, when containing 1000 bp of homologous flanking sequence. Such results strongly indicate that AgLigD is indeed involved in the repair of NHEJ in A. glaucus and functions in this pathway. Furthermore, the AgLigD-defective mutant has no discernible differences with wild type regarding sensitivity to mutagens and UV, growth characteristics and transformation frequency. The AgligD-deficient transformant, as the first NHEJ-defective mutant in the field of marine-derived filamentous fungus, will help in expediting studies of molecular biology of marine-derived microorganisms.  相似文献   

14.
Although filamentous fungi have a unique property of secreting a large amount of homologous extracellular proteins, the use of filamentous fungi as hosts for the production of heterologous proteins is limited because of the low production levels that are generally reached. Here, we report a general screening method for the isolation of mutants with increased protein production levels. The screening method makes use of an Aspergillus niger strain that lacks the two major amylolytic enzymes, glucoamylase (GlaA) and acid amylase (AamA). The double-mutant strain grows poorly on starch and its growth is restored after reintroducing the catalytic part of the glucoamylase gene (GlaA512). We show that the fusion of a heterologous protein, a laccase from Pleurotus ostreatus (Pox2), to the catalytic part of glucoamylase (GlaA512–Pox2) severely hampers efficient production of the glucoamylase protein, resulting in a slow-growth phenotype on starch. Laccase-hypersecreting mutants were obtained by isolating mutants that displayed improved growth on starch plates. The mutant with the highest growth rate on starch displayed the highest laccase activity, indicating that increased glucoamylase protein levels are correlated with higher laccase production levels. In principle, our method can be applied to any low-produced heterologous protein that is secreted as a fusion with the glucoamylase protein.  相似文献   

15.
Gene targeting is a technique of introducing a genetic trait at a predetermined site within a genome; it is also used to eliminate undesirable chromosomal regions from the relevant genome. Thus far, replacement-type recombination between two homologous regions separated by a large nonhomologous sequence has been hardly achieved probably due to the low frequency of homologous recombination in filamentous fungi. In this study, we report the successful and highly efficient deletion by replacement-type recombination of up to 470-kb regions of chromosome 8 and 200-kb region in chromosome 3, which includes a homologue of aflatoxin gene cluster, by nonhomologous end-joining deficient strains of Aspergillus oryzae. Our study results indicate that the deficiency of nonhomologous end-joining increases the distance of nonhomologous regions in replacement-type recombination, i.e., the possible deletion range in generation of large chromosomal deletion by one cycle of replacement-type recombination is increased in nonhomologous end-joining deficient strains.  相似文献   

16.
Targeted gene disruption experiments in Trichophyton mentagrophytes are impeded by the dominant of repair of DNA double strand breaks through a nonhomologous end joining pathway (NHEJ). Inactivation of human DNA ligase IV homologs, which is involved in the final step of the NHEJ pathway, has been shown to enhance homologous recombination (HR) frequency in filamentous fungi. To improve the frequency of HR in T. mentagrophytes, the lig4 homolog (TmLIG4) was disrupted. T. mentagrophytes lacking TmLIG4 showed no discernable phenotypic differences when compared to wild-type controls. Both mutant and parent strains had almost identical growth ability, sporulation rate and sensitivity to DNA damaging agents. When four different loci were disrupted in the TMLIG4-deficient mutant, HR frequencies reached as high as 93% depending on the locus, whereas they ranged from 0%-40% in the wild-type. These results suggest that studies in strains lacking TmLIG4 would help to improve our understanding of dermatophytosis by facilitating the genetic manipulation of dermatophytes.  相似文献   

17.
The filamentous fungus Penicillium paxilli contains two distinct geranylgeranyl diphosphate (GGPP) synthases, GgsA and GgsB (PaxG). PaxG and its homologues in Neotyphodium lolii and Fusarium fujikuroi are associated with diterpene secondary metabolite gene clusters. The genomes of other filamentous fungi including Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae and Fusarium graminearum also contain two or more copies of GGPP synthase genes, although the diterpene metabolite capability of these fungi is not known. The objective of this study was to understand the biological significance of the presence of two copies of GGPP synthases in P. paxilli by investigating their subcellular localization. Using a carotenoid complementation assay and gene deletion analysis, we show that P. paxilli GgsA and PaxG have GGPP synthase activities and that paxG is required for paxilline biosynthesis, respectively. In the ΔpaxG mutant background ggsA was unable to complement paxilline biosynthesis. A GgsA-EGFP fusion protein was localized to punctuate organelles and the EGFP-GRV fusion protein, containing the C-terminus tripeptide GRV of PaxG, was localized to peroxisomes. A truncated PaxG mutant lacking the C-terminus tripeptide GRV was unable to complement a ΔpaxG mutant demonstrating that the tripeptide is functionally important for paxilline biosynthesis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Penicillium marneffei is an opportunistic pathogen of humans and displays a temperature dependent dimorphic transition. Like many fungi, exogenous DNA introduced by DNA mediated transformation is integrated randomly into the genome resulting in inefficient gene deletion and position-specific effects. To enhance successful gene targeting, the consequences of perturbing components of the non-homologous end joining recombination pathway have been examined. The deletion of the KU70 and LIG4 orthologs, pkuA and ligD, respectively, dramatically enhanced the observed homologous recombination frequency leading to efficient gene deletion. While ΔpkuA was associated with reduced genetic stability over-time, ΔligD represents a suitable recipient strain for downstream applications and combined with a modified Gateway? system for the rapid generation of gene deletion constructs, this represents an efficient pipeline for characterizing gene function in P. marneffei.  相似文献   

19.
Low efficiencies of gene targeting hamper functional genomics in industrially important strains of Aspergillus niger. To generate strains showing high gene-targeting frequencies in A. niger WU-2223L producing citric acid, disruption of kueA encoding Ku80 homolog was performed. Disruption of kueA increased gene-targeting frequencies to 70%, and had no effect on citric acid production.  相似文献   

20.
Summary The recA gene of Azotobacter vinelandii was isolated from a genomic library by heterologous complementation of an Escherichia coli recA mutation for resistance to UV radiation. The A. vinelandii recA gene was localized on adjacent PstI fragments of 1.3 and 1.7 kb. The cloned A. vinelandii recA gene was functionally analogous to the E. coli recA gene. It was also able to complement the E. coli recA mutation for homologous recombination. A recA deletion mutant of A. vinelandii was constructed. This mutant was sensitive to DNA-damaging agents like UV rays, methyl methane sulfonate (MMS) and nalidixic acid and was deficient in homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号