首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fate of naive CD8(+) T cells is determined by the environment in which they encounter MHC class I presented peptide Ags. The manner in which tumor Ags are presented is a longstanding matter of debate. Ag presentation might be mediated by tumor cells in tumor draining lymph nodes or via cross-presentation by professional APC. Either pathway is insufficient to elicit protective antitumor immunity. We now demonstrate using a syngeneic mouse tumor model, expressing an Ag derived from the early region 1A of human adenovirus type 5, that the inadequate nature of the antitumor CTL response is not due to direct Ag presentation by the tumor cells, but results from presentation of tumor-derived Ag by nonactivated CD11c(+) APC. Although this event results in division of naive CTL in tumor draining lymph nodes, it does not establish a productive immune response. Treatment of tumor-bearing mice with dendritic cell-stimulating agonistic anti-CD40 mAb resulted in systemic efflux of CTL with robust effector function capable to eradicate established tumors. For efficacy of anti-CD40 treatment, CD40 ligation of host APC is required because adoptive transfer of CD40-proficient tumor-specific TCR transgenic CTL into CD40-deficient tumor-bearing mice did not lead to productive antitumor immunity after CD40 triggering in vivo. CpG and detoxified LPS (MPL) acted similarly as agonistic anti-CD40 mAb with respect to CD8(+) CTL efflux and tumor eradication. Together these results indicate that dendritic cells, depending on their activation state, orchestrate the outcome of CTL-mediated immunity against tumors, leading either to an ineffective immune response or potent antitumor immunity.  相似文献   

2.
The unique ether glycerolipids of ARCHAEA: can be formulated into vesicles (archaeosomes) with strong adjuvant activity for MHC class II presentation. Herein, we assess the ability of archaeosomes to facilitate MHC class I presentation of entrapped protein Ag. Immunization of mice with OVA entrapped in archaeosomes resulted in a potent Ag-specific CD8(+) T cell response, as measured by IFN-gamma production and cytolytic activity toward the immunodominant CTL epitope OVA(257-264). In contrast, administration of OVA with aluminum hydroxide or entrapped in conventional ester-phospholipid liposomes failed to evoke significant CTL response. The archaeosome-mediated CD8(+) T cell response was primarily perforin dependent because CTL activity was undetectable in perforin-deficient mice. Interestingly, a long-term CTL response was generated with a low Ag dose even in CD4(+) T cell deficient mice, indicating that the archaeosomes could mediate a potent T helper cell-independent CD8(+) T cell response. Macrophages incubated in vitro with OVA archaeosomes strongly stimulated cytokine production by OVA-specific CD8(+) T cells, indicating that archaeosomes efficiently delivered entrapped protein for MHC class I presentation. This processing of Ag was Brefeldin A sensitive, suggesting that the peptides were transported through the endoplasmic reticulum and presented by the cytosolic MHC class I pathway. Finally, archaeosomes induced a potent memory CTL response to OVA even 154 days after immunization. This correlated to strong Ag-specific up-regulation of CD44 on splenic CD8(+) T cells. Thus, delivery of proteins in self-adjuvanting archaeosomes represents a novel strategy for targeting exogenous Ags to the MHC class I pathway for induction of CTL response.  相似文献   

3.
Ags administered orally at a high dose are absorbed in immunogenic forms and perfuse the liver, which raises a question regarding the relevance of hepatic lymphocyte activation to the systemic hyporesponsiveness against the ingested Ag. Oral administration of 100 mg of OVA to the mice led to massive cell death of OVA-specific (KJ1-26+)CD4+ T cells by Fas-Fas ligand (FasL)-mediated apoptosis in the liver, which was associated with the emergence of hepatic KJ1-26+CD4+ T cells expressing FasL. Hepatic CD4+ T cells in OVA-fed mice secreted large amounts of IL-4, IL-10, and TGF-beta(1) upon restimulation in vitro and inhibited T cell proliferation. Adoptive transfer of these hepatic CD4+ T cells to naive mice and subsequent antigenic challenge led to suppression of T cell proliferation as well as IgG Ab responses to OVA; this effect was mostly abrogated by a blocking Ab to FasL. i.p. administration of an Ag at a high dose also generated hepatic CD4+FasL+ T cells with similar cytokine profile as T cells activated by oral administration of Ags at a high dose. Finally, we did not see an increase in FasL+ cells in the hepatic CD4+Vbeta8+ T cell subset of MRL/lpr/lpr mice given staphylococcal enterotoxin B, indicating the requirement for Fas-mediated signals. These hepatic CD4+FasL+ regulatory cells may explain the tolerogenic property of the liver and play roles in systemic hyporesponsiveness induced by an Ag administered at a high dose.  相似文献   

4.
Professional APC play a central role in generating antiviral CD8(+) CTL immunity. However, the fate of such APC following interaction with these same CTL remains poorly understood. We have shown previously that prolonged Ag presentation persists in the presence of a strong CTL response following HSV infection. In this study, we examined the mechanism of survival of APC in vivo when presenting an immunodominant determinant from HSV. We show that transferred peptide-labeled dendritic cells were eliminated from draining lymph nodes in the presence of HSV-specific CTL. Maturation of dendritic cells with LPS or anti-CD40 before injection protected against CTL lysis in vivo. Furthermore, endogenous APC could be eliminated from draining lymph nodes early after HSV infection by adoptive transfer of HSV-specific CTL, yet the cotransfer of significant virus-specific CD4(+) T cell help promoted prolonged Ag presentation. This suggests that Th cells may assist in prolonging class I-restricted Ag presentation, potentially enhancing CTL recruitment and allowing more efficient T cell priming.  相似文献   

5.
Neoantigens resulting from the inherent genomic instability of tumor cells generally do not trigger immune recognition. Similarly, transfection of tumors with model Ags often fails to elicit CD8+ T cell responses or alter a tumor's growth rate or lethality. We report here that the adoptive transfer of activated Th1-type CD4+ T cells specific for a model tumor Ag results in the de novo generation of CD8+ T cells with specificity to that Ag and concomitant tumor destruction. The anti-tumor effects of the CD4+ T cells required the presence of both MHC class I and class II on host cells, as evidenced by experiments in knockout mice, suggesting that CD4+ T cells enhanced the ability of host APC to activate endogenous CD8+ T cells. These results indicate that the apparent inability of tumor cells expressing highly immunogenic epitopes to activate tumor-specific CD8+ T cells can be altered by activated CD4+ T cells.  相似文献   

6.
Chronic innocuous aeroallergen exposure attenuates CD4(+) T cell-mediated airways hyperresponsiveness in mice; however, the mechanism(s) remain unclear. We examined the role of airway mucosal dendritic cell (AMDC) subsets in this process using a multi-OVA aerosol-induced tolerance model in sensitized BALB/c mice. Aeroallergen capture by both CD11b(lo) and CD11b(hi) AMDC and the delivery of OVA to airway draining lymph nodes by CD8α(-) migratory dendritic cells (DC) were decreased in vivo (but not in vitro) when compared with sensitized but nontolerant mice. This was functionally significant, because in vivo proliferation of OVA-specific CD4(+) T cells was suppressed in airway draining lymph nodes of tolerized mice and could be restored by intranasal transfer of OVA-pulsed and activated exogenous DC, indicating a deficiency in Ag presentation by endogenous DC arriving from the airway mucosa. Bone marrow-derived DC Ag-presenting function was suppressed in multi-OVA tolerized mice, and allergen availability to airway APC populations was limited after multi-OVA exposure, as indicated by reduced OVA and dextran uptake by airway interstitial macrophages, with diffusion rather than localization of OVA across the airway mucosal surface. These data indicate that inhalation tolerance limits aeroallergen capture by AMDC subsets through a mechanism of bone marrow suppression of DC precursor function coupled with reduced Ag availability in vivo at the airway mucosa, resulting in limited Ag delivery to lymph nodes and hypoproliferation of allergen-specific CD4(+) T cells.  相似文献   

7.
Dendritic cells (DCs) require a maturation signal to acquire efficient CTL-priming capacity. In vitro FcgammaR-mediated internalization of Ag-Ab immune complexes (ICs) can induce maturation of DCs. In this study, we show that IC-induced DC maturation in vitro enables DCs to prime peptide-specific CD8+ CTLs in vivo, independently of CD4+ Th cells. Importantly, OVA/anti-OVA IC-treated DCs not only primed CD8+ CTLs to an exogenously loaded peptide nonrelated to OVA, but also efficiently primed CTLs against the dominant CTL epitope derived from the OVA Ag present in the ICs. Our studies show that ICs fulfill a dual role in priming of CD8+ CTL responses to exogenous Ags: enhancement of Ag uptake by DCs and activation of DCs, resulting in "license to kill." These findings indicate that the presence of specific Abs can crucially affect the induction of cytotoxic cellular responses.  相似文献   

8.
MHC class I-mediated cross-priming of CD8 T cells by APCs is critical for CTL-based immunity to viral infections and tumors. We have shown previously that tumor-secreted heat shock protein gp96-chaperoned peptides cross prime CD8 CTL that are specific for genuine tumor Ags and for the surrogate Ag OVA. We now show that tumor-secreted heat shock protein gp96-chaperoned peptides enhance the efficiency of Ag cross-priming of CD8 CTL by several million-fold over the cross-priming activity of unchaperoned protein alone. Gp96 also acts as adjuvant for cross-priming by unchaperoned proteins, but in this capacity gp96 is 1000-fold less active than as a peptide chaperone. Mechanistically, the in situ secretion of gp96-Ig by transfected tumor cells recruits and activates dendritic cells and NK cells to the site of gp96 release and promotes CD8 CTL expansion locally. Gp96-mediated cross-priming of CD8 T cells requires B7.1/2 costimulation but proceeds unimpeded in lymph node-deficient mice, in the absence of NKT and CD4 cells and without CD40L. Gp96-driven MHC I cross-priming of CD8 CTL in the absence of lymph nodes provides a novel mechanism for local, tissue-based CTL generation at the site of gp96 release. This pathway may constitute a critically important, early detection, and rapid response mechanism that is operative in parenchymal tissues for effective defense against tissue damaging antigenic agents.  相似文献   

9.
Processing of exogenous protein Ags by APC leads predominantly to presentation of peptides on class II MHC and, thus, stimulation of CD4+ T cell responses. However, "cross-priming" can also occur, whereby peptides derived from exogenous Ags become displayed on class I MHC molecules and stimulate CD8+ T cell responses. We compared the efficiency of cross-priming with exogenous proteins to use of peptide Ags in human whole blood using a flow cytometry assay to detect T cell intracellular cytokine production. CD8+ T cell responses to whole CMV proteins were poorly detected (compared with peptide responses) in most CMV-seropositive donors. Such responses could be increased by using higher doses of Ag than were required to achieve maximal CD4+ T cell responses. A minority of donors displayed significantly more efficient CD8+ T cell responses to whole protein, even at low Ag doses. These responses were MHC class I-restricted and dependent upon proteosomal processing, indicating that they were indeed due to cross-priming. The ability to efficiently cross-prime was not a function of the number of dendritic cells in the donor's blood. Neither supplementation of freshly isolated dendritic cells nor use of cultured, Ag-pulsed dendritic cells could significantly boost CD8 responses to whole-protein Ags in poorly cross-priming donors. Interestingly, freshly isolated monocytes performed almost as well as dendritic cells in inducing CD8 responses via cross-priming. In conclusion, the efficiency of cross-priming appears to be poor in most donors and is dependent upon properties of the individual's APC and/or T cell repertoire. It remains unknown whether cross-priming ability translates into any clinical advantage in ability to induce CD8+ T cell responses to foreign Ags.  相似文献   

10.
We have previously demonstrated that liposomes with differential lipid components display differential adjuvant effects when Ags are chemically coupled to their surfaces. In the present study, Ag presentation of liposome-coupled OVA was investigated in vitro, and it was found that OVA coupled to liposomes made using unsaturated fatty acid was presented to both CD4+ and CD8+ T cells, whereas OVA coupled to liposomes made using saturated fatty acid was presented only to CD4+ T cells. Confocal laser scanning microscopic analysis demonstrated that a portion of the OVA coupled to liposomes made using unsaturated, but not saturated fatty acid, received processing beyond the MHC class II compartment, suggesting that the degradation of OVA might occur in the cytosol, and that the peptides generated in this manner would be presented to CD8+ T cells via MHC class I. The ability to induce cross-presentation of an Ag coupled to liposomes consisting of unsaturated fatty acid was further confirmed by in vivo induction of CTL and by the induction of tumor eradication in mice; E.G7 tumors in mice that received combined inoculation with OVA(257-264)-liposome conjugates, CpG, and anti-IL-10 mAbs were completely eradicated. In those mice, the frequency of CD8+ T cells reactive with OVA(257-264) peptides in the context of H-2K(b) was significantly increased. These results suggested that, by choosing lipid components for liposomes, surface-coupled liposomal Ags might be applicable for the development of tumor vaccines to present tumor Ags to APCs and induce antitumor responses.  相似文献   

11.
We previously reported that insulin-specific, MHC class I-restricted CTL precursors can be primed by injecting C57BL/6 mice with bovine insulin in CFA. These bovine insulin-primed CTL displayed a type 0 CTL phenotype, producing IL-4, IL-5, IL-10, low levels of IFN-gamma, but no TNF-alpha. By contrast, CTL generated from C57BL/6 mice primed with OVA in CFA produced IFN-gamma and TNF-alpha but no IL-4, IL-5, or IL-10 and therefore were classified as type 1 CTL. Although CD4+ T cell subsets have been compared extensively in the literature, CTL subsets are less well characterized. Here, the phenotype, function, and requirements for the in vivo activation of type 1 and type 0 CTL cells were studied. Although both types of CTL express many of the same cell-surface Ags, OVA-specific CTL but not bovine insulin-primed CTL expressed CT-1, a carbohydrate epitope of CD45, and bovine insulin-primed CTL but not OVA-specific CTL expressed Fas constitutively. Priming of CTL was abrogated by depletion of phagocytic cells but not CD4+ T cells, whereas depletion of CD4+ T cells but not phagocytic cells inhibited Ab responses in the same mice. Neither endogenous IL-4 nor the dose of priming Ag altered the CTL phenotypes, but the antigenic peptides of OVA and bovine insulin were key to determining the differentiation of either type 1 or type 0 CTL. To our knowledge, this is the first time that antigenic epitopes have been demonstrated to influence the phenotype of Ag-specific CTL responses. These results may be relevant to the development of peptide vaccines in which a particular type of CTL response is desired.  相似文献   

12.
The injection of soluble Ag into the anterior chamber (a.c.) of the eye induces systemic tolerance, termed a.c.-associated immune deviation (ACAID), characterized by Ag-specific inhibition of delayed-type hypersensitivity responses and a reduction in complement-fixing Abs. Recently, we have shown that CD8(+) CTL responses are also inhibited in ACAID. In this study, we have used an adoptive transfer approach to follow the fate of Ag-specific CD8(+) TCR transgenic (OT-I) T cells in vivo during the induction and expression of ACAID. C57BL/6 (B6) recipients of OT-I splenocytes that were injected with chicken OVA in the a.c. displayed reduced OVA-specific delayed-type hypersensitivity and CTL responses, compared with those of mice given OVA in the subconjunctiva or an irrelevant Ag human IgG in the a.c. OT-I T cells increased 9-fold in the submandibular lymph nodes and 3-fold in the spleen following an a.c. injection with OVA, indicating that expansion rather than deletion of Ag-specific CD8(+) T cells was induced by this treatment. OT-I T cells expanded equivalently upon administration of OVA in CFA to mice previously given OVA in the a.c. or subconjunctiva. However, the lytic activity attributed to OT-I T cells was reduced on a per-cell basis in mice previously given OVA in the a.c. We conclude that tolerance of CTL responses in mice given Ag via the a.c. results from unresponsiveness of Ag-specific CD8(+) T cells.  相似文献   

13.
Oral administration of Ag coupled to cholera toxin B subunit (CTB) efficiently induces peripheral immunological tolerance. We investigated the extent to which this oral tolerance is mediated by CD25+CD4+ regulatory T cells (T(reg)). We found that total T(reg), KJ1-26+ T(reg) and CTLA-4+ T(reg) were all increased in Peyer's patches, mesenteric lymph nodes, and, to a lesser extent, in spleen of mice after intragastric administration of OVA/CTB conjugate, which also increased TGF-beta in serum. This could be abolished by co-administering cholera toxin or by treatment with anti-TGF-beta mAb. CD25+ T(reg), but also CD25-CD4+ T cells from OVA/CTB-treated BALB/c or DO11.10 mice efficiently suppressed effector T cell proliferation and IL-2 production in vitro. Following adoptive transfer, both T cell populations also suppressed OVA-specific T cell and delayed-type hypersensitivity responses in vivo. Foxp3 was strongly expressed by CD25+ T(reg) from OVA/CTB-treated mice, and treatment also markedly expanded CD25+Foxp3+ T(reg). Furthermore, in Rag1(-/-) mice that had adoptively received highly purified Foxp3-CD25-CD4+ OT-II T cells OVA/CTB feeding efficiently induced CD25+ T(reg) cells, which expressed Foxp3 more strongly than naturally developing T(reg) and also had stronger ability to suppress effector OT-II T cell proliferation. A remaining CD25- T cell population, which also became suppressive in response to OVA/CTB treatment, did not express Foxp3. Our results demonstrate that oral tolerance induced by CTB-conjugated Ag is associated with increase in TGF-beta and in both the frequency and suppressive capacity of Foxp3+ and CTLA-4+ CD25+ T(reg) together with the generation of both Foxp3+ and Foxp3-CD25- CD4+ T(reg).  相似文献   

14.
CD8+ T cells down-regulate a variety of immune responses. For example, porcine and human insulin do not stimulate Abs in C57BL/6 mice because CD8+ T cells inhibit CD4+ helper T cells. By contrast, bovine insulin induces Ab in C57BL/6 mice, and removal of CD8+ T cells does not alter this response. This raises the question of whether porcine, but not bovine, insulin activates CD8+ T cells or whether both insulins activate CD8+ T cells but CD4+ helper T cells are differentially inhibited by them. In this study, we show that insulin-specific CD8+ CTL can be cultured from C57BL/6 mice primed with either bovine or human insulin in CFA. Thus, exogenous Ags, besides OVA, induce CD8+ CTL when administered in an adjuvant, suggesting this is a typical response. These CTL are H-2Kb restricted and produce IL-5, IL-10, IFN-gamma, and small amounts of IL-4, which is distinct from IFN-gamma and TNF-alpha that are typically secreted by virus-specific CTL. Moreover, the CTL primed with either bovine or human insulin recognize an A-chain peptide that is identical to the mouse insulin sequence. That foreign proteins, which are closely related to self-proteins, activated autoreactive, CD8+ T cells in vivo is a novel finding. It raises the possibility that self-reactive CTL may be activated by cross-reacting Ags and once activated they might participate in autoimmunity. These results also suggest that down-regulation of insulin-specific responses by autoreactive CD8+ T cells is most likely due to the differential sensitivity of bovine and human insulin-specific CD4+ T cells.  相似文献   

15.
Using the DO11.10 CD4+ TCR-transgenic mouse system, we have recently shown that CD8 blockade promotes the expansion of Ag-specific regulatory CD4+ T cells in mice made tolerant to OVA with anti-CD4 mAb. We now show that CD8 blockade is also critical to promoting responses to nontolerizing Ag in anti-CD4 mAb-treated tolerant mice. Previously published work shows that treatment with anti-CD4 mAb without CD8 blockade induces Ag-specific tolerance. We now show that, in addition to inducing tolerance, anti-CD4 mAb treatment also significantly reduces responsiveness to irrelevant, nontolerizing Ag, and this unresponsiveness is associated with significant apoptosis of the CD4+ T cells. Anti-CD4 mAb-induced apoptosis is inhibited by cotreatment with anti-CD8 mAb and responsiveness to irrelevant Ag is restored, while Ag-specific tolerance is maintained. These data suggest that CD8 blockade promotes responsiveness to nontolerizing Ags in tolerant mice by inhibiting CD4+ T cell apoptosis.  相似文献   

16.
In vivo priming of CD8(+) T lymphocytes against exogenously processed model Ags requires CD4(+) T cell help, specifically interactions between CD40 ligand (CD40L) expressed by activated CD4(+) T cells and CD40, which is present on professional APC such as dendritic cells (DCs). To address this issue in the context of bacterial infection, we examined CD40L-CD40 interactions in CD8(+) T cell priming against an exogenously processed, nonsecreted bacterial Ag. CD40L interactions were blocked by in vivo treatment with anti-CD40L mAb MR-1, which inhibited germinal center formation and CD8(+) T cell cross-priming against an exogenous model Ag, OVA. In contrast, MR-1 treatment did not interfere with CD8(+) T cell priming against a nonsecreted or secreted recombinant Ag expressed by Listeria monocytogenes. Memory and secondary responses of CD8(+) T cells against nonsecreted and secreted bacterial Ags were also largely unimpaired by transient MR-1 treatment. When MR-1-treated mice were concurrently immunized with L. monocytogenes and OVA-loaded splenocytes, cross-priming of OVA-specific naive CD8(+) T cells occurred. No significant decline in cross-priming against OVA was measured when either TNF or IFN-gamma was neutralized in L. monocytogenes-infected animals, demonstrating that multiple signals exist to overcome CD40L blockade of CD8(+) T cell cross-priming during bacterial infection. These data support a model in which DCs can be stimulated in vivo through signals other than CD40, becoming APC that can effectively stimulate CD8(+) T cell responses against exogenous Ags during infection.  相似文献   

17.
Controlling the cross-presentation of exogenous Ags to CD8+ T cells represents a major step for designing new vaccination strategies. Whereas several recombinant pseudo-viral particles have been used as delivery systems for triggering potent CTL responses to heterologous exogenous Ags, the adjuvant properties of virus-like particles (VLPs) themselves were little questioned. Here, we analyzed the contribution of the porcine parvovirus (PPV)-VLPs to the induction of protective cellular responses to exogenous Ags carried by an independent delivery system. Microspheres, which are known to transfer exogenous Ags into the MHC class I pathway, were chosen for delivering the immunodominant OVA(257-264) CD8+ T cell epitope (B-OVAp). This delivery system fulfills the requirements in terms of cross-presentation, but fails to induce cross-priming of specific CD8+ T cells. Coinjection of PPV-VLPs with B-OVAp results in the priming of potent CTL responses and type 1-biased immunity in a CD4- and CD40-independent manner, as efficiently as the recombinant PPV-VLPs carrying the same epitope (PPV-OVAp). Furthermore, vaccination with PPV-VLPs and B-OVAp was fully efficient to protect mice against the development of OVA-bearing melanoma. These findings indicate that PPV-VLPs act not only as a delivery system but also as a strong adjuvant when independently provided with exogenous Ag. Thus, dissociation between delivery system and adjuvant would provide a more flexible and reliable system to induce potent and protective CTL.  相似文献   

18.
To determine whether APC function or "arming" of CTL for lytic function are the points at which Ags from a nonimmunogenic tumor fail to induce an effective immune response, we established a murine tumor model that expressed intracellular OVA and selected a clone (cOVA-9) that remained susceptible to lysis by specific CD8(+) T cells throughout tumor growth. Viable cOVA-9 tumor cells grew in normal mice at a rate similar to the parental tumor, and vaccination with irradiated cOVA-9 cells did not induce protection against itself or the parental line, confirming its nonimmunogenic status. In vivo evaluation during tumor growth demonstrated persisting tumor Ag cross-presentation accompanied by the generation of potent, specific CTL which were detectable when tumors were barely palpable. Despite the presence of highly active CTL in the tumor-draining lymph nodes, there was no apparent lysis of tumor-associated APC. These data show that tumor-draining APC are not dysfunctional with regard to two crucial processes, in vivo tumor Ag cross-presentation and specific CTL arming, and that failure to prevent tumor growth is not in the induction phase, but in the effector phase and occurs within the tumor itself before the tumor matrix is established.  相似文献   

19.
We expressed the CTL epitope of OVA (OVA(257-264)) in an acute (Listeria monocytogenes (LM)-OVA) and a chronic intracellular pathogen (Mycobacterium bovis (BCG)-OVA), to evaluate the kinetics of Ag presentation. LM-OVA proliferated rapidly in vivo, resulting in profound LM-OVA expansion within the first 24 h of infection, culminating in the generation of a potent CD8+ T cell response, which peaked on day 7 but underwent a rapid attrition subsequently. In contrast, BCG-OVA exhibited reduced growth in vivo, resulting in a delayed CD8+ T cell response that increased progressively with time. Relative to LM-OVA, BCG-OVA induced persistently increased numbers of apoptotic (annexin V+) CD8+ T cells. Ag presentation in vivo was evaluated by transferring Thy1.2+ carboxyfluorescein-labeled OT1 transgenic CD8+ T cells into infected Thy1.1+ congeneic recipient mice. LM-OVA induced rapid Ag presentation that was profound in magnitude, with most of the transferred cells getting activated within 4 days and resulting in a massive accumulation of activated donor CD8+ T cells. In contrast, Ag presentation induced by BCG-OVA was delayed, weaker in magnitude, which peaked around the second week of infection and declined to a low level subsequently. Increasing the dose of BCG-OVA while enhancing the magnitude of Ag presentation did not change the kinetics. Furthermore, a higher dose of BCG-OVA also accelerated the attrition of OVA(257-264)-specific CD8+ T cells. Relative to LM-OVA, the dendritic cells in BCG-OVA-infected mice were apoptotic for prolonged periods, suggesting that the rapid death of APCs may limit the magnitude of Ag presentation during chronic stages of mycobacterial infection.  相似文献   

20.
UV radiation of the skin impairs immune responses to haptens and to tumor Ags. Transcutaneous immunization (TCI) is an effective method of inducing immune responses to protein and peptide Ag. We explore the effect of UV irradiation on TCI. The generation of Ag-specific CTL to OVA protein, but not class I MHC-restricted OVA peptide, is inhibited by TCI through UV-irradiated skin. Consequently, the induction of protein contact hypersensitivity and in vivo Ag-specific CTL activity following OVA protein immunization is prevented. Application of haptens to UV-exposed skin induces hapten-specific tolerance. We demonstrate that application of protein or class II MHC-restricted OVA peptide to UV-irradiated skin induces transferable Ag-specific tolerance. This tolerance is mediated by CD4(+)CD25(+) T regulatory (T(reg)) cells. These Ag-specific T(reg) cells inhibit the priming of CTL following protein immunization in the presence of CpG adjuvant. IL-10 deficiency is known to prevent hapten-specific tolerance induction. In this study, we demonstrate, using IL-10-deficient mice and adoptive T cell transfer, that IL-10 is required for the direct inhibition of CTL priming following immunization through UV-irradiated skin. However, IL-10 is not required for the induction of T(reg) cells through UV-irradiated skin as IL-10-deficient T(reg) cells are able to mediate tolerance. Rather, host-derived IL-10 is required for the function of UV-generated T(reg) cells. These experiments indicate that protein and peptide TCI through UV-irradiated skin may be used to induce robust Ag-specific tolerance to neo-Ags and that UV-induced T(reg) cells mediate their effects in part through the modulation of IL-10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号