首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and first invade the liver of the mammalian host, as an obligatory step of the life cycle of the malaria parasite. Within hepatocytes, Plasmodium sporozoites reside in a membrane-bound vacuole, where they differentiate into exoerythrocytic forms and merozoites that subsequently infect erythrocytes and cause the malaria disease. Plasmodium sporozoite targeting to the liver is mediated by the specific binding of major sporozoite surface proteins, the circumsporozoite protein and the thrombospondin-related anonymous protein, to glycosaminoglycans on the hepatocyte surface. Still, the molecular mechanisms underlying sporozoite entry and differentiation within hepatocytes are largely unknown. Here we show that the tetraspanin CD81, a putative receptor for hepatitis C virus, is required on hepatocytes for human Plasmodium falciparum and rodent Plasmodium yoelii sporozoite infectivity. P. yoelii sporozoites fail to infect CD81-deficient mouse hepatocytes, in vivo and in vitro, and antibodies against mouse and human CD81 inhibit in vitro the hepatic development of P. yoelii and P. falciparum, respectively. We further demonstrate that the requirement for CD81 is linked to sporozoite entry into hepatocytes by formation of a parasitophorous vacuole, which is essential for parasite differentiation into exoerythrocytic forms.  相似文献   

2.
Plasmodium sporozoites can enter host cells by two distinct pathways, either through disruption of the plasma membrane followed by parasite transmigration through cells, or by formation of a parasitophorous vacuole (PV) where the parasite further differentiates into a replicative exo-erythrocytic form (EEF). We now provide evidence that following invasion without PV formation, transmigrating Plasmodium falciparum and Plasmodium yoelii sporozoites can partially develop into EEFs inside hepatocarcinoma cell nuclei. We also found that rodent P. yoelii sporozoites can infect both mouse and human hepatocytes, while human P. falciparum sporozoites infect human but not mouse hepatocytes. We have previously reported that the host tetraspanin CD81 is required for PV formation by P. falciparum and P. yoelii sporozoites. Here we show that expression of human CD81 in CD81-knockout mouse hepatocytes is sufficient to confer susceptibility to P. yoelii but not P. falciparum sporozoite infection, showing that the narrow P. falciparum host tropism does not rely on CD81 only. Also, expression of CD81 in a human hepatocarcinoma cell line is sufficient to promote the formation of a PV by P. yoelii but not P. falciparum sporozoites. These results highlight critical differences between P. yoelii and P. falciparum sporozoite infection, and suggest that in addition to CD81, other molecules are specifically required for PV formation during infection by the human malaria parasite.  相似文献   

3.
4.
Invasion of hepatocytes by Plasmodium sporozoites is a prerequisite for establishment of a natural malaria infection. The molecular mechanisms underlying sporozoite invasion are largely unknown. We have previously reported that infection by Plasmodium falciparum and Plasmodium yoelii sporozoites depends on CD81 and cholesterol-dependent tetraspanin-enriched microdomains (TEMs) on the hepatocyte surface. Here we have analyzed the role of CD81 and TEMs during infection by sporozoites from the rodent parasite Plasmodium berghei. We found that depending on the host cell type, P. berghei sporozoites can use several distinct pathways for invasion. Infection of human HepG2, HuH7 and HeLa cells by P. berghei does not depend on CD81 or host membrane cholesterol, whereas both CD81 and cholesterol are required for infection of mouse hepatoma Hepa1-6 cells. In primary mouse hepatocytes, both CD81-dependent and -independent mechanisms participate in P. berghei infection and the relative contribution of the different pathways varies, depending on mouse genetic background. The existence of distinct invasion pathways may explain why P. berghei sporozoites are capable of infecting a wide range of host cell types in vitro. It could also provide a means for human parasites to escape immune responses and face polymorphisms of host receptors. This may have implications for the development of an anti-malarial vaccine targeting sporozoites.  相似文献   

5.
Malaria starts with the infection of the liver of the host by Plasmodium sporozoites, the parasite form transmitted by infected mosquitoes. Sporozoites migrate through several hepatocytes by breaching their plasma membranes before finally infecting one with the formation of an internalization vacuole. Migration through host cells induces apical regulated exocytosis in sporozoites. Here we show that apical regulated exocytosis is induced by increases in cAMP in sporozoites of rodent (P. yoelii and P. berghei) and human (P. falciparum) Plasmodium species. We have generated P. berghei parasites deficient in adenylyl cyclase alpha (ACalpha), a gene containing regions with high homology to adenylyl cyclases. PbACalpha-deficient sporozoites do not exocytose in response to migration through host cells and present more than 50% impaired hepatocyte infectivity in vivo. These effects are specific to ACalpha, as re-introduction of ACalpha in deficient parasites resulted in complete recovery of exocytosis and infection. Our findings indicate that ACalpha and increases in cAMP levels are required for sporozoite apical regulated exocytosis, which is involved in sporozoite infection of hepatocytes.  相似文献   

6.
7.
Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans.  相似文献   

8.
Invasion of hepatocytes by Plasmodium sporozoites deposited by Anopheles mosquitoes, and their subsequent transformation into infective merozoites is an obligatory step in the initiation of malaria. Interactions between the sporozoites and hepatocytes lead to a distinct, complex and coordinated cellular and systemic host response. Little is known about host liver cell response to sporozoite invasion, or whether it is primarily adaptive for the parasite, for the host, or for both. Our present study used gene expression profiling of human HepG2-A16 liver cells infected with Plasmodium falciparum sporozoites to understand the host early cellular events and factors influencing parasite infectivity and sporozoite development. Our results show that as early as 30 min following wild-type, non-irradiated sporozoite exposure, the expressions of at least 742 genes was selectively altered. These genes regulate diverse biological functions, such as immune processes, cell adhesion and communications, metabolism pathways, cell cycle regulation, and signal transduction. These functions reflect cellular events consistent with initial host cell defense responses, as well as alterations in host cells to sustain sporozoites growth and survival. Irradiated sporozoites gave very similar gene expression pattern changes, but direct comparative analysis between liver gene expression profiles caused by irradiated and non-irradiated sporozoites identified 29 genes, including glypican-3, that were specifically up-regulated only in irradiated sporozoites. Elucidating the role of this subset of genes may help identify the molecular basis for the irradiated sporozoites inability to develop intrahepatically, and their usefulness as an immunogen for developing protective immunity against pre-erythrocytic stage malaria.  相似文献   

9.
Minutes after injection into the circulation, malaria sporozoites enter hepatocytes. The speed and specificity of the invasion process suggest that it is receptor mediated. We show here that recombinant Plasmodium falciparum circumsporozoite protein (CS) binds specifically to regions of the plasma membrane of hepatocytes exposed to circulating blood in the Disse space. No binding has been detected in other organs, or even in other regions of the hepatocyte membrane. The interaction of CS with hepatocytes, as well as sporozoite invasion of HepG2 cells, is inhibited by synthetic peptides representing the evolutionarily conserved region II of CS. We conclude that region II is a sporozoite ligand for hepatocyte receptors localized to the basolateral domain of the plasma membrane. Our findings provide a rational explanation for the target cell specificity of malaria sporozoites.  相似文献   

10.
Circumsporozoite (CS) proteins, which densely coat malaria (Plasmodia) sporozoites, contain an amino acid sequence that is homologous to segments in other proteins which bind specifically to sulfated glycoconjugates. The presence of this homology suggests that sporozoites and CS proteins may also bind sulfated glycoconjugates. To test this hypothesis, recombinant P. yoelii CS protein was examined for binding to sulfated glycoconjugate-Sepharoses. CS protein bound avidly to heparin-, fucoidan-, and dextran sulfate-Sepharose, but bound comparatively poorly to chondroitin sulfate A- or C-Sepharose. CS protein also bound with significantly lower affinity to a heparan sulfate biosynthesis-deficient mutant cell line compared with the wild-type line, consistent with the possibility that the protein also binds to sulfated glycoconjugates on the surfaces of cells. This possibility is consistent with the observation that CS protein binding to hepatocytes, cells invaded by sporozoites during the primary stage of malaria infection, was inhibited by fucoidan, pentosan polysulfate, and heparin. The effects of sulfated glycoconjugates on sporozoite infectivity were also determined. P. berghei sporozoites bound specifically to sulfatide (galactosyl[3-sulfate]beta 1-1ceramide), but not to comparable levels of cholesterol-3-sulfate, or several examples of neutral glycosphingolipids, gangliosides, or phospholipids. Sporozoite invasion into hepatocytes was inhibited by fucoidan, heparin, and dextran sulfate, paralleling the observed binding of CS protein to the corresponding Sepharose derivatives. These sulfated glycoconjugates blocked invasion by inhibiting an event occurring within 3 h of combining sporozoites and hepatocytes. Sporozoite infectivity in mice was significantly inhibited by dextran sulfate 500,000 and fucoidan. Taken together, these data indicate that CS proteins bind selectively to certain sulfated glycoconjugates, that sporozoite infectivity can be inhibited by such compounds, and that invasion of host hepatocytes by sporozoites may involve interactions with these types of compounds.  相似文献   

11.
Dual action of anti-sporozoite antibodies in vitro   总被引:3,自引:0,他引:3  
With the use of a double staining technique that permits localization of the sporozoite during the process of entering a host cell, we studied the biologic effects of three mAb directed against determinants contained in the circumsporozoite of Plasmodium yoelii. These mAb, which included one IgM and two IgG3, were studied in primary cultures of rodent hepatocytes inoculated with sporozoites of P. yoelii. These results confirm previous reports of the extended action of antibodies on Plasmodium falciparum after entering hepatocytes by producing a strong intrahepatocyte inhibitory effect in addition to the inhibitory effect on sporozoite entry. As with P. falciparum the intracellular effects on P. yoelii liver stages are only observed when the antibodies are present at the time the sporozoite enters the cell. While carrying out experiments on this phenomenon, it was discovered that, at lowered antibody concentrations, an increase in number of maturing liver schizonts occurs, with the increase or enhancement of infection reaching up to 150% of that of controls. It was also observed that there was an inverse relationship between the antibody concentration that was inhibitory and that which enhanced parasite infectivity.  相似文献   

12.
The malaria sporozoite injected by a mosquito migrates to the liver by traversing host cells. The sporozoite also traverses hepatocytes before invading a terminal hepatocyte and developing into exoerythrocytic forms. Hepatocyte infection is critical for parasite development into merozoites that infect erythrocytes, and the sporozoite is thus an important target for antimalarial intervention. Here, we investigated two abundant sporozoite proteins of the most virulent malaria parasite Plasmodium falciparum and show that they play important roles during cell traversal and invasion of human hepatocytes. Incubation of P. falciparum sporozoites with R1 peptide, an inhibitor of apical merozoite antigen 1 (AMA1) that blocks merozoite invasion of erythrocytes, strongly reduced cell traversal activity. Consistent with its inhibitory effect on merozoites, R1 peptide also reduced sporozoite entry into human hepatocytes. The strong but incomplete inhibition prompted us to study the AMA‐like protein, merozoite apical erythrocyte‐binding ligand (MAEBL). MAEBL‐deficient P. falciparum sporozoites were severely attenuated for cell traversal activity and hepatocyte entry in vitro and for liver infection in humanized chimeric liver mice. This study shows that AMA1 and MAEBL are important for P. falciparum sporozoites to perform typical functions necessary for infection of human hepatocytes. These two proteins therefore have important roles during infection at distinct points in the life cycle, including the blood, mosquito, and liver stages.  相似文献   

13.
14.
Plasmodium sporozoites display circumsporozoite (CS) protein on their surface, which is involved in the attachment of sporozoites to liver cells. CS protein is a member of the thrombospondin type I repeat (TSR) domain family and possess a single copy of TSR domain toward its carboxyl terminus. We show by a direct measurement the correlation between the binding activity of various segments of the CS protein and their ability to inhibit the invasion of liver cells by the sporozoites. We made eight truncated versions of Plasmodium falciparum CS protein to elucidate the role of various regions in the binding and invasion process. Deletion of the TSR domain actually enhanced binding activity by 2-3-fold without the loss of receptor specificity, indicating that TSR may not be the only domain in defining the specificity of binding. These same deletions blocked invasion of live sporozoites more efficiently than proteins that include the TSR domain. Deletion of as little as six amino acids from amino terminus of the protein, however, renders it incapable of binding to liver cells and as an inhibitor of sporozoite invasion. Hence, the binding of CS protein to liver cells and its ability to inhibit the invasion process are affected in a parallel manner, both positively and negatively, by sequence changes in the encoded CS gene. This indicates that both assays are measuring interrelated phenomenon and points to the essential involvement for the amino-terminal portion of the CS protein in these processes.  相似文献   

15.
16.
An obligatory step of malaria parasite infection is Plasmodium sporozoite invasion of host hepatocytes, and host lipoprotein clearance pathways have been linked to Plasmodium liver infection. By using RNA interference to screen lipoprotein-related host factors, we show here that the class B, type I scavenger receptor (SR-BI) is the strongest regulator of Plasmodium infection among these factors. Inhibition of SR-BI function reduced P. berghei infection in Huh7 cells, and overexpression of SR-BI led to increased infection. In vivo silencing of liver SR-BI expression in mice and inhibition of SR-BI activity in human primary hepatocytes reduced infection by P. berghei and by P. falciparum, respectively. Heterozygous SR-BI(+/-) mice displayed reduced P. berghei infection rates correlating with liver SR-BI expression levels. Additional analyses revealed that SR-BI plays a dual role in Plasmodium infection, affecting both sporozoite invasion and intracellular parasite development, and may therefore constitute a good target for malaria prophylaxis.  相似文献   

17.
Infection of hepatocytes by Plasmodium falciparum sporozoites requires the host tetraspanin CD81. CD81 is also predicted to be a coreceptor, along with scavenger receptor BI (SR-BI), for hepatitis C virus. Using SR-BI-knockout, SR-BI-hypomorphic and SR-BI-transgenic primary hepatocytes, as well as specific SR-BI-blocking antibodies, we demonstrate that SR-BI significantly boosts hepatocyte permissiveness to P. falciparum, P. yoelii, and P. berghei entry and promotes parasite development. We show that SR-BI, but not the low-density lipoprotein receptor, acts as a major cholesterol provider that enhances Plasmodium infection. SR-BI regulates the organization of CD81 at the plasma membrane, mediating an arrangement that is highly permissive to penetration by sporozoites. Concomitantly, SR-BI upregulates the expression of the liver fatty-acid carrier L-FABP, a protein implicated in Plasmodium liver-stage maturation. These findings establish the mechanistic basis of the CD81-dependent Plasmodium sporozoite invasion pathway.  相似文献   

18.
Invasion of hepatocytes by Plasmodium sporozoites is a prerequisite for establishment of a malaria infection, and thus represents an attractive target for anti-malarial interventions. Still, the molecular mechanisms underlying sporozoite invasion are largely unknown. We have previously reported that the tetraspanin CD81, a known receptor for the hepatitis C virus (HCV), is required on hepatocytes for infection by sporozoites of several Plasmodium species. Here we have characterized CD81 molecular determinants required for infection of hepatocytic cells by P. yoelii sporozoites. Using CD9/CD81 chimeras, we have identified in CD81 a 21 amino acid stretch located in a domain structurally conserved in the large extracellular loop of tetraspanins, which is sufficient in an otherwise CD9 background to confer susceptibility to P. yoelii infection. By site-directed mutagenesis, we have demonstrated the key role of a solvent-exposed region around residue D137 within this domain. A mAb that requires this region for optimal binding did not block infection, in contrast to other CD81 mAbs. This study has uncovered a new functionally important region of CD81, independent of HCV E2 envelope protein binding domain, and further suggests that CD81 may not interact directly with a parasite ligand during Plasmodium infection, but instead may regulate the function of a yet unknown partner protein.  相似文献   

19.
Plasmodium sporozoites invade host hepatocytes and develop as liver stages (LS) before the onset of erythrocytic infection and malaria symptoms. LS are clinically silent, and constitute ideal targets for causal prophylactic drugs and vaccines. The molecular and cellular mechanisms underlying LS development remain poorly characterized. Here we describe a conserved Plasmodium asparagine-rich protein that is specifically expressed in sporozoites and liver stages. Gene disruption in Plasmodium berghei results in complete loss of sporozoite infectivity to rodents, due to early developmental arrest after invasion of hepatocytes. Mutant sporozoites productively invade host cells by forming a parasitophorous vacuole (PV), but subsequent remodelling of the membrane of the PV (PVM) is impaired as a consequence of dramatic down-regulation of genes encoding PVM-resident proteins. These early arrested mutants confer only limited protective immunity in immunized animals. Our results demonstrate the role of an asparagine-rich protein as a key regulator of Plasmodium sporozoite gene expression and LS development, and suggest a requirement of partial LS maturation to induce optimal protective immune responses against malaria pre-erythrocytic stages. These findings have important implications for the development of genetically attenuated parasites as a vaccine approach.  相似文献   

20.
Plasmodium falciparum and P. vivax sporozoites were observed to invade cultured human hepatoma cells in vitro. Monoclonal antibodies to the circumsporozoite (CS) protein of each of these malarial species blocked invasion. Inhibition was species-specific, but was independent of the geographic origin of each strain. Because these monoclonal antibodies have been shown to diminish or abolish sporozoite infectivity to susceptible primate hosts, it is suggested that inhibition of invasion of sporozoites (ISI) into cultured cells may represent in in vitro assay for protective antibodies. This was confirmed by the finding that serum taken from volunteers immune to sporozoite challenge also totally blocked sporozoite invasion. The ISI assay also detected naturally acquired invasive-neutralizing antibodies in areas endemic for malaria. This ISI assay may therefore be useful in determining the incidence of inhibitory anti-sporozoite antibodies in general populations, and allow the monitoring of the effect of an anti-malarial vaccine using sporozoite-derived antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号