首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
It was previously found that transgenic mice that overexpress the calpain inhibitor calpastatin (CsTg) have an approximately 3-fold increase in GLUT4 protein in their skeletal muscles. Despite the increase in GLUT4, which appears to be due to inhibition of its proteolysis by calpain, insulin-stimulated glucose transport is not increased in CsTg muscles. PKB (Akt) protein level is reduced approximately 60% in CsTg muscles, suggesting a possible mechanism for the relative insulin resistance. Muscle contractions stimulate glucose transport by a mechanism that is independent of insulin signaling. The purpose of this study was to test the hypothesis that the threefold increase in GLUT4 in CsTg would result in a large increase in contraction-stimulated glucose transport. CAMKII and AMPK mediate steps in the contraction-stimulated pathway. The protein levels of AMPK and CAMKII were increased three- to fourfold in CsTg muscles, suggesting that these proteins are also calpain substrates. Despite the large increases in GLUT4, AMPK, and CAMKII, contraction-stimulated GLUT4 translocation and glucose transport were not increased above wild-type values. These findings suggest that inhibition of calpain results in impairment of a step in the GLUT4 translocation process downstream of the insulin- and contraction-signaling pathways. They also provide evidence that CAMKII and AMPK are calpain substrates.  相似文献   

2.
Studies in which GLUT4 has been overexpressed in transgenic mice provide definitive evidence that glucose transport is rate limiting for muscle glucose disposal. Transgenic overexpression of GLUT4 selectively in skeletal muscle results in increased whole body glucose uptake and improves glucose homeostasis. These studies strengthen the hypothesis that the level of muscle GLUT4 affects the rate of whole body glucose disposal, and underscore the importance of GLUT4 in skeletal muscle for maintaining whole body glucose homeostasis. Studies in which GLUT4 has been ablated or 'knocked-out' provide proof that GLUT4 is the primary effector for mediating glucose transport in skeletal muscle and adipose tissue. Genetic ablation of GLUT4 results in impaired insulin tolerance and defects in glucose metabolism in skeletal muscle and adipose tissue. Because impaired muscle glucose transport leads to reduced whole body glucose uptake and hyperglycaemia, understanding the molecular regulation of glucose transport in skeletal muscle is important to develop effective strategies to prevent or reduce the incidence of Type II diabetes mellitus. In patients with Type II diabetes mellitus, reduced glucose transport in skeletal muscle is a major factor responsible for reduced whole body glucose uptake. Overexpression of GLUT4 in skeletal muscle improves glucose homeostasis in animal models of diabetes mellitus and protects against the development of diabetes mellitus. Thus, GLUT4 is an attractive target for pharmacological intervention strategies to control glucose homeostasis. This review will focus on the current understanding of the role of GLUT4 in regulating cellular glucose uptake and whole body glucose homeostasis.  相似文献   

3.
4.
Insulin stimulates glucose uptake in 3T3-L1 adipocytes in part by causing endoproteolytic cleavage of TUG (tether containing a ubiquitin regulatory X (UBX) domain for glucose transporter 4 (GLUT4)). Cleavage liberates intracellularly sequestered GLUT4 glucose transporters for translocation to the cell surface. To test the role of this regulation in muscle, we used mice with muscle-specific transgenic expression of a truncated TUG fragment, UBX-Cter. This fragment causes GLUT4 translocation in unstimulated 3T3-L1 adipocytes. We predicted that transgenic mice would have GLUT4 translocation in muscle during fasting. UBX-Cter expression caused depletion of PIST (PDZ domain protein interacting specifically with TC10), which transmits an insulin signal to TUG. Whereas insulin stimulated TUG proteolysis in control muscles, proteolysis was constitutive in transgenic muscles. Fasting transgenic mice had decreased plasma glucose and insulin concentrations compared with controls. Whole-body glucose turnover was increased during fasting but not during hyperinsulinemic clamp studies. In muscles with the greatest UBX-Cter expression, 2-deoxyglucose uptake during fasting was similar to that in control muscles during hyperinsulinemic clamp studies. Fasting transgenic mice had increased muscle glycogen, and GLUT4 targeting to T-tubule fractions was increased 5.7-fold. Whole-body oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure were increased by 12–13%. After 3 weeks on a high fat diet, the decreased fasting plasma glucose in transgenic mice compared with controls was more marked, and increased glucose turnover was not observed; the transgenic mice continued to have an increased metabolic rate. We conclude that insulin stimulates TUG proteolysis to translocate GLUT4 in muscle, that this pathway impacts systemic glucose homeostasis and energy metabolism, and that the effects of activating this pathway are maintained during high fat diet-induced insulin resistance in mice.  相似文献   

5.
This review focuses on the effects of varying levels of GLUT4, the insulin-sensitive glucose transporter, on insulin sensitivity and whole body glucose homeostasis. Three mouse models are discussed including MLC-GLUT4 mice which overexpress GLUT4 specifically in skeletal muscle, GLUT4 null mice which express no GLUT4, and the MLC-GLUT4 null mice which express GLUT4 only in skeletal muscle. Overexpressing GLUT4 specifically in the skeletal muscle results in increased insulin sensitivity in the MLC-GLUT4 mice. In contrast, the GLUT4 null mice exhibit insulin intolerance accompanied by abnormalities in glucose and lipid metabolism. Restoring GLUT4 expression in skeletal muscle in the MLC-GLUT4 null mice results in normal glucose metabolism but continued abnormal lipid metabolism. The results of experiments using these mouse models demonstrates that modifying the expression of GLUT4 profoundly affects whole body insulin action and consequently glucose and lipid metabolism.  相似文献   

6.
Studies in which GLUT4 has been overexpressed in transgenic mice provide definitive evidence that glucose transport is rate limiting for muscle glucose disposal. Transgenic overexpression of GLUT4 selectively in skeletal muscle results in increased whole body glucose uptake and improves glucose homeostasis. These studies strengthen the hypothesis that the level of muscle GLUT4 affects the rate of whole body glucose disposal, and underscore the importance of GLUT4 in skeletal muscle for maintaining whole body glucose homeostasis. Studies in which GLUT4 has been ablated or 'knocked-out' provide proof that GLUT4 is the primary effector for mediating glucose transport in skeletal muscle and adipose tissue. Genetic ablation of GLUT4 results in impaired insulin tolerance and defects in glucose metabolism in skeletal muscle and adipose tissue. Because impaired muscle glucose transport leads to reduced whole body glucose uptake and hyperglycaemia, understanding the molecular regulation of glucose transport in skeletal muscle is important to develop effective strategies to prevent or reduce the incidence of Type II diabetes mellitus. In patients with Type II diabetes mellitus, reduced glucose transport in skeletal muscle is a major factor responsible for reduced whole body glucose uptake. Overexpression of GLUT4 in skeletal muscle improves glucose homeostasis in animal models of diabetes mellitus and protects against the development of diabetes mellitus. Thus, GLUT4 is an attractive target for pharmacological intervention strategies to control glucose homeostasis. This review will focus on the current understanding of the role of GLUT4 in regulating cellular glucose uptake and whole body glucose homeostasis.  相似文献   

7.
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice.  相似文献   

8.
Expression of GLUT4 in fast-twitch skeletal muscle fibers of GLUT4 null mice (G4-MO) normalized glucose uptake in muscle and restored peripheral insulin sensitivity. GLUT4 null mice exhibit altered carbohydrate and lipid metabolism in liver and skeletal muscle. To test the hypothesis that increased glucose utilization by G4-MO muscle would normalize the changes seen in the GLUT4 null liver, serum metabolites and hepatic metabolism were compared in control, GLUT4 null, and G4-MO mice. The fed serum glucose and triglyceride levels of G4-MO mice were similar to those of control mice. In addition, the alternations in liver metabolism seen in GLUT4 nulls including increased GLUT2 expression and fatty acid synthesis accompanied by an increase in the oxidative arm of the pentose phosphate pathway were absent in G4-MO mice. The transgene used for GLUT4 restoration in muscle was specific for fast-twitch muscle fibers. The mitochondria hypertrophy/hyperplasia in all GLUT4 null skeletal muscles was absent in transgene-positive extensor digitorum longus muscle but present in transgene-negative soleus muscle of G4-MO mice. Results of this study suggest that the level of muscle GLUT4 expression influences mitochondrial biogenesis. These studies also demonstrate that the type and amount of substrate that muscle takes up and metabolizes, determined in part by GLUT4 expression levels, play a major role in directing hepatic carbohydrate and lipid metabolism.  相似文献   

9.
Mitochondrial uncoupling protein 3 (UCP3) is expressed in skeletal muscles. We have hypothesized that increased glucose flux in skeletal muscles may lead to increased UCP3 expression. Male transgenic mice harboring insulin-responsive glucose transporter (GLUT4) minigenes with differing lengths of 5'-flanking sequence (-3237, -2000, -1000 and -442 bp) express different levels of GLUT4 protein in various skeletal muscles. Expression of the GLUT4 transgenes caused an increase in UCP3 mRNA that paralleled the increase of GLUT4 protein in gastrocnemius muscle. The effects of increased intracellular GLUT4 level on the expression of UCP1, UCP2 and UCP3 were compared in several tissues of male 4 month-old mice harboring the -1000 GLUT4 minigene transgene. In the -1000 GLUT4 transgenic mice, expression of GLUT4 mRNA and protein in skeletal muscles, brown adipose tissue (BAT), and white adipose tissue (WAT) was increased by 1.4 to 4.0-fold. Compared with non-transgenic littermates, the -1000 GLUT4 mice exhibited about 4- and 1.8-fold increases of UCP3 mRNA in skeletal muscle and WAT, respectively, and a 38% decrease of UCP1 mRNA in BAT. The transgenic mice had a 16% increase in oxygen consumption and a 14% decrease in blood glucose and a 68% increase in blood lactate, but no change in FFA or beta-OHB levels. T3 and leptin concentrations were decreased in transgenic mice. Expression of UCP1 in BAT of the -442 GLUT4 mice, which did not overexpress GLUT4 in this tissue, was not altered. These findings indicate that overexpression of GLUT4 up-regulates UCP3 expression in skeletal muscle and down-regulates UCP1 expression in BAT, possibly by increasing the rate of glucose uptake into these tissues.  相似文献   

10.
11.
To understand the long-term metabolic and functional consequences of increased GLUT4 content, intracellular substrate utilization was investigated in isolated muscles of transgenic mice overexpressing GLUT4 selectively in fast-twitch skeletal muscles. Rates of glycolysis, glycogen synthesis, glucose oxidation, and free fatty acid (FFA) oxidation as well as glycogen content were assessed in isolated EDL (fast-twitch) and soleus (slow-twitch) muscles from female and male MLC-GLUT4 transgenic and control mice. In male MLC-GLUT4 EDL, increased glucose influx predominantly led to increased glycolysis. In contrast, in female MLC-GLUT4 EDL increased glycogen synthesis was observed. In both sexes, GLUT4 overexpression resulted in decreased exogenous FFA oxidation rates. The decreased rate of FFA oxidation in male MLC-GLUT4 EDL was associated with increased lipid content in liver, but not in muscle or at the whole body level. To determine how changes in substrate metabolism and insulin action may influence energy balance in an environment that encouraged physical activity, we measured voluntary training activity, body weight, and food consumption of MLC-GLUT4 and control mice in cages equipped with training wheels. We observed a small decrease in body weight of MLC-GLUT4 mice that was paradoxically accompanied by a 45% increase in food consumption. The results were explained by a marked fourfold increase in voluntary wheel exercise. The changes in substrate metabolism and physical activity in MLC-GLUT4 mice were not associated with dramatic changes in skeletal muscle morphology. Collectively, results of this study demonstrate the feasibility of altering muscle substrate utilization by overexpression of GLUT4. The results also suggest that as a potential treatment for type II diabetes mellitus, increased skeletal muscle GLUT4 expression may provide benefits in addition to improvement of insulin action.  相似文献   

12.
The ATP-binding cassette transporter A1 (ABCA1) promotes cellular cholesterol efflux, leading to cholesterol binding to the extracellular lipid-free apolipoprotein A-I. ABCA1 regulates lipid content, glucose tolerance and insulin sensitivity in adipose tissue. In skeletal muscle, most GLUT4-mediated glucose transport occurs in the transverse tubule, a system composed by specialized cholesterol-enriched invaginations of the plasma membrane. We have reported that insulin resistant mice have higher cholesterol levels in transverse tubule from adult skeletal muscle. These high levels correlate with decreased GLUT4 trafficking and glucose uptake; however, the role of ABCA1 on skeletal muscle insulin-dependent glucose metabolism remains largely unexplored. Here, we evaluated the functional role of the ABCA1 on insulin-dependent signaling pathways, glucose uptake and cellular cholesterol content in adult skeletal muscle. Male mice were fed for 8?weeks with normal chow diet (NCD) or high fat diet (HFD). Compared to NCD-fed mice, ABCA1 mRNA levels and protein content were lower in muscle homogenates from HFD-fed mice. In Flexor digitorum brevis muscle from NCD-fed mice, shABCA1-RFP in vivo electroporation resulted in 65% reduction of ABCA1 protein content, 1.6-fold increased fiber cholesterol levels, 74% reduction in insulin-dependent Akt (Ser473) phosphorylation, total suppression of insulin-dependent GLUT4 translocation and decreased 2-NBDG uptake compared to fibers electroporated with the scrambled plasmid. Pre-incubation with methyl-β cyclodextrin reestablished both GLUT4 translocation and 2-NBDG transport. Based on the present results, we suggest that decreased ABCA1 contributes to the anomalous cholesterol accumulation and decreased glucose transport displayed by skeletal muscle membranes in the insulin resistant condition.  相似文献   

13.
The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose and insulin tolerance tests were normal in TBC1D1-deficient Nob1.10(SJL) mice, yet the 4-h-fasted insulin concentration was increased. Insulin-stimulated peripheral glucose utilization during a euglycemic hyperinsulinemic clamp was similar between genotypes, whereas the suppression of hepatic glucose production was increased in TBC1D1-deficient mice. In isolated extensor digitorum longus (EDL) but not soleus muscle, glucose transport in response to insulin, AICAR, or contraction was impaired by TBC1D1 deficiency. The reduction in glucose transport in EDL muscle from TBC1D1-deficient Nob1.10(SJL) mice may be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice. In conclusion, TBC1D1 plays a role in regulation of glucose metabolism in skeletal muscle. Moreover, functional TBC1D1 is required for AICAR- or contraction-induced metabolic responses, implicating a role in energy-sensing signals.  相似文献   

14.
Insulin-stimulated glucose transport activity and GLUT4 glucose transporter protein expression in rat soleus, red-enriched, and white-enriched skeletal muscle were examined in streptozotocin (STZ)-induced insulin-deficient diabetes. Six days of STZ-diabetes resulted in a nearly complete inhibition of insulin-stimulated glucose transport activity in perfused soleus, red, and white muscle which recovered following insulin therapy. A specific decrease in the GLUT4 glucose transporter protein was observed in soleus (3-fold) and red (2-fold) muscle which also recovered to control values with insulin therapy. Similarly, cardiac muscle displayed a marked STZ-induced decrease in GLUT4 protein that was normalized by insulin therapy. White muscle displayed a small but statistically significant decrease in GLUT4 protein (23%), but this could not account for the marked inhibition of insulin-stimulated glucose transport activity observed in this tissue. In addition, GLUT4 mRNA was found to decrease in red muscle (2-fold) with no significant alteration in white muscle. The effect of STZ-induced diabetes was time-dependent with maximal inhibition of insulin-stimulated glucose transport activity at 24 h in both red and white skeletal muscle and half-maximal inhibition at approximately 8 h. In contrast, GLUT4 protein in red and white muscle remained unchanged until 4 and 7 days following STZ treatment, respectively. These data demonstrate that red skeletal muscle displays a more rapid hormonal/metabolic-dependent regulation of GLUT4 glucose transporter protein and mRNA expression than white skeletal muscle. In addition, the inhibition of insulin-stimulated glucose transport activity in both red and white muscle precedes the decrease in GLUT4 protein and mRNA levels. Thus, STZ treatment initially results in a rapid uncoupling of the insulin-mediated signaling of glucose transport activity which is independent of GLUT4 protein and mRNA levels.  相似文献   

15.
Insulin activates certain protein kinase C (PKC) isoforms that are involved in insulin-induced glucose transport. In this study, we investigated the possibility that activation of PKCdelta by insulin participates in the mediation of insulin effects on glucose transport in skeletal muscle. Studies were performed on primary cultures of rat skeletal myotubes. The role of PKCdelta in insulin-induced glucose uptake was evaluated both by selective pharmacological blockade and by over-expression of wild-type and point-mutated inactive PKCdelta isoforms in skeletal myotubes. We found that insulin induces tyrosine phosphorylation and translocation of PKCdelta to the plasma membrane and increases the activity of this isoform. Insulin-induced effects on translocation and phosphorylation of PKCdelta were blocked by a low concentration of rottlerin, whereas the effects of insulin on other PKC isoforms were not. This selective blockade of PKCdelta by rottlerin also inhibited insulin-induced translocation of glucose transporter 4 (GLUT4), but not glucose transporter 3 (GLUT3), and significantly reduced the stimulation of glucose uptake by insulin. When overexpressed in skeletal muscle, PKCdelta and PKCdelta were both active. Overexpression of PKCdelta induced the translocation of GLUT4 to the plasma membrane and increased basal glucose uptake to levels attained by insulin. Moreover, insulin did not increase glucose uptake further in cells overexpressing PKCdelta. Overexpression of PKCdelta did not affect basal glucose uptake or GLUT4 location. Stimulation of glucose uptake by insulin in cells overexpressing PKCdelta was similar to that in untransfected cells. Transfection of skeletal myotubes with dominant negative mutant PKCdelta did not alter basal glucose uptake but blocked insulin-induced GLUT4 translocation and glucose transport. These results demonstrate that insulin activates PKCdelta and that activated PKCdelta is a major signaling molecule in insulin-induced glucose transport.  相似文献   

16.
Adipose tissue plays an important role in glucose homeostasis and affects insulin sensitivity in other tissues. In obesity and type 2 diabetes, glucose transporter 4 (GLUT4) is downregulated in adipose tissue, and glucose transport is also impaired in muscle. To determine whether overexpression of GLUT4 selectively in adipose tissue could prevent insulin resistance when glucose transport is impaired in muscle, we bred muscle GLUT4 knockout (MG4KO) mice to mice overexpressing GLUT4 in adipose tissue (AG4Tg). Overexpression of GLUT4 in fat not only normalized the fasting hyperglycemia and glucose intolerance in MG4KO mice, but it reduced these parameters to below normal levels. Glucose infusion rate during a euglycemic clamp study was reduced 46% in MG4KO compared with controls and was restored to control levels in AG4Tg-MG4KO. Similarly, insulin action to suppress hepatic glucose production was impaired in MG4KO mice and was restored to control levels in AG4Tg-MG4KO. 2-deoxyglucose uptake during the clamp was increased approximately twofold in white adipose tissue but remained reduced in skeletal muscle of AG4Tg-MG4KO mice. AG4Tg and AG4Tg-MG4KO mice have a slight increase in fat mass, a twofold elevation in serum free fatty acids, an approximately 50% increase in serum leptin, and a 50% decrease in serum adiponectin. In MG4KO mice, serum resistin is increased 34% and GLUT4 overexpression in fat reverses this. Overexpression of GLUT4 in fat also reverses the enhanced clearance of an oral lipid load in MG4KO mice. Thus overexpression of GLUT4 in fat reverses whole body insulin resistance in MG4KO mice without restoring glucose transport in muscle. This effect occurs even though AG4Tg-MG4KO mice have increased fat mass and low adiponectin and is associated with normalization of elevated resistin levels.  相似文献   

17.
Insulin action in skeletal muscle from patients with NIDDM   总被引:12,自引:0,他引:12  
Insulin resistance in peripheral tissues is a common feature of non insulin-dependent diabetes mellitus (NIDDM). The decrease in insulin-mediated peripheral glucose uptake in NIDDM patients can be localized to defects in insulin action on glucose transport in skeletal muscle. Following short term in vitro exposure to both submaximal and maximal concentrations of insulin, 3-O-methylglucose transport rates are 40-50% lower in isolated skeletal muscle strips from NIDDM patients when compared to muscle strips from nondiabetic subjects. In addition, we have shown that physiological levels of insulin induce a 1.6-2.0 fold increase in GLUT4 content in skeletal muscle plasma membranes from control subjects, whereas no significant increase was noted in NIDDM skeletal muscle. Impaired insulin-stimulated GLUT4 translocation and glucose transport in NIDDM skeletal muscle is associated with reduced insulin-stimulated IRS-1 tyrosine phosphorylation and PI3-kinase activity. The reduced IRS-1 phosphorylation cannot be attributed to decreased protein expression, since the IRS-1 protein content is similar between NIDDM subjects and controls. Altered glycemia may contribute to decreased insulin-mediated glucose transport in skeletal muscle from NIDDM patients. We have shown that insulin-stimulated glucose transport is normalized in vitro in the presence of euglycemia, but not in the presence of hyperglycemia. Thus, the circulating level of glucose may independently regulate insulin stimulated glucose transport in skeletal muscle from NIDDM patients via a down regulation of the insulin signaling cascade.  相似文献   

18.
We have recently shown that 12(S)-hydroxyeicosatetraenoic acid plays a role in the organization of actin microfilaments in rat cardiomyocytes, and that inhibition of 12-lipoxygenase abrogates insulin-stimulated GLUT4 translocation in these cells. In the present study, we used mice that were null for the leukocyte 12/15-lipoxygenase to explore the implications of this enzyme for insulin action under IN VIVO conditions. Insulin induced a profound reduction in blood glucose in both control and knockout mice. However, significantly higher serum insulin levels were observed in these animals. GLUT4 expression in heart and skeletal muscle was unaffected in KO mice. Insulin-regulated serine phosphorylation of Akt and GSK3alpha and GSK3beta was unaltered in heart and skeletal muscle of knockout mice, suggesting unaltered insulin signaling. Fractionation of hind limb muscles showed that insulin had induced a prominent translocation of GLUT4 to skeletal muscle plasma membranes in control mice. However, this response was largely reduced in knockout animals. Our data show that the lack of leukocyte 12/15-lipoxygenase does not lead to the development of an insulin-resistant phenotype. However, perturbation of GLUT4 translocation in skeletal muscle of knockout mice may indicate latent insulin resistance, and supports our hypothesis that eicosanoids are involved in insulin-mediated regulation of muscle glucose transport.  相似文献   

19.
Insulin resistance plays a major role in the pathogenesis of type 2 diabetes. Insulin regulates blood glucose levels primarily by promoting glucose uptake from the blood into multiple tissues and by suppressing glucose production from the liver. The glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in muscle and adipose tissue. Decreased GLUT4 expression in adipose tissue is a common feature of many insulin resistant states. GLUT4 expression is preserved in skeletal muscle in many insulin resistant states. However, functional defects in the intracellular trafficking and plasma membrane translocation of GLUT4 result in impaired insulin-stimulated glucose uptake in muscle. Tissue-specific genetic knockout of GLUT4 expression in adipose tissue or muscle of mice has provided new insights into the pathogenesis of insulin resistance. We recently determined that the expression of serum retinol binding protein (RBP4) is induced in adipose tissue as a consequence of decreased GLUT4 expression. We found that RBP4 is elevated in the serum of insulin resistant humans and mice. Furthermore, we found that increasing serum RBP4 levels by transgenic overexpression or by injection of purified RBP4 protein into normal mice causes insulin resistance. Therefore, RBP4 appears to play an important role in mediating adipose tissue communication with other insulin target tissues in insulin resistant states.  相似文献   

20.
Glucose transporters: structure, function, and regulation   总被引:2,自引:0,他引:2  
Glucose is transported into the cell by facilitated diffusion via a family of structurally related proteins, whose expression is tissue-specific. One of these transporters, GLUT4, is expressed specifically in insulin-sensitive tissues. A possible change in the synthesis and/or in the amount of GLUT4 has therefore been studied in situations associated with an increase or a decrease in the effect of insulin on glucose transport. Chronic hyperinsulinemia in rats produces a hyper-response of white adipose tissue to insulin and resistance in skeletal muscle. The hyper-response of white adipose tissue is associated with an increase in GLUT4 mRNA and protein. In contrast, in skeletal muscle, a decrease in GLUT4 mRNA and a decrease (tibialis) or no change (diaphragm) in GLUT4 protein are measured, suggesting a divergent regulation by insulin of glucose transport and transporters in the 2 tissues. In rodents, brown adipose tissue is very sensitive to insulin. The response of this tissue to insulin is decreased in obese insulin-resistant fa/fa rats. Treatment with a beta-adrenergic agonist increases insulin-stimulated glucose transport, GLUT4 protein and mRNA. The data suggest that transporter synthesis can be modulated in vivo by insulin (muscle, white adipose tissue) or by catecholamines (brown adipose tissue).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号