首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas veronii strain UFZ B549, Acidovorax facilis strain UFZ B530, and a community of indigenous groundwater bacteria, adapted to oxygen limitation, were cultivated on chlorobenzene and its metabolites 2-chloro-cis,cis-muconate and acetate/succinate under hypoxic and denitrifying conditions. Highly sensitive approaches were used to maintain defined low oxygen partial pressures in an oxygen-re-supplying headspace. With low amounts of oxygen available all cultures converted chlorobenzene, though the pure strains accumulated 3-chlorocatechol and 2-chloro-cis,cis-muconate as intermediates. Under strictly anoxic conditions no chlorobenzene transformation was observed, while 2-chloro-cis,cis-muconate, the fission product of oxidative ring cleavage, was readily degraded by the investigated chlorobenzene-degrading cultures at the expense of nitrate as terminal electron acceptor. Hence, we conclude that oxygen is an obligatory reactant for initial activation of chlorobenzene and fission of the aromatic ring, but it can be partially replaced by nitrate in respiration. The tendency to denitrify in the presence of oxygen during growth on chlorobenzene appeared to depend on the oxygen availability and the efficiency to metabolize chlorobenzene under oxygen limitation, which is largely regulated by the activity of the intradiol ring fission dioxygenase. Permanent cultivation of a groundwater consortium under reduced oxygen levels resulted in enrichment of a community almost exclusively composed of members of the β-Proteobacteria and Bacteroidetes. Thus, it is deduced that these strains can still maintain high activities of oxygen-requiring enzymes that allow for efficient CB transformation under hypoxic conditions.  相似文献   

2.
Kinetics of chlorobenzene biodegradation under reduced oxygen levels   总被引:1,自引:0,他引:1  
Focussing on the role of chlorocatechol 1,2-dioxygenase (CC12O), an oxygen-dependent key enzyme in the aerobic catabolism of chlorobenzene (CB), Pseudomonas veronii strain UFZ B549, Acidovorax facilis strain UFZ B530, and a community of indigenous groundwater bacteria were amended with CB degradation under either oxic or hypoxic conditions. All cultures readily degraded CB at high oxygen availability, but had differing abilities to completely degrade CB when exposed to oxygen limitation. For the three cultures very distinct oxygen half-saturation constants (0.3-11.7 muM) for the respective CC12Os were obtained and protein analysis showed that high affinity-type A. facilis and low affinity-type P. veronii express CC12Os, which belong to different structural clusters. From this a functional relation between CC12O type and the ability to cope with efficient ring fission under oxygen limitation is anticipated. Extremely high oxygen affinities for CC12Os support the assumption that truly oxic environments are not an essential requirement to degrade chloro(aromatic) compounds. Tiny quantities of oxygen permanently re-supplied will sufficiently maintain the growth of microaerophilic specialists with the ability to transform chloro(aromatics) via catechol intermediates.  相似文献   

3.
A set of microcosm experiments was performed to assess different bioremediation strategies, i.e., biostimulation and bioaugmentation, for groundwater contaminated with chlorobenzenes. The biodegradative potential was stimulated either by the supply of electron acceptors (air, (NO 3 ), to increase the activity of the indigenous bacterial community, or by the addition of aerobic chlorobenzene-degrading bacteria (Pseudomonas putida GJ31, Pseudomonas aeruginosa RHO1, Pseudomonas putida F1CC). Experiments were performed with natural groundwater of the aquifer of Bitterfeld, which had been contaminated with 1,2-dichlorobenzene (1,2-DCB), 1,4-dichlorobenzene (1,4-DCB), and chlorobenzene (CB). The microcosms consisted of airtight glass bottles with 800 mL of natural groundwater and were incubated under in situ temperature (13°C). Behavior of the introduced strains within the indigenous bacterial community was monitored by fluorescent in situ hybridization (FISH) with species-specific oligonucleotides. Dynamics of the indigenous community and the introduced strains within the microcosms were followed by single-strand conformation polymorphism (SSCP) analysis of 16S rDNA amplicons obtained from total DNA of the microbial community. An indigenous biodegradation potential under aerobic as well as anaerobic denitrifying conditions was observed accompanied by fast and specific changes in the natural bacterial community composition. Augmentation with P. aeruginosa RHO1 did not enhance bio-degradation. In contrast, both P. putida GJ31 as well as P. putida F1CC were capable of growing in groundwater, even in the presence of the natural microbial community, and thereby stimulating chlorobenzene depletion. P. putida GJ31 disappeared when the xenobiotics were depleted and P. putida F1CC persisted even in the absence of CB. Detailed statistical analyses revealed that community dynamics of the groundwater microbiota were highly reproducible but specific to the introduced strain, its inoculum size, and the imposed physicochemical conditions. These findings could contribute to the design of better in situ bioremediation strategies for contaminated groundwater.  相似文献   

4.
Bacterial isolates were obtained from groundwater and soils contaminated with chlorobenzene (CB). The isolates were tested to determine whether the natural community could remove the groundwater contaminants. These isolates were identified and characterized as to their ability to grow on CB and related aromatic compounds. The complete consortium could mineralize approximately 54% of the CB within 7 days, with no accumulation of 3-chlorocatechol. Metabolic pathways were evaluated for several isolates. One phenotype was characterized by the ability to degrade CB by the modified ortho pathway. One strain also degraded p-dichlorobenzene by using the same pathway. Isolates exhibiting a second phenotype degraded p-cresol, benzene, and phenol by the classical ortho pathway and accumulated 3-chlorocatechol when grown in the presence of CB. Strains of the third phenotype grew on complex media in the presence of CB but did not transform any of the aromatic compounds tested. The results suggest that the indigenous microbial community at the contaminated site would be able to degrade CB if provided with the appropriate conditions.  相似文献   

5.
Pseudomonas putida 10.2, a 3-chlorobenzoate (3CBa)-degrading bacterium, was isolated from a soil sample obtained from an agricultural area in Chiang Mai, Thailand. This bacterium could degrade 2mm 3CBa very rapidly with the concomitant formation of chloride ion when grown in mineral salt-yeast extract medium. The presence of glucose, lactose and pyruvate in the medium reduced the capability of this bacterium to degrade 3CBa. Metabolites such as 3-chlorocatechol (3CC), catechol and cis,cis-muconic acid (muconate) could be detected in the growth medium or in cell suspensions when 3CBa was used as the substrate. Furthermore, when crude enzyme extract prepared from 3CBa-grown P. putida 10.2 was incubated with 3CC, catechol and muconate could be detected in the reaction mixtures. Thus, the biodegradation pathway of 3CBa by P. putida 10.2 was proposed to involve transformation of 3CBa to 3CC. The dehalogenation step is believed to involve removal of chloride from 3CC to form catechol, which is subsequently converted to muconate.  相似文献   

6.
Alcaligenes eutrophus JMP134 metabolizes 3-chlorobenzoate via 3- (3CC) and 4-chlorocatechol (4CC) as central metabolites. Whereas 4CC was efficiently degraded without a build-up of significant quantities of intermediates, substantial amounts of 2-chloro-cis,cis-muconate (2CM) formed from 3CC were excreted as a result of the poor activity of dichloromuconate cycloisomerase for this compound. This pathway bottleneck can, using appropriate fermentation conditions, be exploited in the production of 2CM. Correspondence to: D. H. Pieper  相似文献   

7.
Pseudomonas putida GJ31 harbors a degradative pathway for chlorobenzene via meta-cleavage of 3-chlorocatechol. Pseudomonads using this route for chlorobenzene degradation, which was previously thought to be generally unproductive, were isolated from various contaminated environments of distant locations. The new isolates, Pseudomonas fluorescens SK1 (DSM16274), Pseudomonas veronii 16-6A (DSM16273), Pseudomonas sp. strain MG61 (DSM16272), harbor a chlorocatechol 2,3-dioxygenase (CbzE). The cbzE-like genes were cloned, sequenced, and expressed from the isolates and a mixed culture. The chlorocatechol 2,3-dioxygenases shared 97% identical amino acids with CbzE from strain GJ31, forming a distinct family of catechol 2,3-dioxygenases. The chlorocatechol 2,3-dioxygenase, purified from chlorobenzene-grown cells of strain SK1, showed an identical N-terminal sequence with the amino acid sequence deduced from cloned cbzE. In all investigated chlorobenzene-degrading strains, cbzT-like genes encoding ferredoxins are located upstream of cbzE. The sequence data indicate that the ferredoxins are identical (one amino acid difference in CbzT of strain 16-6A compared to the others). In addition, the structure of the operon downstream of cbzE is identical in strains GJ31, 16-6A, and SK1 with genes cbzX (unknown function) and the known part of cbzG (2-hydroxymuconic semialdehyde dehydrogenase) and share 100% nucleotide sequence identity with the entire downstream region. The current study suggests that meta-cleavage of 3-chlorocatechol is not an atypical pathway for the degradation of chlorobenzene.This publication is dedicated to the memory of Olga V. Maltseva, who contributed greatly to our current knowledge of biochemistry of degradative pathways for chloroaromatic compounds.This publication is dedicated to Prof. Dr. Hans G. Schlegel in honor of his 80th birthday.  相似文献   

8.
Pseudomonas sp. strain RHO1 able to use chloro- and 1,4-dichlorobenzene as growth substrates was tested towards sensitivity against chlorobenzene. Concentrations of chlorobenzene higher than 3.5 mM were found to be toxic to cells independent of pregrowth with chlorobenzene or nutrient broth. Below this concentration, sensitivity towards chlorobenzene depended on the precultivation of the cells, i.e. type of growth substrate (chlorobenzene or nutrient broth) and the concentration of chlorobenzene as the growth substrate. Cells grown in continuous culture were especially sensitive with a threshold concentration of 2.5 mM chlorobenzene. In addition to chlorobenzene, metabolites also seem to function as toxic compounds. 2-Chlorophenol and 3-chlorocatechol were isolated from cell extracts. Cleavage of 3-chlorocatechol by catechol 1,2-dioxygenase seems to be the critical step in the metabolism of chlorobenzene.  相似文献   

9.
A Ralstonia pickettii species able to degrade chlorobenzene (CB) as the sole source of carbon and energy was isolated from a biotrickling filter used for the removal of CB from waste gases. This organism, strain L2, could degrade CB as high as 220 mg/L completely. Following CB consumption, stoichiometric amounts of chloride were released, and CO2 production rate up to 80.2% proved that the loss of CB was mainly via mineralization and incorporation into cell material. The Haldane modification of the Monod equation adequately described the relationship between the specific growth rate and substrate concentration. The maximum specific growth rate and yield coefficient were 0.26 h−1 and 0.26 mg of biomass produced/mg of CB consumed, respectively. The pathways for CB degradation were proposed by the identification of metabolites and assay of ring cleavage enzymes in cell extracts. CB was degraded predominantly via 2-chlorophenol to 3-chlorocatechol and also partially via phenol to catechol with subsequent ortho ring cleavage, suggesting partially new pathways for CB-utilizing bacteria.  相似文献   

10.
Pandoraea sp. strain MCB032 was isolated as an emerging chlorobenzene degrader from a functionally stable bioreactor where species succession had occurred. In this study, two gene clusters encoding chlorobenzene metabolic functions have been cloned. Within the cbs gene cluster, CbsA and CbsB are similar to the chlorobenzene dioxygenase and the cis-chlorobenzene dihydrodiol dehydrogenase in Ralstonia sp. JS705 and shown to transform chlorobenzene to 3-chlorocatechol. The clc gene cluster shows strong similarity to the clc genes of Ralstonia sp. JS705 and encodes chlorocatechol 1,2-dioxygenase (ClcA) and other enzymes, which catalyze the conversion of chlorocatechol to 3-oxoadipate. The Michaelis constants (K m) values of ClcA for catechol, 3-methylcatechol and 3-chlorocatechol were determined as 10.0, 8.9 and 3.4 μM, respectively. CbsX, a putative transport protein present in the cbs cluster of strain MCB032 but not in those of other chlorobenzene degraders, shows 76 and 53% identities to two previously identified transport proteins involved in toluene degradation, TbuX from Ralstonia pickettii PKO1 and TodX from Pseudomonas putida F1. The presence of the transport protein in strain MCB032 likely provides a mechanistic explanation for its higher chlorobenzene affinity and may well be the basis for the competitive advantage of this strain in the bioreactor.  相似文献   

11.
The relative toxicity of seven major ground-water pollutants (benzene, chlorobenzene, propylbenzene, ethylbenzene, trichloroethylene, toluene, and styrene) and their metabolites to a soil mycobacterium (Mycobacterium vaccae strain JOB-5) that can catabolize all of these pollutants was determined. The metabolites of chlorobenzene, styrene and trichloroethylene degradation (4-chlorophenol, styrene oxide, and 2,2,2-trichloroethanol, respectively) were less toxic to M. vaccae than was their parent compound. The pollutants propylbenzene, ethylbenzene and benzene were less toxic than their metabolites (4-propylphenol, 4-ethylphenol, and phenol). Metabolites were also examined for their ability to interfere with the biodegradation of selected groundwater pollutants. The metabolites of ethylbenzene, propylbenzene and chlorobenzene biotransformation by M. vaccae were found to adversely affect biodegradation by M. vaccae. Toluene degradation by M. vaccae was inhibited by 4-chlorophenol, 4-ethylphenol and 4-propylphenol at 0.2 mm, 0.4 mm, and 0.4 mm, respectively.Correspondence to: J. J. Perry  相似文献   

12.
Summary Pseudomonas putida MST, previously isolated in the presence of -methylstyrene, has been shown to transform several substituted aromatic compounds. It was able to modify halogenated aromatic compounds by co-oxidation. It regiospecifically hydroxylates chlorobenzene and 2-chlorophenol to 3-chlorocatechol, and 4-chlorophenol to 4-chlorocatechol; both metabolites were identified in the cultures.  相似文献   

13.
Chlorocatechol 1,2-dioxygenase (CC 1,2-DO), chloromuconate cycloisomerase (CMCI), chloromuconolactone isomerase (CMLI), and dienolactone hydrolase (DELH), the key enzymes of a new modified ortho-pathway in Rhodococcus opacus 1CP cells utilizing 2-chlorophenol via a 3-chlorocatechol branch of a modified ortho-pathway, were isolated and characterized. CC 1,2-DO showed the maximum activity with 3-chlorocatechol; its activity with catechol and 4-chlorocatechol was 93 and 50%, respectively. The enzyme of the studied pathway had physicochemical properties intermediate between the pyrocatechase of ordinary and chlorocatechase of modified pathways described earlier for this strain. In contrast to the enzymes investigated earlier, CMCI of the new pathway exhibited high substrate specificity. The enzyme had K m for 2-chloromuconate of 142.86 M, V max = 71.43 U/mg, pH optimum around 6.0, and temperature optimum at 65°C. CMCI converted 2-chloromuconate into 5-chloromuconolactone. CMLI converted 5-chloromuconolactone into cis-dienolactone used as a substrate by DELH; this enzyme did not convert trans-dienolactone. DELH had Km for cis-dienolactone of 200 M, V max = 167 U/mg, pH optimum of 8.6, and temperature optimum of 40°C. These results confirm the existence of a new modified ortho-pathway for utilization of 2-chlorophenol by R. opacus 1CP.  相似文献   

14.
Column experiments were conducted to evaluate the effect of pore velocity on the extent of biodegradation of cis-dichloroethene (cis-DCE) during transport in porous media. Columns were filled with homogeneous glass beads and inoculated with a culture capable of complete dechlorination of tetrachloroethene to ethene. A constant concentration of cis-DCE was maintained in the columns’ influent. Three different pore velocities were tested in duplicate, subjecting each column to a constant velocity. At high flow velocity, degradation of cis-DCE to ethene was nearly complete within the residence time of the columns. However, at medium and low flow velocities, incomplete dechlorination was observed. After 7 weeks, DNA was harvested from the columns to determine differences in the microbial populations. Results suggest that Dehalococcoides sp. were present in higher quantities in the high-velocity columns, consistent with the observed dechlorination. These results suggest that, at contaminated groundwater sites, heterogeneity of groundwater velocity may be one factor that contributes to heterogeneous distribution of biological activity.  相似文献   

15.
A chemical and microbial characterization of lab-scale biostimulation assays with groundwater samples taken from an industrial site in which the aquifer had been contaminated by linear non-sulfonate alkyl benzenes (LABs) was carried out for further field-scale bioremediation purposes. Two lab-scale biodegradability assays were performed, one with a previously obtained gas-oil-degrading consortium and another with the native groundwater flora. Results for the characterization of the groundwater microbial population of the site revealed the presence of an important LAB-degrading microbial population with a strong degrading capacity. Among the microorganisms identified at the site, the detection of Parvibaculum lavamentivorans, which have been described in other studies as alkyl benzene sulfonates degraders, is worth mentioning. Incubation of P. lavamentivorans DSMZ13023 with LABs as reported in this study shows for the first time the metabolic capacity of this strain to degrade such compounds. Results from the biodegradation assays in this study showed that the indigenous microbial population had a higher degrading capacity than the gas-oil-degrading consortium, indicating the strong ability of the native community to adapt to the presence of LABs. The addition of inorganic nutrients significantly improved the aerobic biodegradation rate, achieving levels of biodegradation close to 90%. The results of this study show the potential effectiveness of oxygen and nutrients as in situ biostimulation agents as well as the existence of a complex microbial community that encompasses well-known hydrocarbon- and LAS-degrading microbial populations in the aquifer studied.  相似文献   

16.
This study investigates an innovative dechlorination process using anaerobic granular sludge that was partially exposed to oxygen. The exposure supported a synchronously anaerobic and aerobic bioconversion process that combined reductive dechlorination with aerobic co-oxidation in a sludge granule. Experimental results showed that the highest dechlorination rates of tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride were 6.44, 2.98, 1.70 and 0.97 nmol/gVS day, at initial O2 concentrations of 10, 100, 5 and 0%, respectively. Strictly anaerobic conditions favored the dechlorination of vinyl chloride while absolutely aerobic conditions were preferred for trichloroethene dechlorination. Microaerophilic conditions are suggested to ensure the overall biodegradation of the chlorinated ethenes present in groundwater as a mixture.  相似文献   

17.
Chlorobenzene (CB), a dense nonaqeuous phase liquid (DNAPL), is categorized as a priority pollutant by the US EPA. It enters into ecosystems via solid and liquid waste discharge. Bioremediation is a key technique to remediate such contaminated sites. The present study aimed to isolate a chlorobenzene-degrading bacterium, determine the metabolic pathway for chlorobenzene degradation, and characterize biosurfactant production. Microbacterium sp. strain TAS1CB was isolated from contaminated sites and identified by 16S rRNA gene sequencing. Cells possessing positive chemotaxis for CB indicated their ability to degrade CB. Cells degraded CB via production of chlorobenzene dioxygenase, which converted CB to chlorocatechol. Chlorobenzene dioxygenase production was higher at 7 pH and 30°C. Intermediate metabolite analysis by UV scanning, HPLC, and GC-MS analysis revealed production of chlorocatechol and cis-cis muconate. Thus, Microbacterium was able to degrade CB via an ortho-cleavage pathway. In addition to chlorobenzene dioxygenase production, cells also produced biosurfactant which pseudosolubilized CB and increased degradation rate. Chemical characterization showed it to be a glycolipid-type biosurfactant. A phytotoxity study showed 60% of toxicity decreased after 72 hrs of degradation by isolate.  相似文献   

18.
Groundwater at an industrial site is contaminated with α hexachlorocyclohexane (HCH) and γ -HCH (i.e., lindane) (0.3 to 0.5 ppm). Other contaminants in the 1 to 15 ppm range include 1,2,4-trichlorobenezene (TCB), 1,2-dichlorobenzene (DCB), 1,3-DCB, 1,4-DCB, chlorobenzene (CB), benzene, trichloroethene (TCE), and cis-1,2-dichloroethene (cDCE). The aquifer consists of a shallow layer of soil over fractured dolomite, where most of the contaminant mass resides. The objective of this study was to compare (1) anaerobic reductive dechlorination of the polychlorinated contaminants, followed by aerobic biodegradation of the daughter products (mainly DCBs, CB, and benzene); and (2) aerobic biodegradation of α - and γ -HCH, TCB, DCBs, CB, and benzene, followed by anaerobic reduction of TCE and cDCE to ethene. Conventional wisdom suggests that sequential anaerobic and aerobic conditions are desirable for bioremediating sites contaminated by mixtures of polychlorinated organics. The results of this microcosm study suggest that a sequential aerobic and anaerobic approach may be more successful, although implementing this in the field presents some major challenges. In the dolomite microcosms incubated under aerobic conditions first (59 days), α - and γ -HCH were biodegraded close to the maximum contaminant level for lindane; all of the aromatic compounds were consumed; and there was partial removal of TCE and cDCE (presumptively via cometabolism). The subsequent switch to anaerobic conditions (day 101) yielded reductive dechlorination of the remaining TCE; a significant level of ethene was produced, although some cDCE and VC persisted. In contrast, sequential anaerobic (393 days) and aerobic treatment (498 days) for the dolomite microcosms was ineffective in completely removing the aromatic compounds, α -HCH, cDCE, and VC. For the soil microcosms, both treatment sequences were effective, most likely reflecting a greater abundance of the necessary microbes and electron donor in this part of the site.  相似文献   

19.
Shim H  Hwang B  Lee SS  Kong SH 《Biodegradation》2005,16(4):319-327
Pseudomonas putida and Pseudomonas fluorescens present as a coculture were studied for their abilities to degrade benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) under various growth conditions. The coculture effectively degraded various concentrations of BTEX as sole carbon sources. However, all BTEX compounds showed substrate inhibition to the bacteria, in terms of specific growth, degradation rate, and cell net yield. Cell growth was completely inhibited at 500mgl–1 of benzene, 600mgl–1 of o-xylene, and 1000mgl–1 of toluene. Without aeration, aerobic biodegradation of BTEX required additional oxygen provided as hydrogen peroxide in the medium. Under hypoxic conditions, however, nitrate could be used as an alternative electron acceptor for BTEX biodegradation when oxygen was limited and denitrification took place in the culture. The carbon mass balance study confirmed that benzene and toluene were completely mineralized to CO2 and H2O without producing any identifiable intermediate metabolites.  相似文献   

20.
Intrinsic bioremediation in a solvent-contaminated alluvial groundwater   总被引:1,自引:0,他引:1  
An industrial site contaminated with a mixture of volatile organic compounds in its subsurface differed from previously reported locations in that the contamination consisted of a mixture of chlorinated, brominated, and non-halogenated aromatic and aliphatic solvents in an alluvial aquifer. The source area was adjacent to a river. Of the contaminants present in the aquifer, benzene, toluene, and chlorobenzene (BTC) were of primary concern. Studies of the physical, chemical, and microbiological characteristics of site groundwater were conducted. The studies concentrated on BTC, but also addressed the fate of the other aquifer VOCs. Gas chromatographic analyses performed on laboratory microcosms demonstrated that subsurface microorganisms were capable of BTC degradation. Mineralization of BTC was demonstrated by the release of 14CO2 from radiolabelled BTC. In the field, distribution patterns of nutrients and electron acceptors were consistent with expression of in situ microbial metabolic activity: methane, conductivity, salinity and o-phosphate concentrations were all positively correlated with contaminant concentration; while oxidation-reduction potential, nitrate, dissolved oxygen and sulfate concentrations were negatively correlated. Total aerobes, aerotolerant anaerobes, BTC-specific degraders, and acridine orange direct microscopic microorganism counts were strongly and positively correlated with field contaminant concentrations. The relative concentrations of benzene and toluene were lower away from the core of the plume compared to the less readily metabolized compound, chlorobenzene. Hydrodynamic modeling of electron-acceptor depletion conservatively estimated that 450 kg of contaminant have been removed from the subsurface yearly. Models lacking a biodegradation term predicted that 360 kg of contaminant would reach the river annually, which would result in measurable contaminant concentrations. River surveillance, however, has only rarely detected these compounds in the sediment and then only at trace concentrations. Thus, the combination of field modeling, laboratory studies, and site surveillance data confirm that significant in situ biodegradation of the contaminants has occurred. These studies establish the presence of intrinsic bioremediation of groundwater contaminants in this unusual industrial site subsurface habitat. Received 01 December 1995/ Accepted in revised form 27 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号