首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The net uptake of 45Ca into mitochondria from pancreatic islets is stimulated by substrates that transfer reducing equivalents to various sites of the respiratory chain, such as succinate or glycerol 3-phosphate (site II), malate plus pyruvate (site I) or ascorbate plus TMPD (site III). Diazoxide, a known inhibitor of insulin release in vivo and in vitro, strongly inhibited net 45Ca uptake supported by glycerol phosphate and succinate and weakly inhibited 45Ca uptake supported by the other substrates. These results suggest that diazoxide, although not completely specific, is predominately an inhibitor at site II of the respiratory chain. This result is consistent with previous work that showed diazoxide inhibits the enzyme activity of the mitochondrial glycerol phosphate dehydrogenase in islets. Sodium ion inhibited the net accumulation of 45Ca by islet mitochondria suggesting a similarity between islet mitochondria and those of heart and some other endocrine tissues.  相似文献   

2.
We studied a mouse doubly homozygous for mutations in the genes encoding malic enzyme (EC1.1.1.40) and cytosolic glycerol phosphate dehydrogenase (EC 1.1.1.8) (cGPD). This mouse, which we call the mmgg mouse and which is the product of intercrosses between the Mod-1 mouse and the BALB/cHeA mouse, lacks activity of both enzymes. Like both parental strains the mmgg mouse is completely normal in appearance. cGPD is one of the two enzymes that catalyze the reactions of the glycerol phosphate shuttle. The activity of the other enzyme of the glycerol phosphate shuttle, mitochondrial glycerol phosphate dehydrogenase (EC 1.1.99.5) (mGPD), is abundant in tissues, such as brain, skeletal muscle and the pancreatic islet, suggesting that the glycerol phosphate shuttle is important in these tissues which rapidly metabolize glucose. Cytosolic malic enzyme activity is important for shuttles which transport NADPH equivalents from mitochondria to the cytosol. The major finding of the study was a highly abnormal metabolite pattern in tissues of the mmgg mouse suggesting a block in the glycerol phosphate shuttle due to cGPD deficiency. The metabolite pattern did not suggest that malic enzyme deficiency caused an abnormality. Tissue levels of glycerol phosphate (low) and dihydroxyacetone phosphate (high) were only abnormal in skeletal muscle. Glycolytic intermediates, situated at or before the triose phosphates in the pathway, such as fructose bisphosphate and glyceraldehyde phosphate were increased depending on the tissue. Taken together with previous extensive data on the mouse deficient only in cGPD this suggests a block in glycolysis at the step catalyzed by glyceraldehyde phosphate dehydrogenase caused by an abnormally low NAD/NADH ratio resulting from a nonfunctional glycerol phosphate shuttle. Consistent with this idea the lactate/pyruvate ratio was high in skeletal muscle signifying a low cytosolic NAD/NADH ratio. The mmgg mouse was normal in all other factors studied including blood glucose and serum insulin levels, pancreatic islet mass, insulin release from isolated pancreatic islets, as well as the activities of five metabolic enzymes, including mGPD, in liver, kidney, skeletal muscle and pancreatic islets. cGPD enzyme activity was undetectable in pancreatic islets, 0.5% of normal in liver, and 2.1% of normal in kidney and skeletal muscle. Malic enzyme activity was undetectable in these same tissues.  相似文献   

3.
We surveyed the BALB/cHeA mouse, which lacks cytosolic glycerol phosphate dehydrogenase an enzyme that catalyzes a reaction in the glycerol phosphate shuttle. The other enzyme of this shuttle, mitochondrial glycerol phosphate dehydrogenase, is abundant in skeletal muscle and pancreatic islets suggesting that the shuttle's activity is high in these tissues. Levels of glycerol phosphate (low) and dihydroxyacetone phosphate (high) were very abnormal in nonislet tissue, especially in skeletal muscle. Intermediates situated before the triose phosphates in the glycolysis pathway were increased and those after the triose phosphates were generally low, depending on the tissue. The lactate/pyruvate ratio in muscle was low signifying a low cytosolic NAD/NADH ratio. This suggests that a nonfunctional glycerol phosphate shuttle caused a block in glycolysis at the step catalyzed by glyceraldehyde phosphate dehydrogenase. When exercised, mice were unable to maintain normal ATP levels in skeletal muscle. Blood glucose, serum insulin levels, and pancreatic islet mass were normal. In isolated pancreatic islets insulin release, glucose metabolism and ATP levels were normal, but lactate levels and lactate/pyruvate ratios with a glucose load were slightly abnormal. The BALB/cHeA mouse can maintain NAD/ NADH ratios sufficient to function normally under most conditions, but the redox state is not normal. Glycerol phosphate is apparently formed at a slow rate. Skeletal muscle is severely affected probably because it is dependent on the glycerol phosphate shuttle more than other tissues. It most likely utilizes glycerol phosphate rapidly and, due to the absence of glycerol kinase in muscle, is unable to rapidly form glycerol phosphate from glycerol. Glycerol kinase is also absent in the pancreatic insulin cell, but this cell's function is essentially normal probably because of redundancy of NAD(H) shuttles.  相似文献   

4.
In order to obtain a quantitative estimate of the capacity of the pancreatic islets for provision of cytoplasmic acetyl-coenzyme A and for the turnover of nicotinamide adenine dinucleotide phosphate and its reduced form (NADP+/NADPH), the following enzymes were assayed in islets taken from New Zealand Obese mice: adenosine triphosphate citrate lyase (EC 4.1.3.8), malate dehydrogenase (decarboxylating) (NADP+) (EC 1.1.1.40), glutathione reductase (EC 1.6.4.2) and isocitrate dehydrogenase (NADP+) (EC 1.1.1.42). In addition, the activity of isocitrate dehydrogenase (NAD+) (EC 1.1.1.41) was determined. For comparative purposes the activities in exocrine pancreas, liver, heart muscle, kidney cortex and skeletal muscle were also determined. Specimens of pancreatic islets and the other tissues were microdissected from freeze-dried sections. In comparison with the other tissues, adenosine triphosphate citrate lyase was particularly active in the islets. The NADP+/NAPH-converting enzymes had activities, which suggested a rapid turnover of the islet NADP+/NADPH pool.  相似文献   

5.
Succinate dehydrogenase activities in homogenates of rat and ob/ob mouse pancreatic islets were only 13% of the activities in homogenates of liver and were also several times lower than in homogenates of pancreatic acinar tissue. This indicates that the content of mitochondria in pancreatic islet cells is very low. The very low activity of succinate dehydrogenase is in agreement with the low mitochondrial volume in the cytoplasmic ground substance of pancreatic islet cells as observed in morphometric studies. This may represent the poor equipment of pancreatic islet cells with electron transport chains and thus provide a regulatory role for the generation of reducing equivalents and chemical energy for the regulation of insulin secretion. The activities of succinate dehydrogenase in tissue homogenates of pancreatic islets, pancreatic acinar tissue, and liver were significantly inhibited by malonate and diazoxide but not by glucose, mannoheptulose, streptozotocin, or verapamil. Tolbutamide inhibited only pancreatic islet succinate dehydrogenase significantly, providing evidence for a different behavior of pancreatic islet cell mitochondria. Therefore diazoxide and tolbutamide may affect pancreatic islet function through their effects on succinate dehydrogenase activity. The activities of alpha-glycerophosphate dehydrogenase in homogenates of pancreatic islets and liver from rats and ob/ob mice were in the same range, while activities in homogenates of pancreatic acinar tissue were lower. None of the test agents affected alpha-glycerophosphate dehydrogenase activity. Thus the results provide no support for the recent contention that alpha-glycerophosphate dehydrogenase activity may be critical for the regulation of insulin secretion.  相似文献   

6.
Although the alpha-adrenergic antagonist phentolamine potentiates glucose-stimulated insulin secretion of intact animals, it either does not alter, or it inhibits in vitro insulin secretion. This may be because in the higher concentration used in in vitro studies, phentolamine exerts a second pharmacological effect that counterbalances its primary effect of blocking monoamine action. We recently demonstrated that pancreatic islets contain substantial amounts of monoamine oxidase (MAO), and that MAO inhibitors such as iproniazid and tranylcypromine can alter insulin secretion. In the present study, we determined if other drugs that affect insulin secretion, alter the MAO activity of homogenates of rabbit pancreatic islets (collagenase technique) or liver. Phentolamine, phenoxybenzamine and propranolol (10 muM and 100 muM) inhibit islet and hepatic MAO. Haloperidol (10muM) inhibits hepatic but not islet MAO, while haloperidol (10muM) does not inhibit MAO in either tissue. Ethanol (270 to 2.7mM) inhibits islet MAO. Hepatic MAO is inhibited by high (270 to 180mM) but not by low (27 to 2.7mM) concentrations of ethanol. Collagenase digestion does not increase the sensitivity of islet and liver MAO to inhibition by phentolamine or ethanol. In the absence of added monoamines, phentolamine and phenoxybenzamine do not alter basal or glucose-stimulated insulin secretion from rabbit pancreas. Preincubation of rabbit pancreas with the serotonin precursor 5-hydroxytryptophan (5-HTP) increases the beta cell serotonin content and inhibits glucose-stimulated insulin secretion. Alpha adrenergic antagonists not only fail to block, but actually potentiate the serotonin inhibition of insulin secretion. We conclude that inhibition of islet MAO may cause an increase in islet monoamine content and these monoamines may alter in vitro insulin secretion. One mechanism through which adrenergic antagonists and ethanol modify in vitro insulin secretion may be by inhibiting pancreatic islet MAO.  相似文献   

7.
Yang SJ  Huh JW  Kim MJ  Lee WJ  Kim TU  Choi SY  Cho SW 《Biochimie》2003,85(6):581-586
It has been known that glutamate, generated by glutamate dehydrogenase (GDH), acts as an intracellular messenger in insulin exocytosis in pancreatic beta cells. Here we demonstrate the correlation of GDH activity and insulin release in rat pancreatic islets perfused with 5'-deoxypyridoxal. Perfusion of islets with 5'-deoxypyridoxal, an effective inhibitor of GDH, reduced the islet GDH activity at concentration-dependent manner. Treatment of 5'-deoxypyridoxal up to 2 mM did not affect the cell viability. There was reduction in V(max) values on average about 60%, whereas no changes in K(m) values for substrates and coenzymes were observed. The concentration of GDH on the Western blot analysis and the level of GDH mRNA remained unchanged. The concentration of glutamate decreased by 52%, whereas the concentration of 2-oxoglutarate increased up to 2.3-fold in the presence of 5'-deoxypyridoxal. 5'-Deoxypyridoxal had no effects on inhibition by GTP and activation by ADP or L-leucine of islet GDH. In parallel with the inhibition of GDH activity, perfusion of islets with 5'-deoxypyridoxal reduced insulin release up to 2.5-fold. Although precise mechanism for correlation between GDH activity and insulin release remains to be studied further, our results suggest a possibility that the inhibitory effect of 5'-deoxypyridoxal on islet GDH activity may correlate with its effect on insulin release.  相似文献   

8.
Rat pancreatic islets contain aspartate aminotransferase and malate dehydrogenase, enzymes necessary for the malate aspartate hydrogen shuttle, in both the cytosolic and mitochondrial fractions. When supplied with glutamate and malate, intact mitochondria from islets synthesized aspartate, indicating the mitochondrial segment of the malate aspartate shuttle was reconstituted. Aspartate synthesis was inhibited by aminooxyacetate, an inhibitor of aspartate aminotransferase, and also by butylmalonate, an inhibitor of malate transport across the mitochondrial inner membrane. Each inhibitor decreased insulin release and CO2 production from glucose by pancreatic islets in a concentration-dependent manner. It is concluded that the malate aspartate shuttle may be involved in stimulus secretion coupling for glucose-induced insulin release.  相似文献   

9.
Glyceraldehyde has been known to be an insulin secretagogue for more than 15 years. It has been (reasonably) assumed that glyceraldehyde enters the glycolytic pathway via its phosphorylation by ATP to form glyceraldehyde phosphate, a reaction catalyzed by the enzyme triokinase, and that subsequent metabolism is identical to that of glucose. glucose. However, up to now there have been no studies verifying the presence of triokinase in the pancreatic beta cell. We report here that (1) the activity of triokinase in pancreatic islets is very low, indicating that the activity is intrinsically low and/or the enzyme was rapidly inactivated during the preparation of tissue for assay; (2) the activity is much lower than glucose phosphorylating activity (hexokinase plus glucokinase) in islets, even though glyceraldehyde is a more efficient insulin secretagogue than glucose; (3) glyceraldehyde phosphate dehydrogenase from pancreatic islets can use glyceraldehyde as a substrate in place of glyceraldehyde phosphate (the Vmax of glyceraldehyde phosphate dehydrogenase from islets when glyceraldehyde is the substrate is 20-fold that of triokinase when glyceraldehyde is the substrate); and (4) the Km of glyceraldehyde phosphate dehydrogenase with respect to glyceraldehyde (4.8 mM) is similar to the concentration of glyceraldehyde that gives one-half maximal rates of insulin release from pancreatic islets, whereas the Km of triokinase with respect to glyceraldehyde is much lower (less than 50 microM). These data suggest that besides stimulating insulin release in islets via its entering metabolism by phosphorylation to glyceraldehyde phosphate in the triokinase reaction, glyceraldehyde could be phosphorylated by Pi in the glyceraldehyde phosphate dehydrogenase reaction to form glycerate 1-phosphate which is probably unmetabolizable in islets. The second reaction could drastically increase the NADH/NAD ratio in islets without providing substrates for hydrogen shuttles that reoxidize cytosolic NADH. Since an increased NAD(P)H/NAD(P) ratio is believed to be a key part of the signal for insulin release, such a mechanism would explain the potent insulinotropism of glyceraldehyde in short-term experiments. In addition, the formation of unmetabolizable acids may explain the toxic effects of long-term exposure of islets to glyceraldehyde and why glyceraldehyde causes the beta cell to become acidic, whereas glucose does not.  相似文献   

10.
To gain better insight into the insulin secretory activity of fetal beta cells in response to glucose, the expression of glucose transporter 2 (GLUT-2), glucokinase and mitochondrial glycerol phosphate dehydrogenase (mGDH) were studied. Expression of GLUT-2 mRNA and protein in pancreatic islets and liver was significantly lower in fetal and suckling rats than in adult rats. The glucokinase content of fetal islets was significantly higher than of suckling and adult rats, and in liver the enzyme appeared for the first time on about day 20 of extrauterine life. The highest content of hexokinase I was found in fetal islets, after which it decreased progressively to the adult values. Glucokinase mRNA was abundantly expressed in the islets of all the experimental groups, whereas in liver it was only present in adults and 20-day-old suckling rats. In fetal islets, GLUT-2 and glucokinase protein and their mRNA increased as a function of increasing glucose concentration, whereas reduced mitochondrial citrate synthase, succinate dehydrogenase and cytochrome c oxidase activities and mGDH expression were observed. These findings, together with those reported by others, may help to explain the decreased insulin secretory activity of fetal beta cells in response to glucose.  相似文献   

11.
The p21-activated kinase PAK1 is implicated in tumorigenesis, and efforts to inhibit PAK1 signaling as a means to induce tumor cell apoptosis are underway. However, PAK1 has also been implicated as a positive effector of mechanisms in clonal pancreatic beta cells and skeletal myotubes that would be crucial to maintaining glucose homeostasis in vivo. Of relevance, human islets of Type 2 diabetic donors contained ~80% less PAK1 protein compared with non-diabetics, implicating PAK1 in islet signaling/scaffolding functions. Mimicking this, islets from PAK1(-/-) knock-out mice exhibited profound defects in the second/sustained-phase of insulin secretion. Reiteration of this specific defect by human islets treated with the PAK1 signaling inhibitor IPA3 revealed PAK1 signaling to be of primary functional importance. Analyses of human and mouse islet beta cell signaling revealed PAK1 activation to be 1) dependent upon Cdc42 abundance, 2) crucial for signaling downstream to activate ERK1/2, but 3) dispensable for cofilin phosphorylation. Importantly, the PAK1(-/-) knock-out mice were found to exhibit whole body glucose intolerance in vivo. Exacerbating this, the PAK1(-/-) knock-out mice also exhibited peripheral insulin resistance. Insulin resistance was coupled to ablation of insulin-stimulated GLUT4 translocation in skeletal muscle from PAK1(-/-) knock-out mice, and in sharp contrast to islet beta cells, skeletal muscle PAK1 loss was underscored by defective cofilin phosphorylation but normal ERK1/2 activation. Taken together, these data provide the first human islet and mammalian in vivo data unveiling the key and crucial roles for differential PAK1 signaling in the multi-tissue regulation of whole body glucose homeostasis.  相似文献   

12.
Rat pancreatic islets contain a Ca2+-activated and thiol-dependent transglutaminase (EC 2.3.2.13) comparable in activity with that found in rat liver, lung and spleen. The Ca2+-dependence of this enzyme is such that half-maximal velocity was obtained in the region of 40 microM. Preincubation of rat islets with primary-amine substrates of transglutaminase (monodansylcadaverine, methylamine, ethylamine, propylamine and cystamine) led to an inhibition of glucose-stimulated insulin release by these amines. Kinetic analysis of the competitive substrates methylamine, monodansylcadaverine, propylamine and ethylamine for their ability to inhibit islet transglutaminase activity indicated a potency that matched their ability to inhibit glucose-stimulated insulin release. When these amines were tested for their effects on glucose-stimulated protein synthesis and glucose utilization, the most potent inhibitor of insulin release, monodansylcadaverine, had no effect on either process at 100 microM. The amines cystamine, ethylamine, methylamine and propylamine had variable effects on these metabolic processes. For ethylamine, methylamine and propylamine, concentrations were found which inhibited glucose-stimulated insulin release in a manner which was found to be independent of their effects on either glucose oxidation or protein synthesis. Primary amines may therefore inhibit insulin release through their incorporation by islet transglutaminase into normal cross-linking sites. A role for protein cross-linking in the secretory mechanism is suggested.  相似文献   

13.
Diabetes is a major complication of chronic Glucocorticoids (GCs) treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1) and 2 (Tph2), leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.  相似文献   

14.
Glucose homeostasis is determined by insulin secretion from the ß-cells in pancreatic islets and by glucose uptake in skeletal muscle and other insulin target tissues. While glutamate dehydrogenase (GDH) senses mitochondrial energy supply and regulates insulin secretion, its role in the muscle has not been elucidated. Here we investigated the possible interplay between GDH and the cytosolic energy sensing enzyme 5′-AMP kinase (AMPK), in both isolated islets and myotubes from mice and humans. The green tea polyphenol epigallocatechin-3-gallate (EGCG) was used to inhibit GDH. Insulin secretion was reduced by EGCG upon glucose stimulation and blocked in response to glutamine combined with the allosteric GDH activator BCH (2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid). Insulin secretion was similarly decreased in islets of mice with ß-cell-targeted deletion of GDH (ßGlud1−/−). EGCG did not further reduce insulin secretion in the mutant islets, validating its specificity. In human islets, EGCG attenuated both basal and nutrient-stimulated insulin secretion. Glutamine/BCH-induced lowering of AMPK phosphorylation did not operate in ßGlud1−/− islets and was similarly prevented by EGCG in control islets, while high glucose systematically inactivated AMPK. In mouse C2C12 myotubes, like in islets, the inhibition of AMPK following GDH activation with glutamine/BCH was reversed by EGCG. Stimulation of GDH in primary human myotubes caused lowering of insulin-induced 2-deoxy-glucose uptake, partially counteracted by EGCG. Thus, mitochondrial energy provision through anaplerotic input via GDH influences the activity of the cytosolic energy sensor AMPK. EGCG may be useful in obesity by resensitizing insulin-resistant muscle while blunting hypersecretion of insulin in hypermetabolic states.  相似文献   

15.
Pseudo-alpha- and pseudo-beta-DL-glucose, the isomers of 5-hydroxymethyl-1,2,3,4-cyclohexanetetrol with alpha-gluco and beta-gluco configurations, were used as synthetic analogs of glucose anomers to study the mechanism of glucose-stimulated insulin release by pancreatic islets. Neither isomer was phosphorylated by liver glucokinase nor stimulated insulin release from islets. Incubation of islets with pseudo-alpha-DL-glucose resulted in a considerable accumulation of the glucose analog, probably the D form, in islets. The alpha-isomer, but not the beta-isomer, inhibited both glucose-stimulated insulin release (44% inhibition at 20 mM) and islet glucokinase activity (36% inhibition at 20 mM) in a concentration-dependent manner and to a comparable degree. These results strongly suggest that the inhibition of glucose-stimulated insulin release by pseudo-alpha-DL-glucose is due to the inhibition of islet glucokinase by the glucose analog, providing additional evidence for the essential role of islet glucokinase in glucose-stimulated insulin release.  相似文献   

16.
Monoamine oxidase (MAO) is regarded as a mitochondrial enzyme. This enzyme localizes on the outer membrane of mitochondria. There are two kinds of MAO isozymes, MAO type A (MAOA) and type B (MAOB). Previous studies have shown that MAOB activity is found in the pancreatic islets. This activity in the islets is increased by the fasting-induced decrease of plasma glucose level. Islet B cells contain monoamines in their secretory granules. These monoamines inhibit the secretion of insulin from the B cells. MAOB is active in degrading monoamines. Therefore, MAOB may influence the insulin-secretory process by regulating the stores of monoamines in the B cells. However, it has not been determined whether MAOB is localized on B cells or other cell types of the islets. In the present study, we used both double-labeling immunofluorescence histochemical and electron microscopic immunohistochemical methods to examine the subcellular localization of MAOB in rat pancreatic islets. MAOB was found in the mitochondrial outer membranes of glucagon-secreting cells (A cells), insulin-secreting cells (B cells), and some pancreatic polypeptide (PP)-secreting cells (PP cells), but no MAOB was found in somatostatin-secreting cells (D cells), nor in certain other PP cells. There were two kinds of mitochondria in pancreatic islet B cells: one contains MAOB on their outer membranes, but a substantial proportion of them lack this enzyme. Our findings indicate that pancreatic islet B cells contain MAOB on their mitochondrial outer membranes, and this enzyme may be involved in the regulation of monoamine levels and insulin secretion in the B cells.  相似文献   

17.
Recent evidence of a pyruvate malate shuttle capable of transporting a large amount of NADPH equivalents out of mitochondria in pancreatic islets suggests that cytosolic NADP(H) plays a role in beta cell metabolism. To obtain clues about these processes the activities of several NADPH-utilizing enzymes were estimated in pancreatic islets. Low levels of pyrroquinolone quinone (PQQ) and low levels of enzyme activity that reduce PQQ were found in islets. Low activities of palmitoyl-CoA and stearoyl-CoA desaturases were also detected. Significant activities of glutathione reductase, aldose reductase (EC.1.1.1.21) and aldehyde reductase (EC.1.1.1.2) were present in islets. Potent inhibitors of aldehyde and aldose reductases inhibited neither glucose-induced insulin release nor glucose metabolism in islets indicating that these reductases are not directly involved in glucose-induced insulin reaction. Over 90% of aldose reductase plus aldehyde reductase enzyme activity was present in the cytosol. Kinetic and chromatographic studies indicated that 60-70% of this activity in cytosol was due to aldehyde reductase and the remainder due to aldose reductase. Aldehyde reductase-like enzyme activity, as well as aldose reductase immunoreactivity, was detected in rat islet plasma membrane fractions purified by a polyethylene glycol-Dextran gradient or by a sucrose gradient. This is interesting in view of the fact that voltage-gated potassium channel beta subunits that contain aldehyde and aldose reductase-like NADPH-binding motifs have been detected in plasma membrane fractions of islets [Receptors and Channels 7: 237-243, 2000] and suggests that NADPH might have a yet unknown function in regulating activity of these potassium channels. Reductases may be present in cytosol to protect the insulin cell from molecules that cause oxidative injury.  相似文献   

18.
The mitochondria play a pivotal role in regulating glucose-induced insulin secretion in the pancreatic beta cell. We have recently demonstrated that glutamate derived from mitochondria participates directly in the stimulation of insulin exocytosis. In the present study, mitochondria isolated from the beta cell line INS-1E generated glutamate when incubated with the tricarboxylic acid cycle intermediate succinate. The generation of glutamate correlated with stimulated mitochondrial activity monitored as oxygen consumption and was inhibited by the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Glutamate is formed by the mitochondrial enzyme glutamate dehydrogenase from alpha-ketoglutarate. Transient overexpression of glutamate dehydrogenase in INS-1E cells resulted in potentiation of glucose-stimulated hormone secretion without affecting basal release. These results further point to glutamate as an intracellular messenger playing a key role in the control of insulin exocytosis.  相似文献   

19.
1. The ability of a range of phenothiazines to inhibit activation of brain phosphodiesterase by purified calmodulin was studied. Trifluoperazine, prochlorperazine and 8-hydroxyprochlorperazine produced equipotent dose-dependent inhibition with half-maximum inhibition at 12mum. When tested at 10 or 50mum, 7-hydroxyprochlorperazine was a similarly potent inhibitor. However, trifluoperazine-5-oxide and N-methyl-2-(trifluoromethyl)phenothiazine were ineffective at concentrations up to 50mum, and produced only a modest inhibition at 100mum. 2. The same phenothiazines were tested for their ability to inhibit activation of brain phosphodiesterase by boiled extracts of rat islets of Langerhans. At a concentration of 20mum, 70-80% inhibition was observed with trifluoperazine, prochlorperazine, 7-hydroxyprochlorperazine or 8-hydroxyprochlorperazine, whereas trifluoperazine-5-oxide and N-methyl-2-(trifluoromethyl)phenothiazine were less effective. 3. The effect of these phenothiazines on insulin release from pancreatic islets was studied in batch-type incubations. Insulin release stimulated by glucose (20mm) was markedly inhibited by 10mum-trifluoperazine or -prochlorperazine and further inhibited at a concentration of 20mum. 8-Hydroxyprochlorperazine (20mum) was also a potent inhibitor but 7-hydroxyprochlorperazine (20mum) elicited only a modest inhibition of glucose-stimulated insulin release; no inhibition was observed with trifluoperazine-5-oxide or N-methyl-2-(trifluoromethyl)phenothiazine. 4. Trifluoperazine (20mum) markedly inhibited insulin release stimulated by leucine or 4-methyl-2-oxopentanoate in the absence of glucose, and both trifluoperazine and prochlorperazine (20mum) decreased insulin release stimulated by glibenclamide in the presence of 3.3mm-glucose. 5. None of the phenothiazines affected basal insulin release in the presence of 2mm-glucose. 6. Trifluoperazine (20mum) did not inhibit islet glucose utilization nor the incorporation of [(3)H]leucine into (pro)insulin or total islet protein. 7. Islet extracts catalysed the incorporation of (32)P from [gamma-(32)P]ATP into endogenous protein substrates. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis resolved several phosphorylated bands, but incorporation was slight. However, calmodulin in the presence of Ca(2+) greatly enhanced incorporation: the predominant phosphorylated band had an estimated mol.wt. of 55000. This enhanced incorporation was abolished by trifluoperazine, but not by cyclic AMP-dependent protein kinase inhibitor protein. 8. These results suggest that islet phosphodiesterase-stimulating activity is similar to, although not necessarily identical with, calmodulin from skeletal muscle; that islet calmodulin may play an important role in Ca(2+)-dependent stimulus-secretion coupling in the beta-cell; and that calmodulin may exert part at least of its effect on secretion via phosphorylation of endogenous islet proteins.  相似文献   

20.
Although it is agreed that autoimmune destruction of pancreatic islets in diabetic BB rats is rapid, reports of endocrine cell content of islets from BB diabetic rats at the time of onset of diabetes vary considerably. Because of the rapid onset of the disease (hours) and the attendant changes in islet morphology and insulin secretion, it was the aim of this study to compare islet beta-cell numbers to other islet endocrine cells as close to the time of onset of hyperglycemia as possible (within 12 h). As it has been reported that hyperglycemia renders the beta cell insensitive to glucose, the early effects of different levels of insulin therapy (well-controlled vs. poorly controlled glycemia) on islet morphology and insulin secretion were examined. When measured within 12 h of onset, insulin content of BB diabetic islets, measured by morphometric analysis or pancreatic extraction, was 60% of insulin content of control islets. Despite significant amounts of insulin remaining in the pancreas, 1-day diabetic rats exhibited fasting hyperglycemia and were glucose intolerant. The insulin response from the isolated perfused pancreas to glucose and the glucose-dependent insulinotropic hormone, gastric inhibitory polypeptide (GIP), was reduced by 95%. Islet content of other endocrine peptides, glucagon, somatostatin, and pancreatic polypeptide, was normal at onset and at 2 weeks post onset. A group of diabetic animals, maintained in a hyperglycemic state for 7 days with low doses of insulin, were compared with a group kept normoglycemic by appropriate insulin therapy. No insulin could be detected in islets of poorly controlled diabetics, while well-controlled animals had 30% of the normal islet insulin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号