首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cultured soybean cell line, SB-1 was used to evaluate the initial interaction between the soybean cells andRhizobium japonicum. Co-culturing ofR. japonicum with SB-1 cells in suspension resulted in strain-specific polar attachment. This attachment can be inhibited by galactose and antibodies raised against seed soybean agglutinin (SBA). A lectin was purified from SB-1 cells which shares properties with SBA in terms of immunological reactivity, sugar binding activity, polypeptide molecular weight and peptide maps. When the SB-1 cells were co-cultured withR. japonicum for three weeks in solid agar medium, histological staining revealed bacterial penetration into certain SB-1 cells. Furthermore, there were focal regions of cells with prominent nuclei representing actively proliferating regions. These observations are analogous to that ofin vivo nodule initiation in soybean roots.  相似文献   

2.
Summary Capsular polysaccharides were isolated fromRhizobium japonicum (61A76NS) and conjugated to a fluorescent dye to determine if the specificity in theRhizobium japonicum-soybean symbiosis is expressed by a component (lectin) located on soybean roots which binds to the sugars of the bacterial capsules.The conjugated Fraction A capsular polysaccharides ofR. japonicum bound only to the root hair tips of soybean seedlings. The polysaccharide would not bind specifically to the roots of clover or alfalfa seedlings. Rhodamine conjugated polysaccharides ofR. japonicum could be inhibited from binding to soybean root hairs by the addition of N-acetylgalactosamine or galactose, effective hapten inhibitors of this type of binding. This is the first report of hapten-reversible binding of an isolated rhizobial component to soybean root hairs, the differentiated epidermal cells which are subsequently infected by this nitrogen-fixing symbiont.Paper number6046 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina.  相似文献   

3.
Summary A comparative study of soybean lectin binding byRhizobium japonicum 61A76 grown in yeast extract mannitol medium supplemented with soil extract showed that it produced cells with greater lectin binding capacity, larger cell size and a higher percentage of coccoid forms than those produced in yeast extract mannitol medium alone.  相似文献   

4.
A field isolate of Bradyrhizobium japonicum which failed to attach polarly or firmly to soybean roots was compared with the laboratory isolate I-110 for its relative rate of growth, piliation, attachment and nodulation. Both isolates grew at a comparable rate in yeast extract-gluconate medium as well as in soybean root exudate, produced comparable amounts of soybean lectin binding polysaccharide, infected through curled root hairs and developed effective nodules. Approximately 5% of cells in cultures of 110 possessed pili but none were detected in cultures of 1007 by electron microscopy. Light microscopic observations of root hairs from roots exposed to 1007 and 110 inoculum showed no polarly attached cells of 1007 and approximately 100 cells of 110 polarly attached per mm root hair length. Plate counting of firmly bound cells released by sonication indicated that the number of 1007 cells firmly adhering was at least 1000-fold lower than the number of 110 cells attached. The significance of polar, firm and weak attachment in the initiation of symbiotic interactions is discussed.Dedicated to the menory of Harry E. Calvert  相似文献   

5.
In previous studies, evidence that the Bradyrhizobium japonicum lectin, designated BJ38, mediated the observed carbohydrate-specific binding activities of the bacteria, including the saccharide-specific adhesion to soybean root cells was presented. In the present study, it is found that both B. japonicum, as well as the purified BJ38, bind predominantly to young emergent root hairs of soybean roots and, to a much lesser extent, to the root cap, mature root hairs, epicotyl or hypocotyl regions. Thus, the region of preferential binding for both the bacteria and the isolated lectin coincide with the region of the soybean root most susceptible to B. japonicum infection. The importance of bacterial binding for the nodulation process was studied by comparing the nodulation efficiency of binding-deficient mutants N4 and N6 to the wild-type. These mutants had been shown to be defective in carbohydrate recognition, as represented by their diminished ability to bind to soybean roots. BJ38 was immunolocalized to one pole of the cell surface of wild-type B. japonicum, but no surface labeling could be detected on either mutant. Moreover, both N4 and N6 showed a substantial decrease in nodulation activity, relative to the wild-type. These results provide additional evidence that the carbohydrate binding activity of B. japonicum, most probably mediated by BJ38, may play an important role(s) in the initial phases of the infection process.  相似文献   

6.
In this work the effect of inoculation with Bradyrhizobium japonicum S2492 on soybean (Glycine max (L) Merr) growth, nodulation and yield in nitrogen-deficient soil of Uzbekistan was studied. The field experiments were carried out in Tashkent Province of Uzbekistan in a randomized complete block design with four replicates of each treatment. The results revealed positive effects on growth, nodule number and yields of soybean after inoculation with B. japonicum S2492. The yield of soybean varieties was 48% higher for inoculated than for uninoculated plants. The effect of the inoculation was specific for variety but not for growth type. The protein and oil contents of seeds also increased after inoculation. It was concluded that B. japonicum S2492 can be considered as a biofertilizer for increasing the productivity of soybean in nitrogen-deficient soils in Uzbekistan.  相似文献   

7.
Salinity and drought induce osmotic stress in plants and nodulating bacteria. The introduction of soybean in areas with higher soil salt contents or periods of drought pose a challenge for the rhizobial inoculants used to improve nodulation and enhance nitrogen fixation. Bradyrhizobium japonicum is a slow-growing rhizobium used for soybean inoculation that was previously regarded as salt-sensitive. We tested the survival ability of cultures of B. japonicum E109 at the exponential and stationary phases of growth in liquid culture medium against different concentrations of NaCl. We found that stationary-phase cells could tolerate higher levels of salt than exponential-phase cells. This result suggested that the physiological manipulation of the cultures could improve the salt tolerance of this strain. Nonetheless, we also found that exponential-phase cells adapted significantly better to two key situations that a commercial product must face, survival in liquid formulations and survival in soil microcosms resembling conditions of drought. These results suggest that the use of actively growing cells could be an improvement in the production of inoculants. However, it is not cost-effective, because bacteria should be harvested at a time when cell density is lower than that of early stationary-phase cultures, which are normally used in the industry. To overcome this drawback we proved that a fed-batch system can produce exponential-phase cultures with higher cell densities and able to produce liquid inoculants with acceptable survival rates.  相似文献   

8.
Pan  B.  Smith  D.L. 《Plant and Soil》2000,223(1-2):237-244
Genistein is the major root produced isoflavonoid inducer of nod genes in the symbiosis between B. japonicum and soybean plants. Reduction in the isoflavonoid content of the host plants has recently been suggested as a possible explanation for the inhibition of mineral nitrogen (N) on the establishment of the symbiosis. In order to determine whether genistein addition could overcome this inhibition, we incubated B. japonicum cells (strain 532C) with genistein. Mineral N (in the form of NH4NO3) was applied at 0, 20 and 100 kg ha-1. The experiments were conducted on both a sandy-loam soil and a clay-loam soil. Preincubation of B. japonicum cells with genistein increased soybean nodule number and nodule weight, especially in the low-N-containing sandy-loam soil and the low N fertilizer treatment. Plant growth and yield were less affected by genistein preincubation treatments than nitrogen assimilation. Total plant nitrogen content was increased by the two genistein preincubation treatments at the early flowering stage. At maturity, shoot and total plant nitrogen contents were increased by the 40 μM genistein preincubation treatment at the sandy-loam soil site. Total nitrogen contents were increased by the 20 μM genistein preincubation treatment only at the 0 and 20 kg ha-1 nitrate levels in clay-loam soil. Forty μM genistein preincubation treatment increased soybean yield on the sandy-loam soil. There was no difference among treatments for 100-seed weight. The results suggest that preincubation of B. japonicum cells with genistein could improve soybean nodulation and nitrogen fixation, and at least partially overcome the inhibition of mineral nitrogen on soybean nodulation and nitrogen fixation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Goos  R. J.  Johnson  B. E.  Carr  P. M. 《Plant and Soil》2001,235(2):127-133
On fields with no history of soybean (Glycine max (L.) Merr.) production, inoculation alone is often inadequate to provide for adequate nodulation the first time this crop is grown. The objective of this study was to determine if inoculation of spring wheat (Triticum aestivum L.) seed with Bradyrhizobium japonicum would lead to an increase of B. japonicum numbers in the soil, and improve nodulation of a subsequent soybean crop. In the greenhouse, wheat seed inoculation increased B. japonicum numbers from undetectable numbers to >9000 g–1 of soil, whereas the numbers of introduced B. japonicum declined in unseeded pots. In the field, inoculation of wheat seed increased B. japonicum numbers in the soil from undetectable levels to >4000 g–1 the following year. When soybean seed was inoculated, but grown in soil devoid of B. japonicum, nodules formed only near the point of seed placement. The heaviest nodulation, and widest distribution of nodules in the topsoil were found whenB. japonicum was established the year before by wheat seed inoculation, plus soybean seed inoculation. Wheat seed inoculation the year before growing soybean, combined with proper soybean seed inoculation, should provide for abundant nodulation the first time soybean is grown on a field.  相似文献   

10.
In short-season soybean production areas, low soil temperature is the major factor limiting plant growth and yield. The decreases in soybean yield at low temperatures are mainly due to nitrogen limitation. Genistein, the most effective plant-to-bacterium signal in the soybean (Glycine max (L.) Merr.) nitrogen fixation symbiosis, was used to pretreat Bradyrhizobium japonicum. We have previously reported that this increased soybean nodulation and nitrogen fixation in growth chamber studies. Two field experiments were conducted on two adjacent sites in 1994 to determine whether the incubation of B. japonicum with genistein, prior to application as an inoculant, or genistein, without B. japonicum, applied onto seeds in the furrow at the time of planting, increased soybean grain yield and protein yield in short season areas. The results of these experiments indicated that genistein-preincubated bradyrhizobia increased the grain yield and protein yield of AC Bravor, the later maturing of the two cultivars tested. Genistein without B. japonicum, applied onto seeds in the furrow at the time of planting also increased both grain and protein yield by stimulation of native soil B. japonicum. Interactions existed between genistein application and soybean cultivars, and indicated that the cultivar with the greatest yield potential responded more to genistein addition.  相似文献   

11.
The exopolysaccharide (EPS) is an extracellular molecule that in Bradyrhizobium japonicum affects bacterial efficiency to nodulate soybean. Culture conditions such as N availability, type of C-source, or culture age can modify the amount and composition of EPS. To better understand the relationship among these conditions for EPS production, we analyzed their influence on EPS in B. japonicum USDA 110 and its derived mutant ΔP22. This mutant has a deletion including the 3′ region of exoP, exoT, and the 5′ region of exoB, and produces a shorter EPS devoid of galactose. The studies were carried out in minimal media with the N-source at starving or sufficient levels, and mannitol or malate as the only C-source. Under N-starvation there was a net EPS accumulation, the levels being similar in the wild type and the mutant with malate as the C-source. By contrast, the amount of EPS diminished in N-sufficient conditions, being poyhydroxybutyrate accumulated with culture age. Hexoses composition was the same in both N-situations, either with mannitol or malate as the only C-source, in contrast to previous observations made with different strains. This result suggests that the change in EPS composition in response to the environment is not general in B. japonicum. The wild type EPS composition was 1 glucose:0.5 galactose:0.5 galacturonic acid:0.17 mannose. In ΔP22 the EPS had no galactose but had galacturonic acid, thus indicating that it was not produced from oxidation of UDP-galactose. Infectivity was lower in ΔP22 than in USDA 110. When the mutant infectivity was compared between N-starved or N-sufficient cultures, the N-starved were not less infective, despite the fact that the amounts of altered EPS produced by this mutant under N-starvation were higher than in N-sufficiency. Since this altered EPS does not bind soybean lectin, the interaction of EPS with this protein was not involved in increasing ΔP22 infectivity under N-starvation.  相似文献   

12.
Hemagglutinating proteins were isolated by affinity chromatography from seeds of each of five cultivars of soybeans (Clycine max (L.) Merr.) previously reported to lack detectable lectin (S.P. Pull et al., 1978; Science 200, 1277). Quantities were between 1,000 and 10,000 times less than that found in the seeds of the reference cultivar, Chippewa. The sensitivity of the hemagglutinating assay was 0.05 g ml-1. Hemagglutinating activity was demonstrated in affinity-purified fractions from bulk seeds and seeds from individual plants in two cultivars, 30–70% ammonium-sulfate-precipitable fractions of seeds from individual plants of all five cultivars, and in whole crude extracts of individual seeds from each cultivar. In all instances, hemagglutinating activity was inhibited by galactose, anti-soybean agglutinin (SBA), and lectin-binding polysaccharide produced by Rhizobium japonicum. Affinity-purified lectin from seeds of a single Columbia plant was labeled with fluorescein isothiocyanate (FITC) and observed by fluorescence microscopy to bind to R. japonicum cells with specificity, intensity and localization indistinguishable from FITC-SBA. Lectins from distinguishable from FITC-SBA. Lectins from three cultivars in sufficiently high concentration for study had molecular properties very similar to Chippewa SBA.Abbreviations FITC fluorescein isothiocyanate - IgG immunoglobulin G - SBA soybean agglutinin  相似文献   

13.
Efficiency of nodule initiation in cowpea and soybean   总被引:2,自引:0,他引:2       下载免费PDF全文
When serial dilutions of a suspension of Bradyrhizobium japonicum strain 138 were inoculated onto both soybean and cowpea roots, the formation of nodules in the initially susceptible region of the roots of both hosts was found to be linearly dependent on the log of the inoculum dosage until an optimum dosage was reached. Approximately 30- to 100-fold higher dosages were required to elicit half-maximal nodulation on cowpea than on soybean in the initially susceptible zone of the root. However, at optimal dosages, about six times as many nodules formed in this region on cowpea roots than on soybean roots. There was no appreciable difference in the apparent rate of nodule initiation on these two hosts nor in the number of inoculum bacteria in contact with the root. These results are consistent with the possibility that cowpea roots have a substantially higher threshold of response to symbiotic signals from the bacteria than do soybean roots. Storage of B. japonicum cells in distilled water for several weeks did not affect their viability or efficiency of nodule initiation on soybean. However, the nodulation efficiency of these same cells on cowpea diminished markedly over a 2 week period. These differential effects of water storage indicate that at least some aspects of signal production by the bacteria during nodule initiation are different on the two hosts. Mutants of B. japonicum 138 defective in synthesis of soybean lectin binding polysaccharide were defective in their efficiency of nodule initiation on soybean but not on cowpea. These results also suggest that B. japonicum may produce different substances to initiate nodules on these two hosts.  相似文献   

14.
The influence of rhizosphere/rhizoplane culture conditions on the ability of various rhizobia to bind soybean seed lectin (SBL) was examined. Eleven strains of the soybean symbiont, Rhizobium japonicum, and six strains of various heterologous Rhizobium species were cultured in root exudate of soybean (Glycine max [L.] Merr.) and in association with roots of soybean seedlings which were growing either hydroponically or in montmorillonite clay soil amendment (Turface). All 11 of the R. japonicum strains developed biochemically specific receptors for the lectin when cultured under these conditions, whereas six of the 11 did not develop such receptors when cultured in synthetic salts medium. Two cowpea strains also developed receptors for SBL. The other four heterologous strains of rhizobia gave no evidence of biochemically specific SBL binding in either synthetic salts media or rhizosphere/rhizoplane cultures. These results demonstrate that the environment provided by plant roots is an important factor in the development of specific lectin receptors on the cell surface of R. japonicum.  相似文献   

15.
Experiments were undertaken to determine the effect ofPseudomonas fluorescens on nodulation of soybean by two strains ofBradyrhizobium japonicum, USDA I-110 and 61A76.Pseudomonas fluorescens can enhance the nodulation ability ofB. japonicum. Preincubation ofB. japonicum withP. fluorescens before inoculation further increased the level of nodulation.  相似文献   

16.
Pili (fimbriae) were observed on cells of each of the five strains of Bradyrhizobium japonicum and the one strain of Rhizobium trifolii examined. Pili on B. japonicum were about 4 nm in diameter and polarly expressed. Piliated cells were estimated by transmission electron microscopy and hydrophobic attachment to polystyrene to constitute only a small percentage of the total population. The proportion of piliated cells in these populations was dependent on culture age in some strains. Piliated B. japonicum cells were selectively and quantitatively removed from suspension when cultures were incubated with either soybean roots or hydrophobic plastic surfaces, indicating that pili were involved in the attachment of the bacteria to these surfaces. Pili from B. japonicum 110 ARS were purified and found to have a subunit molecular weight of approximately 21,000. Treatment of B. japonicum suspensions with antiserum against the isolated pili reduced attachment to soybean roots by about 90% and nodulation by about 80%. Pili appear to be important mediators of attachment of B. japonicum to soybean roots under the conditions examined.  相似文献   

17.
The influence of five Thai soybean cultivars on nodulation competitiveness of four Bradyrhizobium japonicum strains was investigated. Cultures of B. japonicum strains THA5, THA6, USDA110 and SEMIA5019 were mixed with each other prior to inoculating germinated soybean seeds growing in Leonard jars with nitrogen-free nutrient solution. At harvest, nodule occupancy by each strain was determined by a fluorescent antibody technique. The term ‘general competitive ability’ was introduced to describe the average competitive nodule occupancy of a strain in paired co-inoculation with a number of strains on soybean. The nodule occupancies by an individual strain were directly correlated with the proportions of that strain in the inoculum mixtures. USDA110 showed higher nodulation competitiveness than the other strains on three of the five cultivars. The Thai strain THA6 appeared to be more competitive than USDA110 on cultivar SJ5. Thus, nodulation competitiveness of the B. japonicum strains was affected by the cultivars of soybean used. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Cultures of Rhizobium japonicum were grown in a defined medium and then placed in a transfilter-apparatus. Suspension cultures of soybean root cells were grown in Gamborg's B-5 defined medium and then were placed in a second chamber of this apparatus. The plant-cell medium was renewed under conditions shown to give partial synchrony in soybean cell cultures. Sampling of rhizobia showed that acetylene reduction activity could be obtained after approximately four days in the transfilter-apparatus. Criteria for precluding contaminations have been listed. This is the first report on the activation of Rhizobium japonicum in transfilter suspension cultures using defined media.  相似文献   

19.
Two strains of Bradyrhizobium japonicum, recognizable by their intrinsic resistance to high levels of antibiotics and their serological features were introduced into three calcareous soils under field conditions. These strains were re-isolated 16 or 20 years later and compared with the parental strains kept lyophilized. In the Dijon location, the survival was high although soybean was never grown in the field. But the B. japonicum completely disappeared in the Montpellier field after 10 years under vineyard. In the Toulouse field after the two initially introduced strains, inoculation of subsequent soybean crops with a new strain enabled this strain to occupy 70–80% of the nodules; these results suggest that under such conditions the problem of competition can be solved by repeated inoculation. In this field, the number of introduced B. japonicum remained high during 4 years without soybeans, but a new inoculation would be necessary after 5 years. In the two fields where the survival was high, the two strains remained at about the same relative level as at introduction, there was no detectable exchange of characters between them. With regards to agronomic characteristics, there were no important changes in the competitivity of the strains. Among the eight field isolates tested in a greenhouse for efficiency by comparison with eight lyophilized isolates, seven showed no significant difference for the total weight of soybean or seed yield but one field isolate showed a loss of efficiency corresponding to 27% less seed weight. This long-term experiment allowed us to conclude that the B. japonicumstrains used were stable for many characters, but variations in efficiency may rarely occur.  相似文献   

20.
Summary Lipopolysaccharides (LPS) were extracted from two strains ofRhizobium japonicum (61A76NS and 3I1b110-I). The extracted LPS was purified by gel filtration column chromatography and the amount of 2-keto-3-deoxyoctonate (KDO) was determined. Column purified LPS from both strains were conjugated to rhodamine isothiocyanate on celite to examine binding of this purified, labeled surface component to aseptically grownGlycine soja (wild soybean) seedlings as a basis for symbiotic specificity using fluorescent microscopy. Rhodamine conjugated LPS from both strains ofRhizobium japonicum did not exhibit specific binding to wild soybean seedling roots.Paper no. 8130 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27650, USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号