首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
ABSTRACT

Exposure to light at night results in disruption of endogenous circadian rhythmicity and/or suppression of pineal melatonin, which can consequently lead to acute or chronic adverse health problems. In the present study, we investigated whether exposure to very dim light or very bright light for a short duration influences melatonin suppression, subjective sleepiness, and performance during exposure to constant moderately bright light. Twenty-four healthy male university students were divided into two experimental groups: Half of them (mean age: 20.0 ± 0.9 years) participated in an experiment for short-duration (10 min) light conditions of medium intensity light (430 lx, medium breaks) vs. very dim light (< 1 lx, dim breaks) and the other half (mean age: 21.3 ± 2.5 years) participated in an experiment for short-duration light conditions of medium intensity light (430 lx, medium breaks) vs. very bright light (4700 lx, bright breaks). Each simulated night shift consisting of 5 sets (each including 50-minute night work and 10-minute break) was performed from 01:00 to 06:00 h. The subjects were exposed to medium intensity light (550 lx) during the night work. Each 10-minute break was conducted every hour from 02:00 to 06:00 h. Salivary melatonin concentrations were measured, subjective sleepiness was assessed, the psychomotor vigilance task was performed at hourly intervals from 21:00 h until the end of the experiment. Compared to melatonin suppression between 04:00 and 06:00 h in the condition of medium breaks, the condition of dim breaks significantly promoted melatonin suppression and the condition of bright breaks significantly diminished melatonin suppression. However, there was no remarkable effect of either dim breaks or bright breaks on subjective sleepiness and performance of the psychomotor vigilance task. Our findings suggest that periodic exposure to light for short durations during exposure to a constant light environment affects the sensitivity of pineal melatonin to constant light depending on the difference between light intensities in the two light conditions (i.e., short light exposure vs. constant light exposure). Also, our findings indicate that exposure to light of various intensities at night could be a factor influencing the light-induced melatonin suppression in real night work settings.  相似文献   

2.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean ± SD] age: 39.2 ± 12.5 yrs; mean yrs on shift = 9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6 ± 8.6 yrs; mean years on shift = 8.4) participated. All participants were admitted to the sleep center at 16:00 h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00 h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42 ± 3.25 h, whereas in the SWD group it was 20:42 ± 2.21 h (z = 2.4; p 相似文献   

3.
This study examined the effects of nocturnal exposure to dim, narrowband blue light (460 nm, ~1 lux, 2 µW/cm2), compared to dim broad spectrum (white) ambient light (~0.2 lux, 0.5 µW/cm2), on subjective and objective indices of sleepiness during prolonged nighttime performance testing. Participants were also exposed to a red light (640 nm, ~1 lux, 0.7µW/cm2) placebo condition. Outcome measures were driving simulator and psychomotor vigilance task (PVT) performance, subjective sleepiness, salivary melatonin, and electroencephalographic (EEG) activity. The study had a repeated-measures design, with three counterbalanced light conditions and a four-week washout period between each condition. Participants (n?=?8) maintained a regular sleep-wake schedule for 14 days prior to the ~14 h laboratory study, which consisted of habituation to light conditions followed by neurobehavioral performance testing from 21:00 to 08:30 h under modified constant-routine conditions. A neurobehavioral test battery (2.5 h) was presented four times between 21:00 and 08:30 h, with a 30 min break between each. From 23:30 to 05:30 h, participants were exposed to blue or red light, or remained in ambient conditions. Compared to ambient light exposure, blue light exposure suppressed EEG slow wave delta (1.0–4.5 Hz) and theta (4.5–8 Hz) activity and reduced the incidence of slow eye movements. PVT reaction times were significantly faster in the blue light condition, but driving simulator measures, subjective sleepiness, and salivary melatonin levels were not significantly affected by blue light. Red light exposure, as compared to ambient light exposure, reduced the incidence of slow eye movements. The results demonstrate that low-intensity, blue light exposure can promote alertness, as measured by some of the objective indices used in this study, during prolonged nighttime performance testing. Low intensity, blue light exposure has the potential to be applied to situations where it is desirable to increase alertness but not practical or appropriate to use bright light, such as certain occupational settings.  相似文献   

4.
Effects of two different light intensities during daytime were examined on human circadian rhythms in plasma melatonin, core body temperature, and wrist activity under a fixed sleep schedule. Sleep qualities as indicated by polysomnography and subjective sleepiness were also measured. In the first week, under dim light conditions ( approximately 10 lx), the onset and peak of nocturnal melatonin rise were significantly delayed, whereas the end of melatonin rise was not changed. The peak level of melatonin rise was not affected. As a result, the width of nocturnal melatonin rise was significantly shortened. In the second week, under bright light conditions ( approximately 5,000 lx), the phases of nocturnal melatonin rise were not changed further, but the peak level was significantly increased. Core body temperature at the initial sleep phase was progressively elevated during the course of dim light exposure and reached the maximum level at the first night of bright light conditions. Subjective sleepiness gradually declined in the course of dim light exposure and reached the minimum level at the first day of bright light. These findings indicate that repeated exposures to daytime bright light are effective in controlling the circadian phase and increasing the peak level of nocturnal melatonin rise in plasma and suggest a close correlation between phase-delay shifts of the onset of nocturnal melatonin rise or body temperature rhythm and daytime sleepiness.  相似文献   

5.
Recent studies show that bright and dim light intensities during the daytime have important regulatory functions. Our present study was performed to evaluate the effect of exposure to different light intensities during the morning and evening on salivary secretion and its sodium concentration. The study involved 6 healthy, female volunteers who were exposed to dim light (100 lx) from 7:00 to 17:00 and to bright light (3000 lx) from 17:00 to 23:00 one day, and to bright light (3000 lx) from 7:00 to 17:00 and dim light (100 lx) from 17:00 to 23:00 on the next day. We collected salivary samples every 10 minutes during 2 hours in the morning and in the evening by means of a Lashley cup. Saliva secretion was stimulated by sweet candy. The amount of saliva secreted was significantly greater in the morning under bright light exposure, while it was significantly greater in the evening under dim light exposure. We discuss these findings in terms of changes in activity of the parasympathetic nervous system (PNS) and sympathetic (SNS) nervous system produced by exposure to different light intensities at different times of the day.  相似文献   

6.
Different wavelengths of light were compared for melatonin suppression and phase shifting of the salivary melatonin rhythm. The wavelengths compared were 660 nm (red), 595 nm (amber), 525 nm (green), 497 nm (blue/green), and 470 nm (blue). They were administered with light-emitting diodes equated for irradiance of 130 μW/cm2. Fifteen volunteers participated in all five wavelength conditions and a no light control condition, with each condition conducted over two consecutive evenings. Half-hourly saliva samples were collected from 19:00 to 02:00 on night 1 and until 01:00 on night 2. Light was administered for the experimental conditions on the first night only from midnight to 02:00. Percentage melatonin suppression on night 1 and dim light melatonin onset (DLMO) for each night were calculated. The shorter wavelengths of 470, 497, and 525 nm showed the greatest melatonin suppression, 65% to 81%. The shorter wavelengths also showed the greatest DLMO delay on night 2, ranging from 27 to 36 min. The results were consistent with the involvement of a scotopic mechanism in the regulation of circadian phase. (Chronobiology International, 18(5), 801-808, 2001)  相似文献   

7.
The guidelines for night and shift workers recommend that after night work, they should sleep in a dark environment during the daytime. However, staying in a dark environment during the daytime reduces nocturnal melatonin secretion and delays its onset. Daytime bright-light exposure after night work is important for melatonin synthesis the subsequent night and for maintaining the circadian rhythms. However, it is not clear whether daytime sleeping after night work should be in a dim- or a bright-light environment for maintaining melatonin secretion. The aim of this study, therefore, was to evaluate the effect of bright-light exposure during daytime sleeping on nocturnal melatonin secretion after simulated night work. Twelve healthy male subjects, aged 24.8 ± 4.6 (mean ± SD), participated in 3-day sessions under two experimental conditions, bright light or dim light, in a random order. On the first day, the subjects entered the experimental room at 16:00 and saliva samples were collected every hour between 18:00 and 00:00 under dim-light conditions. Between 00:00 and 08:00, they participated in tasks that simulated night work. At 10:00 the next morning, they slept for 6 hours under either a bright-light condition (>3000 lx) or a dim-light condition (<50 lx). In the evening, saliva samples were collected as on the first day. The saliva samples were analyzed for melatonin concentration. Activity and sleep times were recorded by a wrist device worn throughout the experiment. In the statistical analysis, the time courses of melatonin concentration were compared between the two conditions by three-way repeated measurements ANOVA (light condition, day and time of day). The change in dim light melatonin onset (ΔDLMO) between the first and second days, and daytime and nocturnal sleep parameters after the simulated night work were compared between the light conditions using paired t-tests. The ANOVA results indicated a significant interaction (light condition and3 day) (p = .006). Post hoc tests indicated that in the dim-light condition, the melatonin concentration was significantly lower on the second day than on the first day (p = .046); however, in the bright-light condition, there was no significant difference in the melatonin concentration between the days (p = .560). There was a significant difference in ΔDLMO between the conditions (p = .015): DLMO after sleeping was advanced by 11.1 ± 17.4 min under bright-light conditions but delayed for 7.2 ± 13.6 min after sleeping under dim-light conditions. No significant differences were found in any sleep parameter. Our study demonstrated that daytime sleeping under bright-light conditions after night work could not reduce late evening melatonin secretion until midnight or delay the phase of melatonin secretion without decreasing the quality of the daytime sleeping. Thus, these results suggested that, to enhance melatonin secretion and to maintain their conventional sleep–wake cycle, after night work, shift workers should sleep during the daytime under bright-light conditions rather than dim-light conditions.  相似文献   

8.
Previous studies have shown increased sleepiness and mood changes in shiftworkers, which may be due to sleep deprivation or circadian disruption. Few studies, however, have compared responses of experienced shiftworkers and non-shiftworkers to sleep deprivation in an identical laboratory setting. The aim of this laboratory study, therefore, was to compare long-term shiftworkers and non-shiftworkers and to investigate the effects of one night of total sleep deprivation (30.5 h of continuous wakefulness) and recovery sleep on psychomotor vigilance, self-rated alertness, and mood. Eleven experienced male shiftworkers (shiftwork ≥5 yrs) were matched with 14 non-shiftworkers for age (mean ± SD: 35.7 ± 7.2 and 32.5 ± 6.2 yrs, respectively) and body mass index (BMI) (28.7 ± 3.8 and 26.6 ± 3.4 kg/m(2), respectively). After keeping a 7-d self-selected sleep/wake cycle (7.5/8 h nocturnal sleep), both groups entered a laboratory session consisting of a night of adaptation sleep and a baseline sleep (each 7.5/8 h), a sleep deprivation night, and recovery sleep (4-h nap plus 7.5/8 h nighttime sleep). Subjective alertness and mood were assessed with the Karolinska Sleepiness Scale (KSS) and 9-digit rating scales, and vigilance was measured by the visual psychomotor vigilance test (PVT). A mixed-model regression analysis was carried out on data collected every hour during the sleep deprivation night and on all days (except for the adaptation day), at .25, 4.25, 5.25, 11.5, 12.5, and 13.5 h after habitual wake-up time. Despite similar circadian phase (melatonin onset), demographics, food intake, body posture, and environmental light, shiftworkers felt significantly more alert, more cheerful, more elated, and calmer than non-shiftworkers throughout the laboratory study. In addition, shiftworkers showed a faster median reaction time (RT) compared to non-shiftworkers, although four other PVT parameters did not differ between the groups. As expected, both groups showed a decrease in subjective alertness and PVT performance during and following the sleep deprivation night. Subjective sleepiness and most aspects of PVT performance returned to baseline levels after a nap and recovery sleep. The mechanisms underlying the observed differences between shiftworkers and non-shiftworkers require further study, but may be related to the absence of shiftwork the week prior to and during the laboratory study as well as selection into and out of shiftwork.  相似文献   

9.
The study investigated the relationship between the circadian variation of salivary melatonin and the amount of light received during the day and night. Forty one females served as subjects. An illuminance meter worn on the wrist of the non-dominant arm measured the amount of light which subjects leading a diurnal lifestyle received during two consecutive days. Light received from the time of rising to 18:00h was defined as ‘daytime light’, and that from 18:00h to the time of retiring as ‘nighttime light’. The average amount of light over the two days was 48 × 10 4 lx during the daytime and 11 × 10 4 lx during the nighttime. Saliva was collected every 4h in order to measure melatonin secretion. Peaks of melatonin secretion were observed at 14:00h and 18:00h in the subjects who had received lesser amounts of light during the daytime and nighttime. Melatonin secretion was high around 22:00h and peaked around 02:00h in the subjects who had received greater amounts of light during the daytime and lesser amounts of light during the nighttime. Nocturnal melatonin secretion was suppressed in the subjects who received greater amounts of light during the nighttime. Thus, the amount of light received during the daytime and the nighttime during the course of a diurnal lifestyle could have a profound influence on the circadian pattern of melatonin secretion.  相似文献   

10.
The study investigated the relationship between the circadian variation of salivary melatonin and the amount of light received during the day and night. Forty one females served as subjects. An illuminance meter worn on the wrist of the non-dominant arm measured the amount of light which subjects leading a diurnal lifestyle received during two consecutive days. Light received from the time of rising to 18:00h was defined as 'daytime light', and that from 18:00h to the time of retiring as 'nighttime light'. The average amount of light over the two days was 48 × 10 4 lx during the daytime and 11 × 10 4 lx during the nighttime. Saliva was collected every 4h in order to measure melatonin secretion. Peaks of melatonin secretion were observed at 14:00h and 18:00h in the subjects who had received lesser amounts of light during the daytime and nighttime. Melatonin secretion was high around 22:00h and peaked around 02:00h in the subjects who had received greater amounts of light during the daytime and lesser amounts of light during the nighttime. Nocturnal melatonin secretion was suppressed in the subjects who received greater amounts of light during the nighttime. Thus, the amount of light received during the daytime and the nighttime during the course of a diurnal lifestyle could have a profound influence on the circadian pattern of melatonin secretion.  相似文献   

11.
The present study investigated whether the circadian oscillators controlling rhythms in activity behavior and melatonin secretion shared similar functional relationship with the external environment. We simultaneously measured the effects of varying illuminations on rhythms of movement and melatonin levels in Indian weaver birds under synchronized (experiment 1) and freerunning (experiment 2) light conditions. In experiment 1, weaverbirds were exposed to 12h light: 12h darkness (12L:12D; L = 20 lx, D = 0.1 lx) for 2.5 weeks. Then, the illumination of the dark period was sequentially enhanced to 1-, 5-, 10-, 20- and 100 lx at the intervals of about 2 to 4 weeks. In experiment 2, weaver birds similarly exposed for 2.5 weeks to 12L:12D (L = 100 lx; D = 0.1 lx) were released in constant dim light (LL(dim), 0.1 lx) for 6 weeks. Thereafter, LL(dim) illumination was sequentially enhanced to 1-, 3- and 5 lx at the intervals of about 2 weeks. Whereas the activity of singly housed individuals was continuously recorded, the plasma melatonin levels were measured at two time of the day, once in each light condition. The circadian outputs in activity and melatonin were phase coupled with an inverse phase relationship: melatonin levels were low during the active phase (light period) and high during the inactive phase (dark period). This phase relationship continued in both the synchronized and freerunning states as long as circadian activity and melatonin oscillators subjectively interpreted synchronously the daily light environment, based on illumination intensity and/or photophase contrast, as the times of day and night. There were dissociations between the response of the activity rhythms and melatonin rhythms in light conditions when the contrast between day and night was much reduced (20:10 lx) or became equal. We suggest that circadian oscillators governing activity behavior and melatonin secretion in weaverbirds are phase coupled, but they seem to independently respond to environmental cues. This would probably explain the varying degree to which the involvement of pineal/melatonin in regulation of circadian behaviors has been found among different birds.  相似文献   

12.
The present experiment tested our hypothesis that the subjects will wear more clothing in the evening cold under the influence of bright light exposure in the late afternoon and evening. Nine young female adults participated in this study. Light intensity was controlled from 9:00 h to 16:00 h at 100 lx, and from 16:00 h to 20:30 h either at 3000 lx in the bright light (Brighte) or at 10 lx in the dim light ("Dim") conditions. Light intensity was maintained at 10 lx from 20:30 h to 23:00 h. They were instructed to wear garments to maintain themselves to feel comfortable during the fall of ambient temperature from 30 degrees C to 15 degrees C (21:00 h - 22:00 h) and its constant temperature at 15 degrees C (22:00 h - 23:00 h). Most subjects dressed in heavier clothing in the "Bright" than in the "Dim" conditions. The evening fall of core temperature was significantly smaller and the urinary melatonin secretion was significantly lower in the "Bright" condition, suggesting that the set-point of core temperature has been set at a higher level during the evening and at night, being influenced by the less amount of melatonin secretion. Thus, it is concluded that the late afternoon and evening bright light exposure could accelerate the dressing behavior in the evening cold.  相似文献   

13.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean?±?SD] age: 39.2?±?12.5 yrs; mean yrs on shift?=?9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6?±?8.6 yrs; mean years on shift?=?8.4) participated. All participants were admitted to the sleep center at 16:00?h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00?h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42?±?3.25?h, whereas in the SWD group it was 20:42?±?2.21?h (z = 2.4; p?<?.05). Sleep did not differ between groups, except the SWD group showed an earlier bedtime on off days from work relative to that in ANW group. The MSLT corresponding to night work time (01:00–09:00?h) was significantly shorter (3.6?±?.90?min: [M?±?SEM]) in the SWD group compared with that in ANW group (6.8?±?.93?min). DLMO was significantly correlated with insomnia severity (r = ?.68; p < .03), indicating that the workers with more severe insomnia symptoms had an earlier timing of DLMO. Finally, SWD subjects were exposed to more morning light (between 05:00 and 11:00?h) as than ANW ones (798 vs. 180 lux [M?±?SD], respectively z?=??1.7; p?<?.05). These data provide evidence of an internal physiological delay of the circadian pacemaker in asymptomatic night-shift workers. In contrast, individuals with SWD maintain a circadian phase position similar to day workers, leading to a mismatch/conflict between their endogenous rhythms and their sleep-wake schedule. (Author correspondence: )  相似文献   

14.
In most studies, the magnitude and rate of adaptation to various night work schedules is assessed using core body temperature as the marker of circadian phase. The aim of the current study was to assess adaptation to a simulated night work schedule using salivary dim light melatonin onset (DLMO) as an alternative circadian phase marker. It was hypothesised that the night work schedule would result in a phase delay, manifest in relatively later DLMO, but that this delay would be somewhat inhibited by exposure to natural light. Participants worked seven consecutive simulated 8-hour night shifts (23:00-07:00 h). By night 7, there was a mean cumulative phase delay of 5.5 hours, equivalent to an average delay of 0.8 hours per day. This indicates that partial circadian adaptation occurred in response to the simulated night work schedule. The radioimmunoassay used in the current study provides a sensitive assessment of melatonin concentration in saliva that can be used to determine DLMO, and thus provides an alternative phase marker to core body temperature, at least in laboratory studies.  相似文献   

15.
Bright light can influence human psychophysiology instantaneously by inducing endocrine (suppression of melatonin, increasing cortisol levels), other physiological changes (enhancement of core body temperature), and psychological changes (reduction of sleepiness, increase of alertness). Its broad range of action is reflected in the wide field of applications, ranging from optimizing a work environment to treating depressed patients. For optimally applying bright light and understanding its mechanism, it is crucial to know whether its effects depend on the time of day. In this paper, we report the effects of bright light given at two different times of day on psychological and physiological parameters. Twenty-four subjects participated in two experiments (n = 12 each). All subjects were nonsmoking, healthy young males (18-30 yr). In both experiments, subjects were exposed to either bright light (5,000 lux) or dim light <10 lux (control condition) either between 12:00 P.M. and 4:00 P.M. (experiment A) or between midnight and 4:00 A.M. (experiment B). Hourly measurements included salivary cortisol concentrations, electrocardiogram, sleepiness (Karolinska Sleepiness Scale), fatigue, and energy ratings (Visual Analog Scale). Core body temperature was measured continuously throughout the experiments. Bright light had a time-dependent effect on heart rate and core body temperature; i.e., bright light exposure at night, but not in daytime, increased heart rate and enhanced core body temperature. It had no significant effect at all on cortisol. The effect of bright light on the psychological variables was time independent, since nighttime and daytime bright light reduced sleepiness and fatigue significantly and similarly.  相似文献   

16.
Exposure to light at night increases alertness, but light at night (especially short-wavelength light) also disrupts nocturnal physiology. Such disruption is thought to underlie medical problems for which shiftworkers have increased risk. In 33 male subjects we investigated whether short-wavelength attenuated polychromatic white light (<530?nm filtered out) at night preserves dim light melatonin levels and whether it induces similar skin temperature, alertness, and performance levels as under full-spectrum light. All 33 subjects participated in random order during three nights (at least 1 wk apart) either under dim light (3 lux), short-wavelength attenuated polychromatic white light (193 lux), or full-spectrum light (256 lux). Hourly saliva samples for melatonin analysis were collected along with continuous measurements of skin temperature. Subjective sleepiness and activation were assessed via repeated questionnaires and performance was assessed by the accuracy and speed of an addition task. Our results show that short-wavelength attenuated polychromatic white light only marginally (6%) suppressed salivary melatonin. Average distal-to-proximal skin temperature gradient (DPG) and its pattern over time remained similar under short-wavelength attenuated polychromatic white light compared with dim light. Subjects performed equally well on an addition task under short-wavelength attenuated polychromatic white light compared with full-spectrum light. Although subjective ratings of activation were lower under short-wavelength attenuated polychromatic white light compared with full-spectrum light, subjective sleepiness was not increased. Short-wavelength attenuated polychromatic white light at night has some advantages over bright light. It hardly suppresses melatonin concentrations, whereas performance is similar to the bright light condition. Yet, alertness is slightly reduced as compared with bright light, and DPG shows similarity to the dim light condition, which is a physiological sign of reduced alertness. Short-wavelength attenuated polychromatic white light might therefore not be advisable in work settings that require high levels of alertness. (Author correspondence: maan.van.de.werken@gmail.com)  相似文献   

17.
The present study was conducted to know the effects of different light intensities exposed during daytime for several hours on melatonin excreting rate in urine and tympanic temperature. Eleven healthy female subjects were exposed to bright light of 6000 lx (Bright) or dim light of 100 lx (Dim) during daytime from 09:00 h to 13:30 h, and then the light condition was kept at 100 lx until the end of test at 14:30 h. The urinary samples were collected from 10:00 h to 14:30 h every 1.5 hours, and melatonin excreting rate in urine was measured by enzyme immunoassay. Melatonin excreting rate in urine was significantly higher in Bright than in Dim at 11:30 h and 14:30 h, and not significant but at high level at 13:00 h (p &lt;0.07). Moreover, average tympanic temperatures were significantly lower in Bright than in Dim from 11:43 h to 14:30 h. These results showed that the bright light exposure during daytime could reduce tympanic temperature, which might result from the increase of melatonin level.  相似文献   

18.
Performance and safety are impaired in employees engaged in shift work. Combat divers who use closed-circuit oxygen diving apparatus undergo part of their training during the night hours. The greatest risk involved in diving with such apparatus is the development of central nervous system oxygen toxicity (CNS-OT). We investigated whether the switch from day-to-night activity may be a risk factor for the development of CNS-OT using a diurnal animal model, the fat sand rat (Psammomys obesus). Animals were kept on a 12:12 light–dark schedule (6 a.m. to 6 p.m. at 500?lx). The study included two groups: (1) Control group: animals were kept awake and active during the day, between 09:00 and 15:00. (2) Experimental group: animals were kept awake and active during the night, between 21:00 and 03:00, when they were exposed to dim light in order to simulate the conditions prevalent during combat diver training. This continued for a period of 3?weeks, 5?days a week. On completion of this phase, 6-sulphatoxymelatonin (6-SMT) levels in urine were determined over a period of 24?h. Animals were then exposed to hyperbaric oxygen (HBO). To investigate the effect of acute melatonin administration, melatonin (50?mg/kg) or its vehicle was administered to the animals in both groups 20?min prior to HBO exposure. After the exposure, the activity of superoxide dismutase, catalase and glutathione peroxidase was measured, as were the levels of neuronal nitric oxide synthase (nNOS) and overall nitrotyrosylation in the cortex and hippocampus. Latency to CNS-OT was significantly reduced after the transition from day-to-night activity. This was associated with alterations in the level of melatonin metabolites secreted in the urine. Acute melatonin administration had no effect on latency to CNS-OT in either of the groups. Nevertheless, the activity of superoxide dismutase and catalase, as well as nitrotyrosine and nNOS levels, were altered in the hippocampus following melatonin administration. On the basis of these results, we suggest that a switch from diurnal to nocturnal activity may represent an additional risk factor for the development of CNS-OT. Utilizing a diurnal animal model may contribute to our understanding of the heightened risk of developing CNS-OT when diving with closed-circuit oxygen apparatus at night.  相似文献   

19.

Background

Bright nocturnal light has been known to suppress melatonin secretion. However, bright light exposure during the day-time might reduce light-induced melatonin suppression (LIMS) at night. The effective proportion of day-time light to night-time light is unclear; however, only a few studies on accurately controlling both day- and night-time conditions have been conducted. This study aims to evaluate the effect of different day-time light intensities on LIMS.

Methods

Twelve male subjects between the ages of 19 and 23 years (mean ± S.D., 20.8 ± 1.1) gave informed consent to participate in this study. They were exposed to various light conditions (<10, 100, 300, 900 and 2700 lx) between the hours of 09:00 and 12:00 (day-time light conditions). They were then exposed to bright light (300 lx) again between 01:00 and 02:30 (night-time light exposure). They provided saliva samples before (00:55) and after night-time light exposure (02:30).

Results

A one-tailed paired t test yielded significant decrements of melatonin concentration after night-time light exposure under day-time dim, 100- and 300-lx light conditions. No significant differences exist in melatonin concentration between pre- and post-night-time light exposure under day-time 900- and 2700-lx light conditions.

Conclusions

Present findings suggest the amount of light exposure needed to prevent LIMS caused by ordinary nocturnal light in individuals who have a general life rhythm (sleep/wake schedule). These findings may be useful in implementing artificial light environments for humans in, for example, hospitals and underground shopping malls.  相似文献   

20.
Circadian rhythms were recently proposed as a measure of physiological state and prognosis in disorders of consciousness (DOC). So far, melatonin regulation was never assessed in vegetative state (VS). Aim of our research was to investigate the nocturnal melatonin levels and light-induced melatonin suppression in a cohort of VS patients. We assessed six consecutive patients (four men, age 33.3?±?9.3 years) with post-traumatic VS and nine age-matched healthy volunteers (five men, age 34.3?±?8.9 years) on two consecutive nights: one baseline and one light exposure night. During baseline, night subjects were in bed in a dim (<5?lux) room from 10?pm to 8?am. Blood samples were collected hourly 00:30–3:30?am (00:30?=?MLT1; 1:30?=?MLT2; 2:30?=?MLT3; and 3:30?=?MLT4). Identical setting was used for melatonin suppression test night, except for the exposure to monochromatic (470?nm) light from 1:30 to 3:30?am. Plasma melatonin levels were evaluated by radioimmunoassay. Magnitude of melatonin suppression was assessed by melatonin suppression score (caMSS) and suppression rate. We searched for group differences in melatonin levels, differences between repeated samples melatonin concentrations during baseline night and light exposure night, and light-induced suppression of melatonin secretion. During baseline night, controls showed an increase of melatonin (MLT4 vs MLT1, p?=?0.037), while no significant changes were observed in VS melatonin levels (p?=?0.172). Baseline night MLT4 was significantly lower in VS vs controls (p?=?0.036). During light-exposure night, controls displayed a significant suppression of melatonin (MLT3 and MLT4 vs MLT2, p?=?0.016 and 0.002, respectively), while VS patients displayed no significant changes. The magnitude of light-induced suppression of melatonin levels was statistically different between groups considering control adjusted caMSS (p?=?0.000), suppression rate (p?=?0.002) and absolute percentage difference (p?=?0.012). These results demonstrate for the first time that VS patients present an alteration in night melatonin secretion and reduced light-induced melatonin suppression. These findings confirm previous studies demonstrating a disruption of the circadian system in DOC and suggest a possible benefit from melatonin supplementation in VS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号