首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian diencephalon is the caudal derivative of the embryonic forebrain. Early events in diencephalic regionalization include its subdivision along the dorsoventral and anteroposterior axes. The prosomeric model by Puelles and Rubenstein (1993) suggests that the alar plate of the posterior diencephalon is partitioned into three different prosomeres (designated p1–p3), which develop into the pretectum, thalamus, and prethalamus, respectively. Here, we report the developmental consequences of genetic ablation of cell populations from the diencephalic basal plate. The strategy for conditionally regulated cell ablation is based on the targeted expression of the diphtheria toxin gene (DTA) to the diencephalic basal plate via tamoxifen‐ induced, Cre‐mediated recombination of the ROSADTA allele. We show that activation of DTA leads to specific cell loss in the basal plate of the posterior diencephalon, and disrupted early regionalization of distinct alar territories. In the basal plate‐deficient embryos, the p1 alar plate exhibited reduced expression of subtype‐specific markers in the pretectum, whereas p2 alar plate failed to further subdivide into two discrete thalamic subpopulations. We also show that these defects lead to abnormal nuclear organization at later developmental stages. Our data have implications for increased understanding of the interactive roles between discrete diencephalic compartments. genesis 53:356–365, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
To analyze the characteristics of neurons and the ectopic fibers that occur in the floor plate-deprived neural tube, the neural tube was separated ipsilaterally from the floor plate and notochord in chick embryos at H-H stage 12. After fixation, operated embryos were labeled with several monoclonal antibodies for detecting cell types and defining the regional characteristics of the neural tube. On the operated side, the basement membrane of the neural tube showed characteristics similar to that of the alar plates. Many neurons had axons that extended outside of the neural tube but which lacked the antigen normally associated with motoneurons. Fibers from the dorsal root ganglia also displayed an atypical distribution within the neural tube. These observations suggest that the neurons in the alar plate can develop independently from the influence(s) of the floor plate and/or notochord and send their axons outside of the neural tube despite the fact that neurons developed in the alar plate do not send axons into the periphery during normal development. It is likely that inhibitory mechanisms, which normally function to restrict axonal growth to within the neural tube, either do not develop or are prevented from functioning in the basal plate lacking environment.  相似文献   

3.
During development of the chick central nervous system, the trajectories of the descending medial and lateral longitudinal fascicles (MLF and LLF) are pioneered by axons originating from the interstitial nucleus of Cajal (INC) and the mesencephalic trigeminal nucleus (MTN), respectively. Both tracts cross rhombomere 1 at two specific locations in the basal plate. In this study, we have investigated the molecular properties of these crossing points and find that they are permissive regions situated in an otherwise inhibitory boundary region. We show that the dorsal part of rhombomere 1 is inhibitory for the growth of both MTN and INC axons. Ventrally, MLF and LLF axons are repelled from the midline by Slit proteins. Our results reveal the existence of a new repulsive/inhibitory mechanism for axons in the alar plate in addition to the ventral repulsion by Slit proteins. This suggests a model where MLF and LLF axons are channeled longitudinally within the neural tube by both dorsal and ventral constraints.  相似文献   

4.
In the chick dorsal mesencephalon, the optic tectum, the developing axons must choose between remaining on the same side of the midline or growing across it. The ipsilaterally projecting axons, forming the tectobulbar tract, course circumferentially toward the ventrally situated floor plate but before reaching the basal mesencephalon, the tegmentum, gradually turn caudally. Here, they follow the course of the medial longitudinal fasciculus (MLF), located parallel to the floor plate. By in vivo labeling of tectal axons, we could demonstrate that these axons arise primarily in the dorsal tectum. To test the idea that chemorepellent molecules are involved in guidance of the nondecussating axons, we performed coculture experiments employing tectal explants from various positions along the dorso-ventral axis. Axons emanating from dorsal tectal explants were strongly repelled by diencephalic tissue containing the neurons that give rise to the MLF whereas ventral tectal axons showed only a moderate response. This inhibitory effect was substantially neutralized by the addition of anti-neuropilin-1 antibodies. A similar differential response of axons was observed when tectal explants were cocultured with cell aggregates secreting the chemorepellent Semaphorin 3A (Sema3A). Sema3B and Sema3C, respectively, did not inhibit growth of tectal axons. In addition, neither the floor plate nor Slit2-secreting cell aggregates influenced outgrowth of dorsal fibers. In Sema3A-deficient mice, DiI-labeling revealed that dorsal mesencephalic axons cross the MLF instead of turning posteriorly upon reaching the fiber tract, thus behaving like the ventrally originating contralaterally projecting axons. A differential responsiveness of tectal axons to Sema3A most likely released by the MLF thus contributes to pathfinding in the ventral mesencephalon.  相似文献   

5.
The zona limitans intrathalamica (ZLI) is located at the border between the prospective ventral thalamus and dorsal thalamus, and functions as a diencephalic signaling center. Little is known about the mechanism controlling ZLI formation. Using a combination of fate-mapping studies and in vitro assays, I show that the differentiation of the ZLI from progenitor cells in the alar plate is initiated by a Shh-dependent signal from the basal plate. The subsequent dorsal progression of ZLI differentiation requires ongoing Shh signaling, and is constrained by inhibitory factors derived from the dorsal diencephalon. These studies demonstrate that self-organizing signals from the basal plate regulate the formation of a potential patterning center in the ZLI in an orthogonal orientation in the alar plate, and thus create the potential for coordinated thalamic patterning in two dimensions.  相似文献   

6.
The early development of interneurons in the chick embryo spinal cord was studied using a monoclonal antibody against a neuron-specific beta-tubulin isoform. Early developing interneurons were divided into two cell groups on the basis of their location and the pattern of growth of their axons. One group is composed of cells that establish a primitive longitudinal pathway (PL-cells), whereas the other group contains cells constituting a circumferential pathway (C-cells). The onset of axonal development in both cell groups occurs at stage (st.) 15 (embryonic day, (E), 2) in the branchial segments, which is prior to axonogenesis of motoneurons. PL-cells develop in the region between the floor plate and the motoneuron nucleus. Their axons are the first neuronal processes ('pioneer axons') to arrive in the ventrolateral marginal zone and they project both rostrally and caudally to establish a primitive longitudinal association pathway at the ventrolateral surface of the neural tube. This pathway is formed before axons of C-cells arrive in the ventrolateral region. The first C-cells are initially located in the most dorsal portion of the neural tube, whereas later appearing C-cells are also located in both intermediate and ventral regions of the neural tube. The axons of C-cells project ventrally, without fasciculating, along the lateral border of the neural tube. Some of their axons enter the ipsilateral ventrolateral longitudinal pathway at st. 17. We often observed apparent contacts and interactions between preexisting axons of PL-cells and newly arriving axons of C-cells. The axons of commissural C-cells first enter the floor plate at st. 17 and cross the midline at st. 18. Axons of C cells begin to join the contralateral ventrolateral longitudinal pathway at st. 18+ to st. 19. In the floor plate region, contacts between growth cones and axons were often observed. However, axons in the floor plate at these stages were not fasciculated. These observations establish the timing and pattern of growth of axons from two specific populations of early developing interneurons in the chick spinal cord. Additionally, we have identified an early and apparently previously undescribed 'pioneer' pathway that constitutes the first longitudinal pathway in the chick spinal cord.  相似文献   

7.
Patterning of the early neural tube is achieved in part by the inductive signals, which arise from neuroepithelial signaling centers. The zona limitans intrathalamica (ZLI) is a neuroepithelial domain in the alar plate of the diencephalon which separates the prethalamus from the thalamus. The ZLI has recently been considered to be a possible secondary organizer, effecting its inductions via sonic hedgehog (Shh), a signaling molecule which drives morphogenetic information for the thalamus. Using experimental embryological techniques involving the generation of chimeric embryos, we show that the formation of the ZLI in the diencephalic alar plate is due to an interaction between the prechordal and epichordal plate neuroepithelia. We also provide evidence that Shh expression in the ZLI underlies the morphogenetic activity of this putative diencephalic organizer. Ectopic Shh led to the auto-induction of its own gene expression in host cells, as well as to the expression of other genes involved in diencephalic regionalization and histogenesis. Analysis of long-term surviving embryos after Shh ectopic expression demonstrated that Shh was able to induce thalamic structures and local overgrowth. Overall, these results indicate that Shh expressed in the ZLI plays an important role in diencephalic growth and in the development of the thalamus.  相似文献   

8.
Pioneer longitudinal axons grow long distances parallel to the floor plate and precisely maintain their positions using guidance molecules released from the floor plate. Two receptors, Robo1 and Robo2, are critical for longitudinal axon guidance by the Slit family of chemorepellents. Previous studies showed that Robo1−/−;2−/− double mutant mouse embryos have disruptions in both ventral and dorsal longitudinal tracts. However, the role of each Robo isoform remained unclear, because Robo1 or 2 single mutants have mild or no errors. Here we utilized a more sensitive genetic strategy to reduce Robo levels for determining any separate functions of the Robo1 and 2 isoforms. We found that Robo1 is the predominant receptor for guiding axons in ventral tracts and prevents midline crossing. In contrast, Robo2 is the main receptor for directing axons within dorsal tracts. Robo2 also has a distinct function in repelling neuron cell bodies from the floor plate. Therefore, while Robo1 and 2 have some genetic overlap to cooperate in guiding longitudinal axons, each isoform has distinct functions in specific longitudinal axon populations.  相似文献   

9.
Contemporary study of molecular patterning in the vertebrate midbrain is handicapped by the lack of a complete topological map of the diverse neuronal complexes differentiated in this domain. The relatively less deformed reptilian midbrain was chosen for resolving this fundamental issue in a way that can be extrapolated to other tetrapods. The organization of midbrain centers was mapped topologically in terms of longitudinal columns and cellular strata on transverse, Nissl-stained sections in the lizard Gallotia galloti. Four columns extend along the whole length of the midbrain. In dorsoventral order: 1) the dorsal band contains the optic tectum, surrounded by three ventricularly prominent subdivisions, named griseum tectale, intermediate area and torus semicircularis, in rostrocaudal order; 2) a subjacent region is named here the lateral band, which forms the ventral margin of the alar plate and also shows three rostrocaudal divisions; 3) the basal band forms the basal plate or tegmentum proper; it appears subdivided into medial and lateral parts: the medial part contains the oculomotor and accessory efferent neurons and the medial basal part of the reticular formation, which includes the red nucleus rostrally; the lateral part contains the lateral basal reticular formation, and includes the substantia nigra caudally; 4) the median band contains the ventral tegmental area, representing the mesencephalic floor plate. The alar regions (dorsal and lateral) show an overall cellular stratification into periventricular, central and superficial strata, with characteristic cytoarchitecture for each part. The lateral band contains two well developed superficial nuclei, one of which is commonly misidentified as an isthmic formation. The basal longitudinal subdivisions are simpler and basically consist of periventricular and central strata.  相似文献   

10.
Motor neurons are segmentally organised in the developing chick hindbrain, with groups of neurons occupying pairs of hindbrain segments or rhombomeres. The branchiomotor nucleus of the trigeminal nerve occupies rhombomeres 2 and 3 (r2 and r3), that of the facial nerve r4 and r5, and that of the glossopharyngeal nerve r6 and r7. Branchiomotor neuron cell bodies lie within the basal plate, forming columns on either side of the ventral midline floor plate. Axons originating in rhombomeres 2, 4 and 6 grow laterally (dorsally) towards the exit points located in the alar plates of these rhombomeres, while axons originating in odd-numbered rhombomeres 3 and 5 grow laterally and then rostrally, crossing a rhombomere boundary to reach their exit point. Examination of the trajectories of motor axons in odd-numbered segments at late stages of development (19-25) showed stereotyped pathways, in which axons grew laterally before making a sharp turn rostrally. During the initial phase of outgrowth (stage 14-15), however, axons had meandering courses and did not grow in a directed fashion towards their exit point. When r3 or r5 was transplanted with reversed rostrocaudal polarity prior to motor axon outgrowth, the majority of axons grew to their appropriate, rostral exit point, despite the inverted neuroepithelial polarity. In r3 reversals, however, there was a considerable increase in the normally small number of axons that grew out via the caudal, r4 exit point. These findings are discussed with relevance to the factors involved in motor neuron specification and axon outgrowth in the developing hindbrain.  相似文献   

11.
The diencephalon is a central area of the vertebrate developing brain, where the thalamic nuclear complex, the pretectum and the anterior tegmental structures are generated. It has been subdivided into prosomeres, which are transversal domains defined by morphological and molecular criteria. The zona limitans intrathalamica is a central boundary in the diencephalon that separates the posterior diencephalon (prosomeres 1 and 2), from the anterior diencephalon (prosomere 3). This intrathalamic limit appears early on in neural tube development, and the molecular pattern that it reveals suggests an important role in the diencephalic histogenesis. We hereby present a fate map of the presumptive territories in the diencephalon of a chick embryo at the 10-11 somite stages (HH9-10), by homotopic and isochronic quail-chick grafts. The anatomical interpretation of chimeric brains was aided by correlative whole-mount in situ hybridization with RNA probes for chicken genes expressed in specific diencephalic territories. The resulting fate map describes the distribution of the presumptive diencephalic prosomeres in the neural tube, and demonstrates their topologically conserved relationships throughout the neural development. Moreover, we show that the presumptive epithelium of ZLI can be localized at early developmental stages in the diencephalic alar plate at the anterior limit of the Wnt8b gene expression domain.  相似文献   

12.
Longitudinal axons transmit all signals between the brain and spinal cord. Their axon tracts through the brain stem are established by a simple set of pioneer axons with precise trajectories parallel to the floor plate. To identify longitudinal guidance mechanisms in vivo, the overall role of floor plate tissue and the specific roles of Slit/Robo signals were tested. Ectopic induction or genetic deletion of the floor plate diverted longitudinal axons into abnormal trajectories. The expression patterns of the diffusible cues of the Slit family were altered in the floor plate experiments, suggesting their involvement in longitudinal guidance. Genetic tests of Slit1 and Slit2, and the Slit receptors Robo1 and Robo2 were carried out in mutant mice. Slit1;Slit2 double mutants had severe longitudinal errors, particularly for ventral axons, including midline crossing and wandering longitudinal trajectories. Robo1 and Robo2 were largely genetically redundant, and neither appeared to specify specific tract positions. However, combined Robo1 and Robo2 mutations strongly disrupted each pioneer tract. Thus, pioneer axons depend on long-range floor plate cues, with Slit/Robo signaling required for precise longitudinal trajectories.  相似文献   

13.
Fgf8 controls regional identity in the developing thalamus   总被引:1,自引:0,他引:1  
The vertebrate thalamus contains multiple sensory nuclei and serves as a relay station to receive sensory information and project to corresponding cortical areas. During development, the progenitor region of the diencephalon is divided into three parts, p1, p2 (presumptive thalamus) and p3, along its longitudinal axis. Besides the local expression of signaling molecules such as sonic hedgehog (Shh), Wnt proteins and Fgf8, the patterning mechanisms of the thalamic nuclei are largely unknown. Using mouse in utero electroporation to overexpress or inhibit endogenous Fgf8 at the diencephalic p2/p3 border, we revealed that it affected gene expression only in the p2 region without altering overall diencephalic size or the expression of other signaling molecules. We demonstrated that two distinctive populations in p2, which can be distinguished by Ngn2 and Mash1 in early embryonic diencephalon, are controlled by Fgf8 activity in complementary manner. Furthermore, we found that FGF activity shifts thalamic sensory nuclei on the A/P axis in postnatal brain. Moreover, gene expression analysis demonstrated that FGF signaling shifts prethalamic nuclei in complementary manner to the thalamic shift. These findings suggest conserved roles of FGF signaling in patterning along the A/P axis in CNS, and reveal mechanisms of nucleogenesis in the developing thalamus.  相似文献   

14.
The commissural axons project toward and across the floor plate. They then turn into the longitudinal axis, extending along the contralateral side of the floor plate. F-spondin, a protein produced and secreted by the floor plate, promotes adhesion and neurite extension of commissural neurons in vitro. Injection of purified F-spondin protein into the lumen of the spinal cord of chicken embryos in ovo resulted in longitudinal turning of commissural axons before reaching the floor plate, whereas neutralizing antibody (Ab) injections caused lateral turning at the contralateral floor plate boundary. These combined in vitro and in vivo results suggest that F-spondin is required to prevent the lateral drifting of the commissural axons after having crossed the floor plate.  相似文献   

15.
An unknown chicken gene selected from a published substractive hybridization screen (GenBank Accession No. ; [Christiansen, J.H., Coles, E.G., Robinson, V., Pasini, A., Wilkinson, D.G., 2001. Screening from a subtracted embryonic chick hindbrain cDNA library: identification of genes expressed during hindbrain, midbrain and cranial neural crest development. Mech. Dev. 102, 119-133.]) was deemed of interest because of its dynamic pattern of expression across the forebrain and midbrain regions. A 528bp fragment cloned from early chick embryo cDNA and used for in situ hybridization corresponded to part of the 3' untranslated region of the chicken gene Leucine-rich repeat neuronal protein 1 (Lrrn1). The expression of this gene, mapped in the embryonic chick brain between stages HH10 and HH26, apparently preconfigures the zona limitans thalami site before overt formation of this boundary structure. Apart of colateral expression in the forebrain, midbrain and hindbrain basal plate, the most significant expression of Lrrn1 was found early on across the entire alar plate of midbrain and forebrain (HH10). This unitary domain soon divides at HH14 into a rostral part, across alar secondary prosencephalon and prospective alar prosomere 3 (prethalamus; caudal limit at the prospective zona limitans), and a caudal part in alar prosomere 1 (pretectum) and midbrain. The rostral forebrain domain later downregulates gradually most extratelencephalic signal of Lrrn1, but the rostral shell of zona limitans retains expression longer. Expression in the caudal alar domain also changes by downregulation within its pretectal subdomain. Caudally, the midbrain domain ends at the isthmo-mesencephalic junction throughout the studied period. Embryonic Lrrn1 signal also appears in the somites and in the otic vesicle.  相似文献   

16.
In both invertebrate and lower vertebrate species, decussated commissural axons travel away from the midline and assume positions within distinct longitudinal tracts. We demonstrate that in the developing chick and mouse spinal cord, most dorsally situated commissural neuron populations extend axons across the ventral midline and through the ventral white matter along an arcuate trajectory on the contralateral side of the floor plate. Within the dorsal (chick) and intermediate (mouse) marginal zone, commissural axons turn at a conserved boundary of transmembrane ephrin expression, adjacent to which they form a discrete ascending fiber tract. In vitro perturbation of endogenous EphB-ephrinB interactions results in the failure of commissural axons to turn at the appropriate dorsoventral position on the contralateral side of the spinal cord; consequently, axons inappropriately invade more dorsal regions of B-class ephrin expression in the dorsal spinal cord. Taken together, these observations suggest that B-class ephrins act locally during a late phase of commissural axon pathfinding to specify the dorsoventral position at which decussated commissural axons turn into the longitudinal axis.  相似文献   

17.
18.
19.
Transplantation of a piece of the alar plate of the prosencephalon or of the rhombencephalon of quail embryos into the roof of the mesencephalon of chick embryos was carried out at 7-10 somite stage. Results obtained were: the transplanted alar plate of the prosencephalon differentiated into tissue closely resembling the tectum when the transplants were integrated into the host mesencephalon; in all the cases, the alar plate of the rhombencephalon did not differentiate into tectum-like structure, but into rhombencephalic descendants. We conclude that the alar plate of the prosencephalon at 7-10 stage is not definitively determined and may retain an ability to differentiate into the optic tectum, whereas the prospective fate of the rhombencephalon has already been determined at 7-10 stage.  相似文献   

20.
Slit-Robo signaling guides commissural axons away from the floor-plate of the spinal cord and into the longitudinal axis after crossing the midline. In this study we have evaluated the role of the Slit-Robo GTPase activating protein 3 (srGAP3) in commissural axon guidance using a knockout (KO) mouse model. Co-immunoprecipitation experiments confirmed that srGAP3 interacts with the Slit receptors Robo1 and Robo2 and immunohistochemistry studies showed that srGAP3 co-localises with Robo1 in the ventral and lateral funiculus and with Robo2 in the lateral funiculus. Stalling axons have been reported in the floor-plate of Slit and Robo mutant spinal cords but our axon tracing experiments revealed no dorsal commissural axon stalling in the floor plate of the srGAP3 KO mouse. Interestingly we observed a significant thickening of the ventral funiculus and a thinning of the lateral funiculus in the srGAP3 KO spinal cord, which has also recently been reported in the Robo2 KO. However, axons in the enlarged ventral funiculus of the srGAP3 KO are Robo1 positive but do not express Robo2, indicating that the thickening of the ventral funiculus in the srGAP3 KO is not a Robo2 mediated effect. We suggest a role for srGAP3 in the lateral positioning of post crossing axons within the ventrolateral funiculus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号