首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Summary Cell extracts of five mosquito cell lines and a tick cell line were examined for four cellular isozymes using a cellulose-acetate electrophoretic technique. This method distinguished the cell lines that were derived from the different species. Intraspecies distinctions were not made using the cell lines tested; the significance of this finding is discussed. The usefulness of this technique in identifying a potentially mislabeled cell line was demonstrated. This research was supported by contracts, DADA 17-72C-2170 of the U.S. Army and N00014-78C-0104 of the U.S. Office of Naval Research and grants from the World Health Organization and the Rockefeller Foundation.  相似文献   

2.
Summary Four electrophoretic variants of human erythrocyte triosephosphate isomerase (TPI) have been studied to investigate the origin of the multiple forms of human TPI, in particular the constitutive TPI-B isozyme and the cell division-associated TPI-A isozyme. The variant phenotype expressed by the constitutive TPI-B isozyme in both erythrocytes and peripheral lymphocytes was also expressed by the cell division-associated isozymes in mitogen-stimulated lymphocytes and hair root cells. These results strongly support the hypothesis of Decker and Mohrenweiser (1981) that TPI-B and TPI-A originated from the same structural gene. We also found that the isozyme e is different from TPI-A with respect to both its electrophoretic mobility and heat stability. This finding is in contrast to the recent conclusion of Yuan et al. (1981) that both the isozyme e and TPI-A are deamidation products of TPI-B.  相似文献   

3.
The genus Arachis contains a large number of species and undescribed taxa with patterns of genetic variation that are little understood. The objectives of this investigation were to estimate genetic diversity among species of Arachis by utilizing electrophoretic techniques and to establish the potential for use of isozymes as markers for germplasm introgression. One-hundred-and-thirteen accessions representing six of the seven sections of the genus were analyzed for isozyme variation of 17 enzymes. Section Rhizomatosae species were not included because they produce very few seeds. Seeds were macerated and the crude extract was used for starch-gel electrophoretic analyses. Although the cultivated species has few polymorphic isozymes, the diploid species are highly variable and two-to-six bands were observed for each isozyme among accessions. Because of the large number of isozyme differences between A. hypogaea and A. batizocoi (the presumed donor of the B genome), this species can no longer be considered as a progenitor of the cultivated peanut. Seed-to-seed polymorphisms within many accessions were also observed which indicate that germplasm should be maintained as bulk seed lots, representative of many individuals, or as lines from individual plants from original field collections. The area of greatest interspecific genetic diversity was in Mato Grosso, Brazil; however, the probability of finding unique alleles from those observed in A. hypogaea was greatest in north, north-central, south and southeast Brazil. The large number of polymorphic loci should be useful as genetic markers for interspecific hybridization studies.  相似文献   

4.
Ferguson plots demonstrated that corresponding malate dehydrogenase (MDH) isozymes of Durrant's L and S flax genotrophs differ in apparent molecular weight (MW) and also in net negative charge. The MW differences explain heritable differences in electrophoretic relative mobility (R m) between corresponding L and S isozymes. The MW for each MDH isozyme was higher for L than for S and resulted in a slowerR m for L. The net negative charge for each isozyme was higher for L than for S. MDH isozymes also differ in MW within L and S. MW was lower for isozymes in leaves from the bottom of the stem than in leaves from the top of the stem, particularly in L. Integration of information on the MDH isozyme system in the flax genotrophs and information on the peroxidase system suggests the possibility that common modifier loci may controlR m in both enzymes.The financial assistance of the Natural Sciences and Engineering Research Council of Canada is acknowledged with thanks.  相似文献   

5.
Five aspartate aminotransferase (EC 2.6.1.1; AAT) isozymes were identified in soybean seedling extracts and designated AAT1 to AAT5 based on their rate of migration on non-denaturing electrophoretic gels. AAT1 was detected only in extracts of cotyledons from dark-grown seedlings. AAT3 and AAT4 were detected in crude extracts of leaves and in cotyledons of seedlings grown in the light. AAT2 and AAT5 were detected in all tissues examined. A soybean leaf cDNA clone, pSAT17, was identified by hybridization to a carrot AAT cDNA clone at low stringency. pSAT17 had an open reading frame which could encode a 50 581 Da protein. Alignment of the deduced amino acid sequence from the pSAT17 open reading frame with mature AAT protein sequences from rat disclosed a 60 amino acid N-terminal extension in the pSAT17 protein. This extension had characteristics of a plastid transit peptide.A plasmid, pEXAT17, was constructed which encoded the mature protein lacking the putative chloroplast transit polypeptide. Transformed Escherichia coli expressed a functional soybean AAT isozyme, which comigrated with the soybean AAT5 isozyme during agarose gel electrophoresis. Differential sucrose gradient sedimentation of soybean extracts indicated that AAT5 specifically cofractionated with chloroplasts. Antibodies raised against the pEXAT17-encoded AAT protein specifically reacted with the AAT5 isozyme of soybean and not with any of the other isozymes, indicating that the soybean cDNA clone, pSAT17, encodes the chloroplast isozyme, AAT5.  相似文献   

6.
The murine “housekeeping” enzyme, cytosolic NADP-isocitrate dehydrogenase (E.C. 1.1.1.42) (genetic locus:Idh-1), exhibited a complex pattern of allele-specific expression. Protein electrophoresis on cellulose-acetate gels and determination of relative enzymatic activity by means of densitometry revealed that in heart tissue (but not liver tissue) of certain hybrid crosses the AA-homodimer was underrepresented relative to total enzymatic activity, and the degree of underrepresentation changed during development. In mixtures of homozygous tissue extracts of heart tissue (but not liver tissue) the AA-homodimer was underrepresented relative to the BB-homodimer. Relative activity of allelic isozymes varied as a function of tissue (heart versus liver), age, and the parental source of the Idh-1a allele, but did not vary as a function of sex. Allele-specific expression was also exhibited in kidney tissue of the same animals. In adult male kidney tissue extracts from heterozygotes, the AA-hornodimer was underrepresented relative to total enzymatic activity; in adult female kidney tissue extracts from heterozygotes, a more codominant phenotype was observed. Tissue extracts from immature hybrid animals exhibited a phenotype midway between the adult male and adult female phenotypes. Tissue extracts from castrated males exhibited a phenotype equivalent to that seen in females. Relative activity of allelic isozymes in kidney varied as a function of age and sex, but did not vary as a function of the parental source of the Idh-1a allele. While cytosolic NADP-IDH is a “housekeeping” enzyme, expressed in multiple tissues of the mouse, differences in the relative intensities of allelic isozyme bands provide evidence for tissue- and stage-specific regulatory variation.  相似文献   

7.
The particulate and soluble fractions of cell-free extracts from seeds, roots, and leaves of 10 different plants were examined electrophoretically for isozymes of malate dehydrogenase. Distinct isozyme patterns were observed for each plant and even for the individual tissues of each species. There were some isozymes in several different plant extracts with equal electrophoretic mobilities, but there was no isozyme band that was common to all tissues or to all plants.  相似文献   

8.
Possible participation of the peroxidation system in the cultivar-race specificity was studied for the oat-crown rust system. The levels of lipid peroxidation and total lipoxygenase (LOX) activity were extensively increased in leaves of cv. Shokan l responding with resistance to race 226. One anionic and one cationic LOX isozyme was detected in the extract of Shokan 1 leaves inoculated with race 226. In addition, three anionic and one cationic isozymes were consistently found in the extract of uninoculated and compatible race 203-inoculated leaves. The blockage experiments with race 226-inoculated leaves using RNA and protein synthesis inhibitors indicated that the two LOX isozymes characteristic of the incompatible combination are de novo synthesized and their activity is causally linked to the resistance expression. Production of the two isozymes was also demonstrated in the five resistant Pc oat lines, but not in the two susceptible Pc lines.  相似文献   

9.
A quantitative analysis of malate dehydrogenase isozymes has been carried out in a hexaploid wheat Triticum aestivum variety Holdfast, a diploid rye Secale cereale variety King II, a series of seven addition lines each having the Holdfast wheat chromosome complement, and also a different homologous pair of King II rye chromosomes. In young shoots of three of these addition lines grown in a defined salts medium lacking sucrose, at least one isozyme activity was elevated. This did not occur in shoots grown in a medium containing 0.5% sucrose or in the Triticale possessing the full wheat and rye chromosomal complements grown in the absence of exogenous sucrose. On the basis of cellular localization and substrate inhibition studies, the particular isozyme activities enhanced by the rye chromosomes were indistinguishable from isozyme activities in Holdfast wheat and dissimilar to all malate dehydrogenase isozyme activities observed in King II rye. These results suggest that three different rye chromosomes produce gene products which can interact with the wheat malate dehydrogenase regulatory system.  相似文献   

10.
Comparative disc electrophoresis of acidic proteins, basic proteins, and isozymes of esterase, MDH, and peroxidase were performed with aqueous extracts of seeds from seven cultivars belonging to five races of Sorghum bicolor ssp. bicolor: bicolor, caudatum, durra, guinea, and kafir. Two disc electrophoretic systems were employed. Acidic proteins were electrophoresed in an anionic system (tris-glycine buffer, pH 8.3). Basic proteins were electrophoresed in a cationic system (β-alanin-acetate buffer, pH 4.5). Soluble proteins were stained with Coomassie brilliant blue. Isozyme activity was detected by using specific enzyme stains and substrates. Each cultivar yielded reproducible, characteristic patterns of distinct acidic and basic proteins. Cultivars belonging to the same race produced identical protein and isozyme patterns. The degree of electrophoretic similarity among races was estimated by calculating similarity index values for each of the 10 possible pairs of races. Bicolor, caudatum, durra, and guinea produced very similar acidic and basic protein patterns and esterase, MDH, and peroxidase isozyme patterns. Differences, however, were observed among all races. All of kafir patterns were significantly different from the patterns of other races. Comparative electrophoresis may provide a new source of taxonomic characters for investigating phenetic and phylogenetic relationships in Sorghum.  相似文献   

11.
Phosphoglucomutase (PGM; EC 2.7.5.1) isozyme variants were studied in a large number of inbred lines, crosses, and races of maize (Zea mays L.). Patterns of Mendelian inheritance demonstrated for PGM isozyme variants indicated that they are encoded by nuclear genes. Two unlinked loci, Pgm1 and Pgm2, located on the long arm of chromosome 1 and the short arm of chromosome 5, respectively, specify the observed electrophoretic variation on starch gels. No intra- or interlocus hybrid bands were found, suggesting that each isozyme band consists of a single polypeptide. PGM isozymes were present in all plant parts studied and the activity specified by both loci appears to reside in the cytoplasm. In studies of 520 racial collections of maize from Latin America, a single allele at each locus predominated in most collections. Likewise, the same alleles predominated in a set of 406 inbred lines of maize from the United States and Canada.This work was supported in part by NIH Research Grant GM 11546.Paper No. 8496 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina.  相似文献   

12.
Two isozymes of NADP+-specific isocitrate dehydrogenase [ICDH; EC 1.1.1.42] were confirmed to be present in an obligately psychrophilic marine bacterium, Vibrio sp., strain ABE-1, on the basis of the temperature-activity curve and electrophoretic mobilities. These isozymes were separated and purified about 170-fold for isozyme I (specific activity at 40 degrees C, 24.3 units/mg protein) and about 180-fold for isozyme II (specific activity at 20 degrees C, 59.2 units/mg protein), though the isozymes were still not homogeneous. The molecular weights of these isozymes determined by gel filtration were both about 85,000, but the properties of the isozymes were considerably different from each other. The thermostability of isozyme I resembled those of mesophiles, but isozyme II was extremely labile above 20 degrees C. NaCl affected the ICDH isozymes in different ways; the salt protected isozyme I from heat inactivation, but not isozyme II. Nevertheless it enormously enhanced the activity of isozyme II at low concentrations. Moreover, these ICDH isozymes showed different pH optima, Km values for isocitrate, susceptibilities to concerted inhibition by glyoxylate plus oxalacetate, and effects of 2-mercaptoethanol on their stabilities.  相似文献   

13.
Antibodies against purified NADP-isocitrate dehydrogenase from pig liver cytosol and pig heart were raised in rabbits. The purified enzymes from these sources are different proteins, as demonstrated by differences in electrophoretic mobility and absence of crossreactivity by immunotitration and immunodiffusion. The NADP-isocitrate dehydrogenase in the soluble supernatant homogenate fraction from pig liver, kidney cortex, brain and erythrocyte hemolyzate was identical with the purified enzyme from pig liver cytosol, as determined by electrophoretic mobility and immunological techniques. The enzyme in extracts of mitochondria from pig heart, kidney, liver and brain was identical with the purified pig heart enzyme by the same criteria. However, the 'mitochondrial' isozyme was the major component also in the soluble supernatant fraction of pig heart homogenate. The 'cytosolic' isozyme accounted for only 1-2% of total NADP-isocitrate dehydrogenase in pig heart, as determined by separation of the isozymes with agarose gel electrophoresis and immunotitration. The mitochondrial isozyme was also the predominant NADP-isocitrate dehydrogenase in porcine skeletal muscle. The ratio of cytosolic/mitochondrial isozyme for porcine whole tissue extract, determined by immunotitration, was about 2 for liver and 1 for kidney cortex and brain. The distribution of isozymes in cell homogenate fractions from ox and rat tissues corresponded to that observed in organs of porcine origin. The mitochondrial and cytosolic isozymes from ox and rat tissues exhibited crossreactivity with the antibodies against the pig heart and pig liver cytosol enzyme, respectively, and the electrophoretic migration patterns were similar qualitatively to those found for the isozymes in porcine tissues. Nevertheless, there were species specific differences in the characteristics of each of the corresponding isozymes. NAD-isocitrate dehydrogenase was not inhibited by the antibodies, confirming that the protein is distinct from that of either isozyme of NADP-isocitrate dehydrogenase.  相似文献   

14.
Developmental expression of alcohol dehydrogenases in maize   总被引:1,自引:0,他引:1  
Alcohol dehydrogenase (ADH) in Zea mays exists in five distinct electrophoretic forms (isozymes), ADH-1, ADH-2, ADH-3, ADH-4, and ADH-T. The mode of inheritance of ADH-1 and ADH-2 has been previously reported; preliminary data suggest that ADH-3 is controlled by a different locus than ADH-2; no genetic analysis has yet been made for ADH-4 and ADH-T. Analyses at different stages of ontogenesis and of different organs have shown that the ADH isozyme pattern fluctuates qualitatively and quantitatively during the course of development and differentiation of the maize plant. ADH-T is controlled spatially and temporally in a very strict manner, being present only in extracts from the pericarp of 19- to 40-day-old kernels. ADH-3 and ADH-4 are present in the scutella of mature kernels and during early sporophytic development. ADH-1 and ADH-2 are the most common isozymes in all tissues examined, but ADH-1 is not found in endosperm of mature kernels or during germination. None of the isozymes have been found to be associated with any particulate cellular component at any stage of development. These findings are discussed with respect to differential gene expression, physiology, and cellular metabolism.  相似文献   

15.
The distribution profile of the isozymes of phosphofructokinase (PFK) in different cell types of rat liver is established using the techniques of electrophoresis and immunodiffusion. Agarose gel electrophoresis of the extracts of parenchymal cells, Kupffer or sinusoidal cells, and whole liver indicated that two PFK isozymes are present in whole liver and that the faster moving hepatic PFK isozyme is present only in parenchymal cells; whereas, the slower moving hepatic PFK isozyme is only in sinusoidal cells. Immunodiffusion studies using antiserum specific for the major hepatic PFK isozyme (PFK-L2) revealed that PFK-L2 is present only in whole liver or parenchymal cell extracts and is absent from sinusoidal cells. It is apparent that the other hepatic PFK isozyme (PFK-L1) is normally found only in sinusoidal cells.  相似文献   

16.
Proteins of whole cell extracts from 16 Chlorococcum species and 3 Tetracystis species (formerly Chlorococcum) were analyzed for isozymes of nonspecific α-esterases, leucine aminopeptidase, and malate dehydrogenase using starch gel electrophoresis. Each species could be identified by the banding patterns. Chlorococcum species are heterogenous regarding the presence, number, electrophoretic mobility, concentration, and distribution of isozymes. The data are discussed in relation to current knowledge of each species. Taxonomic applications of algal isozymes are considered.  相似文献   

17.
The properties of the isozymes of pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) found in unfertilized frog egg have been compared to those found in adult tissues of Rana pipiens. Chromatographic, kinetic, and electrophoretic data indicate that, of the five electrophoretic forms found in egg, the isozyme with the least anodic mobility (isozyme I) is the same molecular species as the only isozyme found in heart, and the egg isozyme with the greatest anodic mobility (isozyme V) is identical to the major isozyme found in liver.The activity of egg isozyme I was markedly inhibited by the antibody to the skeletal muscle enzyme, which has been shown previously to cross-react with the cardiac enzyme, but was unaffected by the antibody to liver isozyme V; the opposite effects were observed with egg isozyme V. The antibody to the skeletal muscle enzyme inhibited egg isozymes II > III > IV whereas the antibody to the liver enzyme gave the reverse inhibitory pattern, e.g., isozyme IV > III > II.In vitro dissociation-reassociation of mixtures of isozyme I and V led to the formation of the other three isozymes. Similar experiments performed individually with either egg isozyme III or IV resulted in the production of predominantly isozymes III, II, and I due to the instability of isozyme V during the hybridization procedure.The above results indicate that isozymes I and V are tetramers of the respective parental subunits and that isozymes II, III, and IV are hybrid molecules with subunit assignments of (I3V1), I2V2), and (I1V3), respectively.  相似文献   

18.
Mouse (RAG) cells, (deficient in hypoxanthine-phosphoribosyl-transferase), and Ateles paniscus chamek primary fibroblasts were used in fusion experiments to generate somatic cell hybrids. Both parental cell lines were genetically characterized by karyological and biochemical analyses with 27 isozyme systems. These procedures were useful for monitoring primate chromosome segregation in somatic cell hybrids, for detecting chromosome rearrangements of primate chromosomes, and for identifying individual primate chromosomes. These characterizations are necessary to distinguish between different hybrid cell lines and to generate a panel for gene mapping studies. This is achieved by selecting cell lines that segregate different sets of relatively few primate isozymes and chromosomes. Conversely, we eliminated hybrid cell lines either showing: (1) rearrangements between primate and mouse chromosomes, (2) extensive rearrangements of primate chromosomes, or (3) a large number of primate biochemical markers. © 1993 Wiley-Liss, Inc.  相似文献   

19.
A novel dioxygenase, lignostilbene-a,β-dioxygenase (LSD), which catalyzes cleavage of the interphenyl double bond of lignin-derived stilbenes, was isolated. Four isozymes of LSD were separated from cell-free extracts of Pseudomonas sp. TMY1009 by ion-exchange chromatography on a DEAE- Toyopearl column. The major isozyme, LSD-I, was purified to electrophoretic homogeneity and characterized.

LSD-I cleaved the interphenyl double bond of l,2-bis(4′-hydroxy-3′-methoxyphenyl)ethylene with the optimum pH at 8.5. The Km of LSD-I was 11 μm for the stilbene and 110/iM for oxygen. The molecular weight of LSD-I, which is composed of two identical subunits, was estimated to be 94,000. LSD-I contained 1 g atom of iron per 1 mol of enzyme protein.  相似文献   

20.
A novel assay procedure has been developed to allow simultaneous activity discrimination in crude tissue extracts of the three known mammalian nicotinamide mononucleotide adenylyltransferase (NMNAT, EC 2.7.7.1) isozymes. These enzymes catalyse the same key reaction for NAD biosynthesis in different cellular compartments. The present method has been optimized for NMNAT isozymes derived from Mus musculus, a species often used as a model for NAD-biosynthesis-related physiology and disorders, such as peripheral neuropathies. Suitable assay conditions were initially assessed by exploiting the metal-ion dependence of each isozyme recombinantly expressed in bacteria, and further tested after mixing them in vitro. The variable contributions of the three individual isozymes to total NAD synthesis in the complex mixture was calculated by measuring reaction rates under three selected assay conditions, generating three linear simultaneous equations that can be solved by a substitution matrix calculation. Final assay validation was achieved in a tissue extract by comparing the activity and expression levels of individual isozymes, considering their distinctive catalytic efficiencies. Furthermore, considering the key role played by NMNAT activity in preserving axon integrity and physiological function, this assay procedure was applied to both liver and brain extracts from wild-type and Wallerian degeneration slow (WldS) mouse. WldS is a spontaneous mutation causing overexpression of NMNAT1 as a fusion protein, which protects injured axons through a gain-of-function. The results validate our method as a reliable determination of the contributions of the three isozymes to cellular NAD synthesis in different organelles and tissues, and in mutant animals such as WldS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号