首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Key message

Grapevine rootstock transformed with an Agrobacterium oncogene-silencing transgene was resistant to certain Agrobacterium strains but sensitive to others. Thus, genetic diversity of Agrobacterium oncogenes may limit engineering crown gall resistance.

Abstract

Crown gall disease of grapevine induced by Agrobacterium vitis or Agrobacterium tumefaciens causes serious economic losses in viticulture. To establish crown gall-resistant lines, somatic proembryos of Vitis berlandieri × V. rupestris cv. ‘Richter 110’ rootstock were transformed with an oncogene-silencing transgene based on iaaM and ipt oncogene sequences from octopine-type, tumor-inducing (Ti) plasmid pTiA6. Twenty-one transgenic lines were selected, and their transgenic nature was confirmed by polymerase chain reaction (PCR). These lines were inoculated with two A. tumefaciens and three A. vitis strains. Eight lines showed resistance to octopine-type A. tumefaciens A348. Resistance correlated with the expression of the silencing genes. However, oncogene silencing was mostly sequence specific because these lines did not abolish tumorigenesis by A. vitis strains or nopaline-type A. tumefaciens C58.  相似文献   

3.

Key message

Agrobacterium -mediated transformation system for okra using embryos was devised and the transgenic Bt plants showed resistance to the target pest, okra shoot, and fruit borer ( Earias vittella ).

Abstract

Okra is an important vegetable crop and progress in genetic improvement via genetic transformation has been impeded by its recalcitrant nature. In this paper, we describe a procedure using embryo explants for Agrobacterium-mediated transformation and tissue culture-based plant regeneration for efficient genetic transformation of okra. Twenty-one transgenic okra lines expressing the Bacillus thuringiensis gene cry1Ac were generated from five transformation experiments. Molecular analysis (PCR and Southern) confirmed the presence of the transgene and double-antibody sandwich ELISA analysis revealed Cry1Ac protein expression in the transgenic plants. All 21 transgenic plants were phenotypically normal and fertile. T1 generation plants from these lines were used in segregation analysis of the transgene. Ten transgenic lines were selected randomly for Southern hybridization and the results confirmed the presence of transgene integration into the genome. Normal Mendelian inheritance (3:1) of cry1Ac gene was observed in 12 lines out of the 21 T0 lines. We selected 11 transgenic lines segregating in a 3:1 ratio for the presence of one transgene for insect bioassays using larvae of fruit and shoot borer (Earias vittella). Fruit from seven transgenic lines caused 100 % larval mortality. We demonstrate an efficient transformation system for okra which will accelerate the development of transgenic okra with novel agronomically useful traits.  相似文献   

4.
5.

Key message

Inheritance studies and molecular mapping identified a single dominant gene that conditions seed coat impermeability in soybean PI 594619.

Abstract

High temperatures during seed fill increase the occurrence of soybeans with impermeable seed coat, which is associated with non-uniform and delayed germination and emergence. This can be an issue in soybean production areas with excessively high-temperature environments. The objectives of the present study were to investigate the inheritance of impermeable seed coat under a high-temperature environment in the midsouthern United States and to map the gene(s) that affect this trait in a germplasm line with impermeable seed coat (PI 594619). Crosses were made between PI 594619 and an accession with permeable seed coat at Stoneville, MS in 2008. The parental lines and the segregating populations from reciprocal crosses were grown in Stoneville in 2009. Ninety-nine F2:3 families and parents were also grown at Stoneville, MS in 2011. Seeds were assayed for percent impermeable seed coat using the standard germination test. Genetic analysis of the F2 populations and F2:3 families indicated that seed coat impermeability in PI 594619 is controlled by a single major gene, with impermeable seed coat being dominant to permeable seed coat. Molecular mapping positioned this gene on CHR 2 between markers Sat_202 and Satt459. The designation of Isc (impermeable seed coat) for this single gene has been approved by the Soybean Genetics Committee. Selection of the recessive form (isc) may be important in developing cultivars with permeable seed coat for high-heat production environments. The single-gene nature of impermeable seed coat may also have potential for being utilized in reducing seed damage caused by weathering and mold.  相似文献   

6.

Key message

We developed an efficient Agrobacterium -mediated transformation method using an Ac/Ds transposon tagging construct for F. vesca and high throughput paromomycin spray assay to identify its transformants for strawberry functional genomics.

Abstract

Genomic resources for Rosaceae species are now readily available, including the Fragaria vesca genome, EST sequences, markers, linkage maps, and physical maps. The Rosaceae Genomic Executive Committee has promoted strawberry as a translational genomics model due to its unique biological features and transformability for fruit trait improvement. Our overall research goal is to use functional genomic and metabolic approaches to pursue high throughput gene discovery in the diploid woodland strawberry. F. vesca offers several advantages of a fleshy fruit typical of most fruit crops, short life cycle (seed to seed in 12–16 weeks), small genome size (206 Mbb/C), small plant size, self-compatibility, and many seeds per plant. We have developed an efficient Agrobacterium tumefaciens-mediated strawberry transformation method using kanamycin selection, and high throughput paromomycin spray assay to efficiently identify transgenic strawberry plants. Using our kanamycin transformation method, we were able to produce up to 98 independent kanamycin resistant insertional mutant lines using a T-DNA construct carrying an Ac/Ds transposon Launchpad system from a single transformation experiment involving inoculation of 22 leaf explants of F. vesca accession 551572 within approx. 11 weeks (from inoculation to soil). Transgenic plants with 1–2 copies of a transgene were confirmed by Southern blot analysis. Using our paromomycin spray assay, transgenic F. vesca plants were rapidly identified within 10 days after spraying.  相似文献   

7.

Key message

We cloned a novel salt stress-induced glycine-rich protein gene ( MsGRP ) from alfalfa. Its overexpression retards seed germination and seedling growth of transgenic Arabidopsis after salt and ABA treatments.

Abstract

Since soil salinity is one of the most significant abiotic stresses, salt tolerance is required to overcome salinity-induced reductions in crop productivity. Many glycine-rich proteins (GRPs) have been implicated in plant responses to environmental stresses, but the function and importance of some GRPs in stress responses remain largely unknown. Here, we report on a novel salt stress-induced GRP gene (MsGRP) that we isolated from alfalfa. Compared with some glycine-rich RNA-binding proteins, MsGRP contains no RNA recognition motifs and localizes in the cell membrane or cell wall according to the subcellular localization result. MsGRP mRNA is induced by salt, abscisic acid (ABA), and drought stresses in alfalfa seedlings, and its overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in Arabidopsis plants confers salinity and ABA sensitivity compared with WT plants. MsGRP retards seed germination and seedling growth of transgenic Arabidopsis plants after salt and ABA treatments, which implies that MsGRP may affect germination and growth through an ABA-dependent regulation pathway. These results provide indirect evidence that MsGRP plays important roles in seed germination and seedling growth of alfalfa under some abiotic stress conditions.  相似文献   

8.
9.

Key message

An efficient protocol of transformation and selection of transgenic lines of Micro-tom, a widespread model cultivar for tomato, is reported. RNA interference silencing efficiency and stability have been investigated and correlated with the number of insertions.

Abstract

Given its small size and ease of cultivation, the tomato (Solanum lycopersicon) cultivar Micro-tom is of widespread use as a model tomato plant. To create and screen transgenic plants, different selectable markers are commonly used. The bar marker carrying the resistance to the herbicide glufosinate/Basta, has many advantages, but it has been little utilised and with low efficiency for identification of tomato transgenic plants. Here we describe a procedure for accurate selection of transgenic Micro-tom both in vitro and in soil. Immunoblot, Southern blot and phenotypic analyses showed that 100 % of herbicide-resistant plants were transgenic. In addition, regeneration improvement has been obtained by using 2 mg/l Gibberellic acid in the shoot elongation medium; rooting optimisation on medium containing 1 mg/l IAA allowed up to 97 % of shoots developing strong and very healthy roots after only 10 days. Stable transformation frequency by infection of leaf explants with Agrobacterium reached 12 %. Shoots have been induced by combination of 1 mg/l zeatin-trans and 0.1 mg/l IAA. Somatic embryogenesis of cotyledon on medium containing 1 mg/l zeatin + 2 mg/l IAA is described in Micro-tom. The photosynthetic psbS gene has been used as reporter gene for RNA silencing studies. The efficiency of gene silencing has been found equivalent using three different target gene fragments of 519, 398 and 328 bp. Interestingly, silencing efficiency decreased from T0 to the T3 generation in plants containing multiple copies of the inserted T-DNA, while it was stable in plants containing a single insertion.  相似文献   

10.
11.
Chiral imines 1a,b, already synthesized in our laboratory, were converted in good yield by reduction into the corresponding N-benzyl-γ-lactams 2a,b. Desilylation followed by oxidation of the hydroxymethyl functionality gave the N-benzyl-β-amino acids 5a,b in good yield and high purity. Starting from compound 6a, the corresponding β-peptoid dimer 8 was prepared, together with its derivatives 9 and 10, these latter displaying conformational restriction about the peptide bond, as evidenced by NMR data.  相似文献   

12.
13.

Key message

Marker-free transgenic eggplants, exhibiting enhanced resistance to Alternaria solani , can be generated on plant growth regulators (PGRs)- and antibiotic-free MS medium employing the multi-auto-transformation (MAT) vector, pMAT21 - wasabi defensin , wherein isopentenyl transferase ( ipt ) gene is used as a positive selection marker.

Abstract

Use of the selection marker genes conferring antibiotic or herbicide resistance in transgenic plants has been considered a serious problem for environment and the public. Multi-auto-transformation (MAT) vector system has been one of the tools to excise the selection marker gene and produce marker-free transgenic plants. Ipt gene was used as a selection marker gene. Wasabi defensin gene, isolated from Wasabia japonica (a Japanese horseradish which has been a potential source of antimicrobial proteins), was used as a gene of interest. Wasabi defensin gene was cloned from the binary vector, pEKH-WD, to an ipt-type MAT vector, pMAT21, by gateway cloning technology and transferred to Agrobacterium tumefaciens strain EHA105. Infected cotyledon explants of eggplant were cultured on PGRs- and antibiotic-free MS medium. Extreme shooty phenotype/ipt shoots were produced by the explants infected with the pMAT21-wasabi defensin (WD). The same PGRs- and antibiotic-free MS medium was used in subcultures of the ipt shoots. Subsequently, morphologically normal shoots emerged from the Ipt shoots. Molecular analyses of genomic DNA from transgenic plants confirmed the integration of the WD gene and excision of the selection marker (ipt gene). Expression of the WD gene was confirmed by RT-PCR and Northern blot analyses. In vitro whole plant and detached leaf assay of the marker-free transgenic plants exhibited enhanced resistance against Alternaria solani.  相似文献   

14.
15.
Soybean [Glycine max (L.) Merr.] seed protein extracts from 1,603 accessions obtained from 15 Asian countries or regions (not including Japan) were analyzed for the presence of alleles of 2 proteins. Three alleles of the Kunitz. trypsin inhibitor orSBTI-A 2 designated asTi a,Ti b andTi c are electrophoretically distinguishable from one another by their different Rf values of 0.79, 0.75 and 0.83, respectively. The Sp1 seed protein or β-amylase has 2 alleles designatedSp1 a andSp 1 b which are electrophoretically distinguishable from one another by their Rf values 0.36 and 0.42. About 94 percent of the soybean accessions had theTi a allele. Two accessions from Korea,P.I. 157440 andP.I. 196168, do not have theSBTI-A2 protein(ti). Two accessions, one from Pakistan and the other from Korea, were identified as having theTi c allele. Only the Korean and central Indian soybean populations have a high frequency for theTi b allele. Within Korea, the soybeans from those districts that lie closest to Japan have a high frequency for theTi b allele whereas the soybeans from those districts that lie closest to China have a low frequency for theTi b allele. TheTi b allele is not present in soybeans from the Philippines, Vietnam, Thailand, Malaysia, Burma, Nepal, Pakistan, and Afghanistan. Only 1 accession each from Taiwan and Indonesia have theTi b allele. TheSp 1 a allele is not present in soybeans from Taiwan, Vietnam, Thailand, Malaysia, Indonesia, Burma, Pakistan and Afghanistan. The highest frequency for theSp1 a allele occurs in soybean germ plasm from northern India and Nepal. The soybeans from Asia (including Japan) were divided into 3 gene centers— primary, secondary, and tertiary—containing 7 germ plasm pools. Paths of dissemination of the soybean from China to the rest of Asia were developed based upon a combination of electrophoretic data and available historical, agronomic, and biogeographical literature.  相似文献   

16.

Key message

BcMF11 as a non-coding RNA gene has an essential role in pollen development, and might be useful for regulating the pollen fertility of crops by antisense RNA technology.

Abstract

We previously identified a 828-bp full-length cDNA of BcMF11, a novel pollen-specific non-coding mRNA-like gene from Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). However, little information is known about the function of BcMF11 in pollen development. To investigate its exact biological roles in pollen development, the BcMF11 cDNA was antisense inhibited in transgenic Chinese cabbage under the control of a tapetum-specific promoter BcA9 and a constitutive promoter CaMV 35S. Antisense RNA transgenic plants displayed decreasing expression of BcMF11 and showed distinct morphological defects. Pollen germination test in vitro and in vivo of the transgenic plants suggested that inhibition of BcMF11 decreased pollen germination efficiency and delayed the pollen tubes’ extension in the style. Under scanning electron microscopy, many shrunken and collapsed pollen grains were detected in the antisense BcMF11 transgenic Chinese cabbage. Further cytological observation revealed abnormal pollen development process in transgenic plants, including delayed degradation of tapetum, asynchronous separation of microspore, and aborted development of pollen grain. These results suggest that BcMF11, as a non-coding RNA, plays an essential role in pollen development and male fertility.  相似文献   

17.
1H-Pyrrolo[2′,3′:4,5]furo[3,2-c]pyridine-2-carboxylic acid (6a) and its 1-methyl (6b) and 1-benzyl (6c) derivatives were synthesized. 3-(5-Methoxycarbonyl-4H-furo[3,2-b]-pyrrole-2-yl)propenoic acid (1) was converted to the corresponding azide 2, which in turn was cyclized to give 3 by heating in diphenylether. The pyridone 3 obtained was aromatized with phosphorus oxychloride, then reduced with zinc in acetic acid to give methyl 1H-pyrrolo[2′,3′:4,5]furo[3,2-c]pyridine-2-carboxylate (5), which by hydrolysis gave the corresponding carboxylic acid 6a.  相似文献   

18.

Key message

TAS atasiRNA-producing region swapping used one-step, high efficiency, and high fidelity directional TC-cloning. Uniform silencing was achieved without lethality using miRNA trigger- TAS overexpression fusion cassettes to generate 21-nt atasiRNA.

Abstract

Plant transgenic technologies are very important for basic plant research and biotechnology. Artificial trans-acting small interfering RNA (atasiRNA) represents an attractive platform with certain advantages over other silencing approaches, such as hairpin RNA, artificial microRNA (amiRNA), and virus-induced gene silencing (VIGS). In this study, we developed two types of constructs for atasiRNA-mediated gene silencing in plants. To functionally validate our constructs, we chose TAS1a as a test model. Type 1 constructs had miR173-precursor sequence fused with TAS1a locus driven by single promoter–terminator cassette, which simplified the expression cassette and resulted in uniform gene silencing. Type 2 constructs contained two separate cassettes for miR173 and TAS1a co-expression. The constructs in each type were further improved by deploying the XcmI-based TC-cloning system for highly efficient directional cloning of short DNA fragments encoding atasiRNAs into TAS1a locus. The effectiveness of the constructs was demonstrated by cloning an atasiRNA DNA into the TC site of engineered TAS1a and silencing of CHLORINA 42 (CH42) gene in Arabidopsis. Our results show that the directional TC-cloning of the atasiRNA DNA into the engineered TAS1a is highly efficient and the miR173–TAS1a fusion system provides an attractive alternative to achieve moderate but more uniform gene silencing without lethality, as compared to conventional two separate cassettes for miR173 and TAS locus co-expression system. The design principles described here should be applicable to other TAS loci such as TAS1b, TAS1c, TAS2, or TAS3, and cloning of amiRNA into amiRNA stem-loop.
  相似文献   

19.
20.
The expression of transgenes introduced into a plant genome is sometimes suppressed by RNA silencing. Although local and systemic spread of RNA silencing have been studied, little is known about the mechanisms underlying spatial and temporal variation in transgene silencing between individual plants or between plants of different generations, which occurs seemingly stochastically. Here, we analyzed the occurrence, spread, and transmission of RNA silencing of the green fluorescent protein (GFP) gene over multiple generations of the progeny of a single soybean transformant. Observation of GFP fluorescence in entire plants of the T3–T5 generations indicated that the initiation and subsequent spread of GFP silencing varied between individuals, although this GFP silencing most frequently began in the primary leaves. In addition, GFP silencing could spread into the outer layer of seed coat tissues but was hardly detectable in the embryos. These results are consistent with the notion that transgene silencing involves its reset during reproductive phase, initiation after germination, and systemic spread in each generation. GFP silencing was absent in the pulvinus, suggesting that its cortical cells inhibit cell-to-cell spread or induction of RNA silencing. The extent of GFP silencing could differ between the stem and a petiole or between petiolules, which have limited vascular bundles connecting them and thus deter long-distant movement of silencing. Taken together, these observations indicate that the initiation and/or spread of RNA silencing depend on specific features of the architecture of the plant in addition to the mechanisms that can be conserved in higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号