首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

2.
Over the past three decades, Narragansett Bay has undergone various ecological changes, including significant decreases in water column chlorophyll a concentrations, benthic oxygen uptake, and benthic nutrient regeneration rates. To add to this portrait of change, we measured the net flux of N2 across the sediment–water interface over an annual cycle using the N2/Ar technique at seven sites in the bay for comparison with measurements made decades ago. Net denitrification rates ranged from about 10–90 μmol N2–N m?2 h?1 over the year. Denitrification rates were not significantly different among sites and had no clear correlation with temperature. Net nitrogen fixation (?5 to ?650 μmol N2–N m?2 h?1) was measured at three sites and only observed in summer (June–August). Neither denitrification nor nitrogen fixation exhibited a consistent relationship with sediment oxygen demand or with fluxes of nitrite, nitrate, ammonium, total dissolved inorganic nitrogen, or dissolved inorganic phosphate across all stations. In contrast to the mid-bay historical site where denitrification rates have declined, denitrification rates in the Providence River Estuary have not changed significantly over the past 30 years.  相似文献   

3.
Wetland ecosystems in agricultural areas often become progressively more isolated from main water bodies. Stagnation favors the accumulation of organic matter as the supply of electron acceptors with water renewal is limited. In this context it is expected that nitrogen recycling prevails over nitrogen dissipation. To test this hypothesis, denitrification rates, fluxes of dissolved oxygen (SOD), inorganic carbon (DIC) and nitrogen and sediment features were measured in winter and summer 2007 on 22 shallow riverine wetlands in the Po River Plain (Northern Italy). Fluxes were determined from incubations of intact cores by measurement of concentration changes or isotope pairing in the case of denitrification. Sampled sites were eutrophic to hypertrophic; 10 were connected and 12 were isolated from the adjacent rivers, resulting in large differences in nitrate concentrations in the water column (from <5 to 1,133 μM). Benthic metabolism and denitrification rates were investigated by two overarching factors: season and hydrological connectivity. SOD and DIC fluxes resulted in respiratory quotients greater than one at most sampling sites. Sediment respiration was coupled to both ammonium efflux, which increased from winter to summer, and nitrate consumption, with higher rates in river-connected wetlands. Denitrification rates measured in river-connected wetlands (35–1,888 μmol N m?2 h?1) were up to two orders of magnitude higher than rates measured in isolated wetlands (2–231 μmol N m?2 h?1), suggesting a strong regulation of the process by nitrate availability. These rates were also significantly higher in summer (9–1,888 μmol N m?2 h?1) than in winter (2–365 μmol N m?2 h?1). Denitrification supported by water column nitrate (DW) accounted for 60–100% of total denitrification (Dtot); denitrification coupled to nitrification (DN) was probably controlled by limited oxygen availability within sediments. Denitrification efficiency, calculated as the ratio between N removal via denitrification and N regeneration, and the relative role of denitrification for organic matter oxidation, were high in connected wetlands but not in isolated sites. This study confirms the importance of restoring hydraulic connectivity of riverine wetlands for the maintenance of important biogeochemical functions such as nitrogen removal via denitrification.  相似文献   

4.
Nutrient biogeochemistry associated with the early stages of soil development in deltaic floodplains has not been well defined. Such a model should follow classic patterns of soil nutrient pools described for alluvial ecosystems that are dominated by mineral matter high in phosphorus and low in carbon and nitrogen. A contrast with classic models of soil development is the anthropogenically enriched high nitrate conditions due to agricultural fertilization in upstream watersheds. Here we determine if short-term patterns of soil chemistry and dissolved inorganic nutrient fluxes along the emerging Wax Lake delta (WLD) chronosequence are consistent with conceptual models of long-term nutrient availability described for other ecosystems. We add a low nitrate treatment more typical of historic delta development to evaluate the role of nitrate enrichment in determining the net dinitrogen (N2) flux. Throughout the 35-year chronosequence, soil nitrogen and organic matter content significantly increased by an order of magnitude, whereas phosphorus exhibited a less pronounced increase. Under ambient nitrate concentrations (>60 μM), mean net N2 fluxes (157.5 μmol N m?2 h?1) indicated greater rates of gross denitrification than gross nitrogen fixation; however, under low nitrate concentrations (<2 μM), soils switched from net denitrification to net nitrogen fixation (?74.5 μmol N m?2 h?1). As soils in the WLD aged, the subsequent increase in organic matter stimulated net N2, oxygen, nitrate, and nitrite fluxes producing greater fluxes in more mature soils. In conclusion, soil nitrogen and carbon accumulation along an emerging delta chronosequence largely coincide with classic patterns of soil development described for alluvial floodplains, and substrate age together with ambient nitrogen availability can be used to predict net N2 fluxes during early delta evolution.  相似文献   

5.
Wetlands are biogeochemical hotspots that have been identified as important sites for both nitrogen (N) removal from surface waters and greenhouse gas (GHG) production. Floating vegetation (FV) commonly occurs in natural and constructed wetlands, but the effects of such vegetation on denitrification, N retention, and GHG production are unknown. To address this knowledge gap, we used microcosm experiments to examine how FV affects N and GHG dynamics. Denitrification and N retention rates were significantly higher in microcosms with FV (302 μmol N m?2 h?1 and 203 μmol N m?2 h?1, respectively) than in those without (63 μmol N m?2 h?1 and 170 μmol N m?2 h?1, respectively). GHG production rates were not significantly different between the two treatments. Denitrification rates were likely elevated due to decreased dissolved oxygen (DO) in microcosms with FV. The balance of photosynthesis and respiration was more important in affecting DO concentrations than decreased surface gas exchange. The denitrification fraction (N2-N production: N retention) was higher in microcosms with FV (100 %) than those without (33 %) under increased (tripled) N loading. A 5 °C temperature increase resulted in significantly lower denitrification rates in the absence of FV and significantly lowered N2O production with FV, but did not significantly change CH4 production or N retention in either treatment. These results suggest that intentional introduction of FV in constructed wetlands could enhance N removal while leaving GHG production unchanged, an insight that should be further tested via in situ experiments.  相似文献   

6.
The extent to which in-stream processes alter or remove nutrient loads in agriculturally impacted streams is critically important to watershed function and the delivery of those loads to coastal waters. In this study, patch-scale rates of in-stream benthic processes were determined using large volume, open-bottom benthic incubation chambers in a nitrate-rich, first to third order stream draining an area dominated by tile-drained row-crop fields. The chambers were fitted with sampling/mixing ports, a volume compensation bladder, and porewater samplers. Incubations were conducted with added tracers (NaBr and either 15N[NO3 ?], 15N[NO2 ?], or 15N[NH4 +]) for 24–44 h intervals and reaction rates were determined from changes in concentrations and isotopic compositions of nitrate, nitrite, ammonium and nitrogen gas. Overall, nitrate loss rates (220–3,560 μmol N m?2 h?1) greatly exceeded corresponding denitrification rates (34–212 μmol N m?2 h?1) and both of these rates were correlated with nitrate concentrations (90–1,330 μM), which could be readily manipulated with addition experiments. Chamber estimates closely matched whole-stream rates of denitrification and nitrate loss using 15N. Chamber incubations with acetylene indicated that coupled nitrification/denitrification was not a major source of N2 production at ambient nitrate concentrations (175 μM), but acetylene was not effective for assessing denitrification at higher nitrate concentrations (1,330 μM). Ammonium uptake rates greatly exceeded nitrification rates, which were relatively low even with added ammonium (3.5 μmol N m?2 h?1), though incubations with nitrite demonstrated that oxidation to nitrate exceeded reduction to nitrogen gas in the surface sediments by fivefold to tenfold. The chamber results confirmed earlier studies that denitrification was a substantial nitrate sink in this stream, but they also indicated that dissolved inorganic nitrogen (DIN) turnover rates greatly exceeded the rates of permanent nitrogen removal via denitrification.  相似文献   

7.
Griffin JM  Turner MG 《Oecologia》2012,170(2):551-565
Outbreaks of Dendroctonus beetles are causing extensive mortality in conifer forests throughout North America. However, nitrogen (N) cycling impacts among forest types are not well known. We quantified beetle-induced changes in forest structure, soil temperature, and N cycling in Douglas-fir (Pseudotsuga menziesii) forests of Greater Yellowstone (WY, USA), and compared them to published lodgepole pine (Pinus contorta var. latifolia) data. Five undisturbed stands were compared to five beetle-killed stands (4–5 years post-outbreak). We hypothesized greater N cycling responses in Douglas-fir due to higher overall N stocks. Undisturbed Douglas-fir stands had greater litter N pools, soil N, and net N mineralization than lodgepole pine. Several responses to disturbance were similar between forest types, including a pulse of N-enriched litter, doubling of soil N availability, 30–50 % increase in understory cover, and 20 % increase in foliar N concentration of unattacked trees. However, the response of some ecosystem properties notably varied by host forest type. Soil temperature was unaffected in Douglas-fir, but lowered in lodgepole pine. Fresh foliar %N was uncorrelated with net N mineralization in Douglas-fir, but positively correlated in lodgepole pine. Though soil ammonium and nitrate, net N mineralization, and net nitrification all doubled, they remained low in both forest types (<6 μg N g soil?1 NH4 +or NO3 ?; <25 μg N g soil?1 year?1 net N mineralization; <8 μg N g soil?1 year?1 net nitrification). Results suggest that beetle disturbance affected litter and soil N cycling similarly in each forest type, despite substantial differences in pre-disturbance biogeochemistry. In contrast, soil temperature and soil N–foliar N linkages differed between host forest types. This result suggests that disturbance type may be a better predictor of litter and soil N responses than forest type due to similar disturbance mechanisms and disturbance legacies across both host–beetle systems.  相似文献   

8.
Dissolved organic matter (DOM), produced through leaching from particulate organic matter (POM), is an essential component of the carbon cycle in streams. The present study investigated the instream DOM release from POM, varying in size and chemical quality. We produced large and medium sized fine particulate organic matter (L-FPOM, 250–500 μm; M-FPOM, 100–250 μm) of defined quality by feeding five types of coarse particulate organic matter (CPOM) to shredding amphipods (Gammarus spp.). Microscopic observations showed that L-FPOM and M-FPOM mainly consisted of the fecal pellets of amphipods, and incompletely eaten plant fragments, respectively. DOM release experiments were conducted by exposing CPOM and M- and L-FPOM fractions in natural stream water over a two week period. For CPOM, the release of dissolved organic carbon (DOC) by leaching was highest during the first 6 h (3.64–23.9 mg C g C?1 h?1) and decreased rapidly afterwards. For M- and L-FPOM, the DOC release remained low during the entire study period (range: 0.008–0.15 mg C g C?1 h?1). Two-way ANOVA revealed that the DOC release rate significantly differed with POM source and size fraction, both at day 1 and after a week of exposure. Multiple regression analyses revealed a significant correlation of elemental contents and lignin content to DOC release rate after a week of exposure. Overall, the results indicated that DOC release rate of FPOM, on a carbon basis, is comparable to that of CPOM after leaching, while size and source of POM significantly affect DOC release rate.  相似文献   

9.
Photosynthetic bacteria are known to utilize volatile fatty acids as a carbon source for growth and product formation. In this study, a new isolate, Rubrivivax benzoatilyticus PS-5, possessing self-flocculation properties, was cultivated in modified glutamate-malate (GM) medium containing glutamate and malate as carbon sources. The effect of acetic acid, propionic acid and butyric acid (at 1–4 g L?1) as co-substrates and 7.5 mM glycine, 10 mM succinic acid as precursors for 5-aminolevulinic acid (ALA) production from R. benzoatilyticus PS-5 was investigated. Among the volatile fatty acids tested, acetic acid was preferred to butyric acid and propionic acid, with the optimum concentrations of 3 g L?1, 1 g L?1 and 3 g L?1, respectively. The highest ALA production was 169.71 μM, 162.16 μM and 46.18 μM, respectively, while the highest productivity was 2.57 μM h?1, 2.25 μM h?1 and 0.96 μM h?1, respectively. The precursor was consumed completely (100 %) while the assimilation of the acetic acid and butyric acid was 62.50 % and 48.65 %, respectively. Supplementation of propionic acid (at 1–4 g l?1) had a negative effect on growth and ALA production. To increase production efficiency, the pH-control strategy (at pH 6.0–8.0) during fermentation was tested. The optimum pH was 7.0, giving the maximum ALA production of 286.18 μM and a productivity of 3.97 μM h?1. These values were 1.68-fold and 1.54-fold higher, respectively, than those under uncontrolled pH conditions.  相似文献   

10.
Rapid increases in human population and land transformation in arid and semi-arid regions are altering water, carbon (C) and nitrogen (N) cycles, yet little is known about how urban ephemeral stream channels in these regions affect biogeochemistry and trace gas fluxes. To address these knowledge gaps, we measured carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) before and after soil wetting in 16 ephemeral stream channels that vary in soil texture and organic matter in Tucson, AZ. Fluxes of CO2 and N2O immediately following wetting were among the highest ever published (up to 1,588 mg C m?2 h?1 and 3,121 μg N m?2 h?1). Mean post-wetting CO2 and N2O fluxes were significantly higher in the loam and sandy loam channels (286 and 194 mg C m?2 h?1; 168 and 187 μg N m?2 h?1) than in the sand channels (45 mg C m?2 h?1 and 7 μg N m?2 h?1). Factor analyses show that the effect of soil moisture, soil C and soil N on trace gas fluxes varied with soil texture. In the coarser sandy sites, trace gas fluxes were primarily controlled by soil moisture via physical displacement of soil gases and by organic soil C and N limitations on biotic processes. In the finer sandy loam sites trace gas fluxes and N-processing were primarily limited by soil moisture, soil organic C and soil N resources. In the loam sites, finer soil texture and higher soil organic C and N enhance soil moisture retention allowing for more biologically favorable antecedent conditions. Variable redox states appeared to develop in the finer textured soils resulting in wide ranging trace gas flux rates following wetting. These findings indicate that urban ephemeral channels are biogeochemical hotspots that can have a profound impact on urban C and N biogeochemical cycling pathways and subsequently alter the quality of localized water resources.  相似文献   

11.
The Baltic Sea is known for its ecological problems due to eutrophication caused by high nutrient input via nitrogen fixation and rivers, which deliver up to 70% of nitrogen in the form of dissolved organic nitrogen (DON) compounds. We therefore measured organic nitrogen uptake rates using self produced 15N labeled allochthonous (derived from Brassica napus and Phragmites sp.) and autochthonous (derived from Skeletonema costatum) DON at twelve stations along a salinity gradient (34 to 2) from the North Sea to the Baltic Sea in August/September 2009. Both labeled DON sources were exploited by the size fractions 0.2–1.6 μm (bacteria size fraction) and >1.6 μm (phytoplankton size fraction). Higher DON uptake rates were measured in the Baltic Sea compared to the North Sea, with rates of up to 1213 nmol N l?1 h?1. The autochthonous DON was the dominant nitrogen form used by the phytoplankton size fraction, whereas the heterotrophic bacteria size fraction preferred the allochthonous DON. We detected a moderate shift from >1.6 μm plankton dominated DON uptake in the North Sea and central Baltic Sea towards a 0.2–1.6 μm dominated DON uptake in the Bothnian Bay and a weak positive relationship between DON concentrations and uptake. These findings indicate that DON is an important component of plankton nutrition and can fuel primary production. It may therefore also contribute substantially to eutrophication in the Baltic Sea especially when inorganic nitrogen sources are depleted.  相似文献   

12.
In this study, we developed a novel technique for preparing polyvinyl alcohol (PVA) hydrogel as an immobilizing matrix by the addition of sodium bicarbonate. This resulted in an increase in the specific surface area of PVA_sodium bicarbonate (PVA_SB) hydrogel beads to 65.23 m2 g?1 hydrogel beads, which was approximately 85 and 14 % higher than those of normal PVA and PVA_sodium alginate (PVA_SA) hydrogel beads, respectively. The D e value of PVA_SB hydrogel beads was calculated as 7.49 × 10?4 cm2 s?1, which was similar to the D e of PVA_SA hydrogel beads but nearly 38 % higher than that of the normal PVA hydrogel beads. After immobilization with nitrifying biomass, the oxygen uptake rate and the ammonium oxidation rate of nitrifying biomass entrapped in PVA_SB hydrogel beads were determined to be 19.53 mg O2 g MLVSS?1 h?1 and 10.59 mg N g MLVSS?1 h?1, which were 49 and 43 % higher than those of normal PVA hydrogel beads, respectively. Scanning electron microscopy observation of the PVA_SB hydrogel beads demonstrated relatively higher specific surface area and revealed loose microstructure that was considered to provide large spaces for microbial growth. This kind of structure was also considered beneficial for reducing mass transfer resistance and increasing pollutant uptake.  相似文献   

13.
Anthropogenic pollutants and climate change are major threats to coral reefs today. Yet interactions between chemical and thermal perturbations have not been fully explored in reef studies. Here, we present the single and combined effects of copper (Cu) with thermal stress on five early life-history stages/processes (fertilization, larval mortality, swimming ability, metamorphosis and growth of juvenile recruits) of the massive coral Platygyra acuta in Hong Kong. In the first four experiments, coral gametes and larvae were exposed to different Cu doses (0–200 μg L?1, apart from the fertilization assay in which 0–1000 μg L?1 was used) and temperature treatments (ambient and ambient +2 or +3 °C as a thermal stress treatment) following a factorial experimental design. Exposure time was 5 h for the fertilization assay and 48 h for the other experiments. The last experiment on growth of coral recruits was conducted over 56 d with 0–80 μg L?1 Cu used. Cu significantly reduced percent fertilization success, percentage of active swimming larvae and larval survivorship (EC50s, the half maximal effective concentrations, for percent fertilization success and percentage of active swimming larvae were 92–145 and 45–47 μg L?1 respectively. While LC50, the lethal concentration that kills 50% of the population, was 101–110 μg L?1), while growth of coral recruits was not affected at 80 μg L?1 Cu for 56 d. No settling cues were used in the settlement experiment. In their absence, percent metamorphosis increased with Cu doses, in sharp contrast to earlier findings. Settlement and metamorphosis may thus be strategies for coral larvae to escape from Cu toxicity. Thermal treatment did not significantly affect any experimental end points. This is likely because the thermal regimes used in the experiments were within the range experienced by local corals. The high variability in Cu toxicities indicates differential susceptibilities of the various life-history stages/processes of P. acuta. The level of Cu tolerance was also markedly higher than that reported in the literature for other coral species. This provides evidence to suggest possible adaptation of this species to survive in a highly polluted marine environment like that in Hong Kong.  相似文献   

14.
The production, nitrogen fixation, and release rates and fate of dissolved organic matter of a pelagic Sargassum community have been investigated at eight stations in the Gulf Stream and the Sargasso Sea. Net production and gross nitrogen fixation rates of Sargassum and epiphytes varied significantly between stations, 328 ± 114μg C (g dry wt)?1h?1 and 18 ± 7.4μg N g?1h?1, respectively. The net release rates of dissolved organic carbon (287 ± 150μg DOC g?1h?1) also showed the same variability between stations. On the other hand, the community carbon and nitrogen content, 268 ± 4.8 and 16.9 ± 2.4 mg g dry wt?1, respectively, remained constant at all stations. The results of chemical measurements indicate that ≈ 0–50 % of the gross production was lost as a result of photosynthate release. From 14C-tracer experiments it was found that the planktonic and epiphytic heterotrophs mineralized 50–70 % of the photosynthate released by Sargassum and epiphytic algae. Based on the community gross production and fixation rates, carbon and nitrogen content, the amount of nitrogen required for the observed production rates, the Sargassum community appears to obtain a substantial part (40%) of its nitrogen from nitrogen fixation.  相似文献   

15.
Yeast biofilms contribute to quality impairment of industrial processes and also play an important role in clinical infections. Little is known about biofilm formation and their treatment. The aim of this study was to establish a multi-layer yeast biofilm model using a modified 3.7 l bench-top bioreactor operated in continuous mode (D = 0.12 h?1). The repeatability of biofilm formation was tested by comparing five bioprocesses with Rhodotorula mucilaginosa, a strain isolated from washing machines. The amount of biofilm formed after 6 days post inoculation was 83 μg cm?2 protein, 197 μg cm?2 polysaccharide and 6.9 × 106 CFU cm?2 on smooth polypropylene surfaces. Roughening the surface doubled the amount of biofilm but also increased its spatial variability. Plasma modification of polypropylene significantly reduced the hydrophobicity but did not enhance cell attachment. The biofilm formed on polypropylene coupons could be used for sanitation studies.  相似文献   

16.
Grazing exclusion is widely used globally to restore degraded grasslands. Plant diversity has important impacts on grassland ecosystem functions, including grassland productivity and carbon storage. In this study, we selected a Kobresia meadow on the Qinghai–Tibetan Plateau to investigate how grazing exclusion affects plant diversity. Inorganic nitrogen (NH4 + and NO3 ?) was also measured because its availability impacts plant growth. We found that plant diversity in the meadow was significantly lower under grazing exclusion (fenced meadow) for 9 years compared with moderate grazing. Accumulated litter was significantly higher under grazing exclusion (386.41 g m?2) compared with grazing (58.77 g m?2). Soil inorganic nitrogen at 0–5 cm depth was significantly higher under grazing exclusion (13.60 × 10?2 g kg?1) than under grazing (9.40 × 10?2 g kg?1). The composition of the four functional groups (grasses, sedges, legumes, and forbs) might alter in response to significant changes in the amount of litter and soil available nitrogen content under grazing exclusion compared with grazing. However, the enhanced soil available nitrogen content showed weak feedbacks on plant diversity. In conclusion, light limitation induced by increased amounts of litter may be the main factor causing decreased plant diversity in grazing-excluded meadows compared with moderately grazed meadows.  相似文献   

17.
Batch experiments were performed for the aerobic co-metabolism of 1,1-dichloroethylene (1,1-DCE) by Achromobacter sp., identified by gene sequencing of 16S rRNA and grown on benzene. Kinetic models were employed to simulate the co-metabolic degradation of 1,1-DCE, and relevant parameters were obtained by non-linear least squares regression. Benzene at 90 mg L?1 non-competitively inhibited degradation of 1,1-DCE (from 125 to 1,200 μg L?1). The maximum specific utilization (kc) rate and the half-saturation constant (Kc) for 1,1-DCE were 54 ± 0.85 μg h?1 and 220 ± 6.8 μg L?1, respectively; the kb and Kb for benzene were 13 ± 0.18 mg h?1 and 28 ± 0.42 mg L?1, respectively. This study provides a theoretical basis to predict the natural attenuation when benzene and 1,1-DCE occur as co-contaminants.  相似文献   

18.
Nitrogen removal in coastal sediments of the German Wadden Sea   总被引:1,自引:0,他引:1  
Although sediments of the German Wadden Sea are suspected to eliminate a considerable share of nitrate delivered to the SE North Sea, their denitrification rates have not been systematically assessed. We determined N2 production rates over seasonal cycles (February 2009–April 2010) at two locations with two sediments types each, the first site (Meldorf Bight) receiving nitrate during all seasons from the Elbe river plume, and a second site on the island of Sylt, where nitrate is depleted during summer months. In sediments from the Sylt site, N2 production ranged from 15 to 32 μmol N2 m?2 h?1 in the fine sand station and from 7 to 13 μmol N2 m?2 h?1 in the coarse sand station; N2 production was not detected when nitrate was depleted in May and July of 2009. N2 production in the Meldorf Bight sediments were consistently detected at higher rates (58–130 μmol N2 m?2 h?1 in the very fine sand station and between 14 and 30 μmol N2 m?2 h?1 in the medium sand station). Analysis of ancillary parameters suggests that major factors controlling N2 production in coastal sediments of the German Wadden Sea are the nitrate concentrations in the overlying water, the ambient temperature, and the organic matter content of the sediment. Extrapolating our spot measurements to the zone of nitrate availability and sediment types, we estimate an annual nitrogen removal rate around 16 kt N year?1 for the entire northern sector of the German Wadden Sea area. This corresponds to 14% of the annual Elbe river nitrogen load.  相似文献   

19.
Benthic biogeochemistry and macrofauna were investigated six times over 1 year in a shallow sub-tropical embayment. Benthic fluxes of oxygen (annual mean ?918 μmol O2 m?2 h?1), ammonium (NH4 +), nitrate (NO3 ?), dissolved organic nitrogen, dinitrogen gas (N2), and dissolved inorganic phosphorus were positively related to OM supply (N mineralisation) and inversely related to benthic light (N assimilation). Ammonium (NH4 +), NO3 ? and N2 fluxes (annual means +14.6, +15.9 and 44.6 μmol N m?2 h?1) accounted for 14, 16 and 53 % of the annual benthic N remineralisation respectively. Denitrification was dominated by coupled nitrification–denitrification throughout the study. Potential assimilation of nitrogen by benthic microalgae (BMA) accounted for between 1 and 30 % of remineralised N, and was greatest during winter when bottom light was higher. Macrofauna biomass tended to be highest at intermediate benthic respiration rates (?1,000 μmol O2 m?2 h?1), and appeared to become limited as respiration increased above this point. While bioturbation did not significantly affect net fluxes, macrofauna biomass was correlated with increased light rates of NH4 + flux which may have masked reductions in NH4 + flux associated with BMA assimilation during the light. Peaks in net N2 fluxes at intermediate respiration rates are suggested to be associated with the stimulation of potential denitrification sites due to bioturbation by burrowing macrofauna. NO3 ? fluxes suggest that nitrification was not significantly limited within respiration range measured during this study, however comparisons with other parts of Moreton Bay suggest that limitation of coupled nitrification–denitrification may occur in sub-tropical systems at respiration rates exceeding ?1,500 μmol O2 m?2 h?1.  相似文献   

20.
A baseline study on a temperate, oligotrophic North Patagonian lake (Lake Chapo, Southern Chile) was made prior to the installation of a hydroelectric power station. Throughout one year (September 1986–October 1987) the physical and chemical properties of the lake were investigated monthly from the surface to a depth of 40 m. Lake Chapo is a deep, transparent (Secchi depth: 17–25 m), glacial lake located at 41°?27.5′?S and 72°?30′?W. It has a maximum depth of 298 m, mean depth of 183 m, surface area of 45.3 km2 and water volume of 8.296 km3. The theoretical residence time of the water was 5.5 years. The temperature regime is monomictic with the mixed temperature between 8.1–8.8?°C. Maximum temperature at the surface was 18.7?°C during thermal stratification in summer when the epilimnion had a thickness of about 20 m. The conductivity was low (20.3–23.8 μS cm?1) as was the buffering capacity of a predominantly CO2-carbonate system. The predominant cations were Ca+2¿ Na+¿Mg+2¿K+. The phosphorous and nitrogen contents were very low (soluble reactive ortophosphate: 0–1.5 μg P l?1, total phosphorus: 0.3–4 μg P l?1 and nitrate: 0–35 μg N l?1), which is typical of North Patagonian lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号