首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary responses to selection can be complicated when there is substantial nonadditivity, which limits our ability to extrapolate from simple models of selection to population differentiation and speciation. Studies of Drosophila melanogaster indicate that lifespan and the rate of senescence are influenced by many genes that have environment- and sex-specific effects. These studies also demonstrate that interactions among alleles (dominance) and loci (epistasis) are common, with the degree of interaction differing between the sexes and among environments. However, little is known about the genetic architecture of lifespan or mortality rates for organisms other than D. melanogaster. We studied genetic architecture of differences in lifespan and shapes of mortality curves between two populations of the seed beetle, Callosobruchus maculatus (South India and Burkina Faso populations). These two populations differ in various traits (such as body size and adult lifespan) that have likely evolved via host-specific selection. We found that the genetic architecture of lifespan differences between populations differs substantially between males and females; there was a large maternal effect on male lifespan (but not on female lifespan), and substantial dominance of long-life alleles in females (but not males). The large maternal effect in males was genetically based (there was no significant cytoplasmic effect) likely due to population differences in maternal effects genes that influence lifespan of progeny. Rearing host did not affect the genetic architecture of lifespan, and there was no evidence that genes on the Y-chromosome influence the population differences in lifespan. Epistatic interactions among loci were detectable for the mortality rate of both males and females, but were detectable for lifespan only after controlling for body size variation among lines. The detection of epistasis, dominance, and sex-specific genetic effects on C. maculatus lifespan is consistent with results from line cross and quantitative trait locus studies of D. melanogaster.  相似文献   

2.
As the human lifespan has increased dramatically in recent decades, the amount of aging research has correspondingly increased. To investigate mechanisms of aging, an efficient model system is required. Although mammalian animal models are essential for aging studies, they are sometimes inappropriate due to their long lifespans and high maintenance costs. In this regard, insects can be effective alternative model systems for aging studies, as insects have a relatively short lifespan and cost less to maintain. Many species of insects have been used as model systems for aging studies, especially fruit flies, silkworm moths and several social insects. Fruit flies are most commonly used for aging studies due to the wide availability of abundant resources such as mutant stocks, databases and genetic tools. Silkworm moths are also good tools for studying aging at the tissue level due to their relatively large size. Last, social insects such as ants and bees are good for investigating lifespan determinants, as their lifespans significantly differ according to caste despite a constant genotype among the population. In this review, we discuss the current status and future prospects of aging research using insect model systems.  相似文献   

3.
Clinal studies are a powerful tool for understanding the genetic basis of climatic adaptation. However, while clines in quantitative traits and genetic polymorphisms have been observed within and across continents, few studies have attempted to demonstrate direct links between them. The gene methuselah in Drosophila has been shown to have a major effect on stress response and longevity phenotypes based largely on laboratory studies of induced mutations in the mth gene. Clinal patterns in the most common mth haplotype and for lifespan (both increasing with latitude) have been observed in North American populations of D. melanogaster, implicating climatic selection. While these clinal patterns have led some to suggest that mth influences ageing in natural populations, limited evidence on the association between the two has so far been collected. Here, we describe a significant cline in the mth haplotype in eastern Australian D. melanogaster populations that parallel the cline in North America. We also describe a cline in mth gene expression. These findings further support the idea that mth is itself under selection. In contrast, we show that lifespan has a strong nonlinear clinal pattern, increasing southwards from the tropics, but then decreasing again from mid‐latitudes. Furthermore, in association studies, we find no evidence for a direct link between mth haplotype and lifespan. Thus, while our data support a role for mth variation being under natural selection, we found no link to naturally occurring variation in lifespan and ageing in Australian populations of D. melanogaster. Our results indicate that the mth locus likely has genetic background and environment‐specific effects.  相似文献   

4.
Dietary restriction extends lifespan substantially in numerous species including Drosophila. However, it is unclear whether dietary restriction in flies impacts age-related functional declines in conjunction with its effects on lifespan. Here, we address this issue by assessing the effect of dietary restriction on lifespan and behavioral senescence in two wild-type strains, in our standard white laboratory stock, and in short-lived flies with reduced expression of superoxide dismutase 2. As expected, dietary restriction extended lifespan in all of these strains. The effect of dietary restriction on lifespan varied with genetic background, ranging from 40 to 90% extension of median lifespan in the seven strains tested. Interestingly, despite its robust positive effects on lifespan, dietary restriction had no substantive effects on senescence of behavior in any of the strains in our studies. Our results suggest that dietary restriction does not have a global impact on aging in Drosophila and support the hypothesis that lifespan and behavioral senescence are not driven by identical mechanisms.  相似文献   

5.
Chronic dietary restriction (DR) is considered among the most robust life-extending interventions, but several reports indicate that DR does not always extend and may even shorten lifespan in some genotypes. An unbiased genetic screen of the lifespan response to DR has been lacking. Here, we measured the effect of one commonly used level of DR (40% reduction in food intake) on mean lifespan of virgin males and females in 41 recombinant inbred strains of mice. Mean strain-specific lifespan varied two to threefold under ad libitum (AL) feeding and 6- to 10-fold under DR, in males and females respectively. Notably, DR shortened lifespan in more strains than those in which it lengthened life. Food intake and female fertility varied markedly among strains under AL feeding, but neither predicted DR survival: therefore, strains in which DR shortened lifespan did not have low food intake or poor reproductive potential. Finally, strain-specific lifespans under DR and AL feeding were not correlated, indicating that the genetic determinants of lifespan under these two conditions differ. These results demonstrate that the lifespan response to a single level of DR exhibits wide variation amenable to genetic analysis. They also show that DR can shorten lifespan in inbred mice. Although strains with shortened lifespan under 40% DR may not respond negatively under less stringent DR, the results raise the possibility that life extension by DR may not be universal.  相似文献   

6.
We are currently in the midst of a revolution in ageing research,with several dietary,genetic and pharmacological interventions now known to modulate ageing in model organisms.Excitingly,these interventions also appear to have beneficial effects on late-life health.For example,dietary restriction(DR) has been shown to slow the incidence of age-associated cardiovascular disease,metabolic disease,cancer and brain ageing in non-human primates and has been shown to improve a range of health indices in humans.While the idea that DR's ability to extend lifespan is often thought of as being universal,studies in a range of organisms,including yeast,mice and monkeys,suggest that this may not actually be the case.The precise reasons underlying these differential effects of DR on lifespan are currently unclear,but genetic background may be an important factor in how an individual responds to DR.Similarly,recent findings also suggest that the responsiveness of mice to specific genetic or pharmacological interventions that modulate ageing may again be influenced by genetic background.Consequently,while there is a clear driver to develop interventions to improve late-life health and vitality,understanding precisely how these act in response to particular genotypes is critical if we are to translate these findings to humans.We will consider of the role of genetic background in the efficacy of various lifespan interventions and discuss potential routes of utilising genetic heterogeneity to further understand how particular interventions modulate lifespan and healthspan.  相似文献   

7.
随着世界人口老龄化步伐的加快,衰老机制及抗衰老药物的研究日益成为生物医学领域的热点前沿之一.国内外已有大量研究报道抗衰老药物能够延长多种模式生物包括线虫、果蝇、小鼠、大鼠及灵长类等的寿命,然而,这些药物延缓衰老方式的差异仍缺乏系统研究.因此,本研究以衰老研究的热点模式生物线虫为对象,搜集1990年以来国内外刊物上正式发表的有关抗衰老药物寿命试验的研究文献及其涉及的生存曲线,利用荟萃分析比较了不同抗衰老药物与生存曲线变化类型间的关系,并结合药物的药理作用探讨其延寿机制.生存曲线特征聚类结果与药物生物学分类交叉分析结果表明,药理作用类型与增益类型具有很强相关性,提示这2种分类方法的结果是匹配的.抗氧化剂类药物和控制血糖类药物对生存曲线的改善总体增益虽然不是最高,但相对于正常组生存曲线其增益部分呈平移形,表明该类药物可以通过改善年龄结构对整个群体产生显著增益,且其衰老曲线的特征与自然衰老相似.抗癫痫药物及胃肠道菌群相关药物总体增益较大,其曲线增益形状呈梯形,提示该类药物(尤其是胃肠道菌群相关药物)尽管显著延长了少数个体的最大寿命,但是从整个群体来看,大多数个体寿命延长程度并不明显,受益的少数个体可能需要较长的外界资源支持方能保持较长时间的存活状态,这种模式既不大众化也不经济.综上所述,清除自由基和控制血糖类药物对健康老年有着更为积极合理的作用与效应.  相似文献   

8.
9.
Both physiologically and ecologically based explanations have been proposed to account for among‐species differences in lifespan, but they remain poorly tested. Phylogenetically explicit comparative analyses are still scarce and those that exist are biased towards homoeothermic vertebrates. Insect studies can significantly contribute as lifespan can feasibly be measured in a high number of species, and the selective forces that have shaped it may differ largely between species and from those acting on larger animals. We recorded adult lifespan in 98 species of geometrid moths. Phylogenetic comparative analyses were applied to study variation in species‐specific values of lifespan and to reveal its ecological and life‐history correlates. Among‐species and between‐gender differences in lifespan were found to be notably limited; there was also no evidence of phylogenetic signal in this trait. Larger moth species were found to live longer, with this result supporting a physiological rather than ecological explanation of this relationship. Species‐specific lifespan values could not be explained by traits such as reproductive season and larval diet breadth, strengthening the evidence for the dominance of physiological determinants of longevity over ecological ones.  相似文献   

10.
Major advances in aging research have been made by studying the effect of genetic modifications on the lifespan of organisms, such as yeast, invertebrates (worms and flies) and mice. Data from yeast and invertebrates have been the most plentiful because of the ease in which genetic manipulations can be made and the rapidity by which lifespan experiments can be performed. With the ultimate focus on advancing human health, testing genetic interventions in mammals is crucial, and the mouse has proven to be the mammal most amenable to this task. Lifespan studies in mice are resource intensive, requiring up to 4 years to complete. Therefore, it is critical that a set of scientifically-based criteria be followed to assure reliable results and establish statistically significant findings so other laboratories can replicate and build on the data. Only then will it be possible to confidently determine that the genetic modification extends lifespan and alters aging.  相似文献   

11.
Valtonen TM  Roff DA  Rantala MJ 《Genetica》2011,139(4):525-533
Because of their decreased overall fitness and genetic variability inbred individuals are expected to show reduced survival and lifespan under most environmental conditions as compared with outbred individuals. Whereas evidence for the deleterious effects of inbreeding on lifespan has been previously provided, only a few studies have investigated effects of inbreeding on survival under starved conditions. In the present study we compared the abilities of inbred and outbred adult Drosophila melanogaster to survive under starved and fed conditions. We found that inbreeding reduced lifespan but had no effect on starvation resistance. The results indicate highly trait specific consequences of inbreeding. Possible mechanisms behind the observed results are discussed.  相似文献   

12.
RNA interference (RNAi) provides an important tool for gene function discovery. It has been widely exploited in Caenorhabditis elegans ageing research because it does not appear to have any non-specific effects on ageing-related traits in that model organism. We show here that ubiquitous, adult-onset activation of the RNAi machinery, achieved by expressing a double stranded RNA targeting GFP or lacZ for degradation, or by increasing expression of Dicer substantially reduces lifespan in Drosophila melanogaster. Induction of GFPRNAi construct also alters the response of lifespan to nutrition, exacerbating the lifespan-shortening effects of food containing a high quantity of yeast. Our study indicates that activation of the RNAi machinery may have sequence-independent side-effects on lifespan, and that caution needs to be exercised when employing ubiquitous RNAi in Drosophila ageing studies. However, we also show that RNAi restricted to certain tissues may not be detrimental to lifespan.  相似文献   

13.
Association studies have been proposed to identify the genetic determinants of complex neuropsychiatric traits. Although such studies of candidate genes offer great potential to identify genetic variants that contribute to the expression of psychiatric disease, no consistent associations have been identified. Studies to date have focused on candidate genes that are selected for analysis on the basis of incomplete information about gene function in the brain, therefore the majority of genes expressed in the brain have been ignored. Additionally, most genetic determinants of psychiatric disease will probably be of modest effect and therefore require association studies of large samples. As genomic technologies advance, massive genotyping of large samples should allow identification of alleles that contribute to psychopathology.  相似文献   

14.
Mice are an ideal mammalian model for studying the genetics of aging: considerable resources are available, the generation time is short, and the environment can be easily controlled, an important consideration when performing mapping studies to identify genes that influence lifespan and age-related diseases. In this review we highlight some salient contributions of the mouse in aging research: lifespan intervention studies in the Interventions Testing Program of the National Institute on Aging; identification of the genetic underpinnings of the effects of calorie restriction on lifespan; the Aging Phenome Project at the Jackson Laboratory, which has submitted multiple large, freely available phenotyping datasets to the Mouse Phenome Database; insights from spontaneous and engineered mouse mutants; and complex traits analyses identifying quantitative trait loci that affect lifespan. We also show that genomewide association peaks for lifespan in humans and lifespan quantitative loci for mice map to homologous locations in the genome. Thus, the vast bioinformatic and genetic resources of the mouse can be used to screen candidate genes identified in both mouse and human mapping studies, followed by functional testing, often not possible in humans, to determine their influence on aging.  相似文献   

15.
Gill MS 《Aging cell》2006,5(1):23-30
Studies in the nematode Caenorhabditis elegans have been instrumental in defining genetic pathways that are involved in modulating lifespan. Multiple processes such as endocrine signaling, nutritional sensing and mitochondrial function play a role in determining lifespan in the worm and these mechanisms appear to be conserved across species. These discoveries have identified a range of novel targets for pharmacological manipulation of lifespan and it is likely that the nematode model will now prove useful in the discovery of compounds that slow aging. This review will focus on the endocrine targets for intervention in aging and the use of C. elegans as a system for high throughput screens of compounds for their effects on aging.  相似文献   

16.
The beneficial effects of polyphenol compounds in fruits and vegetables are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary polyphenols are beneficial in whole animals, particularly with respect to aging. To address this question, we examined the effects of blueberry polyphenols on lifespan and aging of the nematode, Caenorhabditis elegans, a useful organism for such a study. We report that a complex mixture of blueberry polyphenols increased lifespan and slowed aging-related declines in C. elegans. We also found that these benefits did not just reflect antioxidant activity in these compounds. For instance, blueberry treatment increased survival during acute heat stress, but was not protective against acute oxidative stress. The blueberry extract consists of three major fractions that all contain antioxidant activity. However, only one fraction, enriched in proanthocyanidin compounds, increased C. elegans lifespan and thermotolerance. To further determine how polyphenols prolonged C. elegans lifespan, we analyzed the genetic requirements for these effects. Prolonged lifespan from this treatment required the presence of a CaMKII pathway that mediates osmotic stress resistance, though not other pathways that affect stress resistance and longevity. In conclusion, polyphenolic compounds in blueberries had robust and reproducible benefits during aging that were separable from antioxidant effects.  相似文献   

17.
Avian species show a remarkable diversity in lifespan. The differing lifespan patterns are found across a number of birds, in spite of higher body temperature and apparent increased metabolic rate. These characteristics make study of age-related changes of great interest, especially for understanding the biology of aging associated with surprisingly long lifespan in some birds. Our studies have focused on a short-lived avian model, the Japanese quail in order to describe reproductive aging and the neuroendocrine characteristics leading to reproductive senescence. Biomarkers of aging used in mammalian species include telomere length, oxidative damage, and selected metabolic indicators. These markers provide confirming evidence that the long-lived birds appear to age more slowly. A corollary area of interest is that of immune function and aging. Immune responses have been studied in selected wild birds and there has been a range of studies that have considered the effects of stress in wild and domestic species. Our laboratory studies have specifically tested response to immune challenge relative to aging in the quail model and these studies indicate that there is an age-related change in the qualitative aspects of the response. However, there are also intriguing differences in the ability of the aging quail to respond that differ from mammalian data. Finally, another approach to understanding aging is to attempt to develop or test strategies that may extend lifespan and presumably health. One area of great interest has been to consider the effect of calorie restriction, which is a treatment shown to extend lifespan in a variety of species. This approach is routinely used in domestic poultry as a means for extending reproductive function and enhancing health. Our data indicate that moderate calorie restriction has beneficial effects, and that physiological and endocrine responses reflect these benefits.  相似文献   

18.
Vaccines have revolutionized modern public health. The effectiveness of some vaccines is limited by the variation in response observed between individuals and across populations. There is compelling evidence that a significant proportion of this variability can be attributed to human genetic variation, especially for those vaccines administered in early life. Identifying and understanding the determinants of this variation could have a far-reaching influence upon future methods of vaccine design and deployment. In this review, we summarize the genetic studies that have been undertaken attempting to identify the genetic determinants of response heterogeneity for the vaccines against hepatitis B, measles and rubella. We offer a critical appraisal of these studies and make a series of suggestions about how modern genetic techniques, including genome-wide association studies, could be used to characterize the genetic architecture of vaccine response heterogeneity. We conclude by suggesting how the findings from such studies could be translated to improve vaccine effectiveness and target vaccination in a more cost-effective manner.  相似文献   

19.
动物寿命与人类影响   总被引:2,自引:0,他引:2  
郭勤峰  杨世雄 《生态学报》2002,22(11):1991-1994
地球上各种生物有机体的寿命是有本质差异的,即使一些大小、形态和生理上大体相似的生物之间也存在着这种差异。早期的研究多集中在探讨基因、热量限制、药物与动物特别是人类寿命的相关性上,而环境因素以及日益加剧的人类活动对动物寿命的影响则很少被涉及。目前,越来越多的证据显示,人类以倍人类活动对动物的寿命有着直接或间接的影响。正面的影响可以从近年来诸如自然保护区的建立等保护措施的实施活动中得到体现。然而,由于日益加剧的人类活动造成的自然生境的日益萎缩和片段化所带来的负面影响也是非常明显的,人们不应只关注人类活动如何导致物种的绝灭,也应研究人类如何改变动物的生存环境、寿命以及动物固有的生命轨迹。介绍了有关动物寿命研究的最新进展,呼吁更多的学者投身到环境因素对动物寿命的影响这一迅速升温的诱人的研究领域中来。植物方面的类似研究也应该尽早启动。  相似文献   

20.
延长健康寿命的跨度对每个人都有重要意义,百岁老人存在独特的肠道菌群特征,肠道微生物群是许多年龄相关变化的核心,菌群特征以及菌群基因组成改变都能影响机体寿命。一些饮食和药物要发挥延寿效果也离不开微生物的参与,微生物具有重要的介导和转化作用,益生菌和粪便移植等措施在动物模型中已被明确可以影响机体寿命。越来越多的研究表明微生物不仅能产生小分子化合物促进健康寿命跨度的增加乃至延长个体寿命如γ-氨基丁酸、荚膜异多糖酸,还能影响宿主的生物合成代谢如5-羟色胺,甚至间接参与宿主信号通路的调控。目前对于这些微生物的生物学功能以及对宿主寿命的影响还没有系统的总结,对肠道微生物影响寿命的证据以及生理机制进行综述,为改善老年期健康状况的干预措施提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号