首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous kinetic investigations of the N-terminal RNA Recognition Motif (RRM) domain of spliceosomal A protein of the U1 small nuclear ribonucleoprotein particle (U1A) interacting with its RNA target U1 hairpin II (U1hpII) provided experimental evidence for a ‘lure and lock’ model of binding. The final step of locking has been proposed to involve conformational changes in an α-helix immediately C-terminal to the RRM domain (helix C), which occludes the RNA binding surface in the unbound protein. Helix C must shift its position to accommodate RNA binding in the RNA–protein complex. This results in a new hydrophobic core, an intraprotein hydrogen bond and a quadruple stacking interaction between U1A and U1hpII. Here, we used a surface plasmon resonance-based biosensor to gain mechanistic insight into the role of helix C in mediating the interaction with U1hpII. Truncation, removal or disruption of the helix exposes the RNA-binding surface, resulting in an increase in the association rate, while simultaneously reducing the ability of the complex to lock, reflected in a loss of complex stability. Disruption of the quadruple stacking interaction has minor kinetic effects when compared with removal of the intraprotein hydrogen bonds. These data provide new insights into the mechanism whereby sequences C-terminal to an RRM can influence RNA binding.  相似文献   

2.
The RNA recognition motif (RRM) is one of the most common RNA binding domains. There have been few investigations of small molecule inhibitors of RRM-RNA complexes, although these inhibitors could be valuable tools for probing biological processes involving RRM-RNA complexes and would have the potential to be effective drugs. In this paper, the inhibition by small molecules of the complex formed between the N-terminal RRM of the U1A protein and stem loop 2 of U1 snRNA has been investigated. An aminoacridine derivative has been found to promote dissociation of the U1A-stem loop 2 RNA complex with an IC(50) value of 1 microM. Fluorescence experiments indicate that two aminoacridine ligands bind to each RNA target site. RNase A footprinting suggests that one binding site may be near the base pair that closes the loop and the other may be in a more flexible region of the loop. The addition of the aminoacridine derivative to stem loop 2 RNA increases the susceptibility of other portions of the loop to digestion by RNase A, which implies that binding of the ligand changes the conformation or dynamics of the stem loop target site. Either direct binding to the RNA or indirect alteration of the structure or dynamics of the loop would be likely to inhibit binding of the U1A protein to this RNA.  相似文献   

3.
RNA recognition motifs (RRMs) are characterized by highly conserved regions located centrally on a beta-sheet, which forms the RNA binding surface. Variable flanking regions, such as the loop connecting beta-strands 2 and 3, are thought to be important in determining the RNA-binding specificities of individual RRMs. The N-terminal RRM of the spliceosomal U1A protein mediates binding to an RNA hairpin (U1hpII) in the U1 small nuclear RNA. In this complex, the beta(2)-beta(3) loop protrudes through the 10-nucleotide RNA loop. Shortening of the RNA loop strongly perturbs binding, suggesting that an optimal "fit" of the beta(2)-beta(3) loop into the RNA loop is an important factor in complexation. To understand this interaction further, we mutated or deleted loop residues Lys(50) and Met(51), which protrude centrally into the RNA loop but do not make any direct contacts to the bases. Using BIACORE, we analyzed the ability of these U1A mutants to bind to wild type RNAs, or RNAs with shortened loops. Alanine replacement mutations only modestly affected binding to wild type U1hpII. Interestingly, simultaneous replacement of Lys(50) and Met(51) with alanine appeared to alleviate the loss of binding caused by shortening of the RNA loop. Deletion of Lys(50) or Met(51) caused a dramatic loss in stability of the U1A.U1hpII complex. However, deletion of both residues simultaneously was much less deleterious. Simulated annealing molecular dynamics analyses suggest this is due to the ability of this mutant to rearrange flanking amino acids to substitute for the two deleted residues. The double deletion mutant also exhibited substantially reduced negative effects of RNA loop shortening, suggesting the rearranged loop is better able to accommodate a short RNA loop. Our results indicate that one of the roles of the beta(2)-beta(3) loop is to provide a steric fit into the RNA loop, thereby stabilizing the RNA.protein complex.  相似文献   

4.
The U1A protein is a sequence-specific RNA binding protein found in the U1 snRNP particle where it binds to stem/loop II of U1 snRNA. U1A contains two 'RNP' or 'RRM' (RNA Recognition Motif) domains, which are common to many RNA-binding proteins. The N-terminal RRM has been shown to bind specifically to the U1 RNA stem/loop, while the RNA target of the C-terminal domain is unknown. Here, we describe experiments using a 102 amino acid N-terminal RRM of U1A (102A) and a 25-nucleotide RNA stem/loop to measure the binding constants and thermodynamic parameters of this RNA:protein complex. Using nitrocellulose filter binding, we measure a dissociation constant KD = 2 x 10(-11) M in 250 mM NaCl, 2 mM MgC2, and 10 mM sodium cacodylate, pH 6 at room temperature, and a half-life for the complex of 5 minutes. The free energy of association (delta G degrees) of this complex is about -14 kcal/mol in these conditions. Determination of the salt dependence of the binding suggests that at least 8 ion-pairs are formed upon complex formation. A mutation in the RNA loop sequence reduces the affinity 10 x, or about 10% of the total free energy.  相似文献   

5.
The A protein of the U1 small nuclear ribonucleoprotein particle, interacting with its stem–loop RNA target (U1hpII), is frequently used as a paradigm for RNA binding by recognition motif domains (RRMs). U1A/U1hpII complex formation has been proposed to consist of at least two steps: electrostatically mediated alignment of both molecules followed by locking into place, based on the establishment of close-range interactions. The sequence of events between alignment and locking remains obscure. Here we examine the roles of three critical residues, Tyr13, Phe56 and Gln54, in complex formation and stability using Biacore. Our mutational and kinetic data suggest that Tyr13 plays a more important role than Phe56 in complex formation. Mutational analysis of Gln54, combined with molecular dynamics studies, points to Arg52 as another key residue in association. Based on our data and previous structural and modeling studies, we propose that electrostatic alignment of the molecules is followed by hydrogen bond formation between the RNA and Arg52, and the sequential establishment of interactions with loop bases (including Tyr13). A quadruple stack, sandwiching two bases between Phe56 and Asp92, would occur last and coincide with the rearrangement of a C-terminal helix that partially occludes the RRM surface in the free protein.  相似文献   

6.
Three highly conserved aromatic residues in RNA recognition motifs (RRM) participate in stacking interactions with RNA bases upon binding RNA. We have investigated the contribution of one of these aromatic residues, Phe56, to the complex formed between the N-terminal RRM of the spliceosomal protein U1A and stem–loop 2 of U1 snRNA. Previous work showed that the aromatic group is important for high affinity binding. Here we probe how mutation of Phe56 affects the kinetics of complex dissociation, the strength of the hydrogen bonds formed between U1A and the base that stacks with Phe56 (A6) and specific target site recognition. Substitution of Phe56 with Trp or Tyr increased the rate of dissociation of the complex, consistent with previously reported results. However, substitution of Phe56 with His decreased the rate of complex association, implying a change in the initial formation of the complex. Simultaneous modification of residue 56 and A6 revealed energetic coupling between the aromatic group and the functional groups of A6 that hydrogen bond to U1A. Finally, mutation of Phe56 to Leu reduced the ability of U1A to recognize stem–loop 2 correctly. Taken together, these experiments suggest that Phe56 contributes to binding affinity by stacking with A6 and participating in networks of energetically coupled interactions that enable this conserved aromatic amino acid to play a complex role in target site recognition.  相似文献   

7.
We recently determined the crystal structure of the RNP domain of the U1 small nuclear ribonucleoprotein A and identified Arg and Lys residues involved in U1 RNA binding. These residues are clustered around the two highly conserved segments, RNP1 and RNP2, located in the central two beta strands. We have now studied the U1 RNA binding of mutants where potentially hydrogen bonding residues on the RNA binding surface were replaced by non-hydrogen bonding residues. In the RNP2 segment, the Thr11----Val and Asn15----Val mutations completely abolished, and the Tyr13----Phe and Asn16----Val mutations substantially reduced the U1 RNA binding, suggesting that these residues form hydrogen bonds with the RNA. In the RNP1 segment Arg52----Gln abolished, but Arg52----Lys only slightly affected U1 RNA binding, suggesting that Arg52 may form a salt bridge with phosphates of U1 RNA. Ethylation protection experiments of U1 RNA show that the backbone phosphates of the 3' two-thirds of loop II and the 5' stem are in contact with the U1 A protein. The U1 A protein-U1 RNA binding constant is substantially reduced by A----G and G----A replacements in loop II, but not by C----U or U----C replacements. Based on these biochemical data we propose a structure for the complex between the U1 A ribonucleoprotein and U1 RNA.  相似文献   

8.
U6 spliceosomal RNA has a complex secondary structure that includes a highly conserved stemloop near the 3' end. The 3' stem is unwound when U6 RNA base-pairs with U4 RNA during spliceosome assembly, but likely reforms when U4 RNA leaves the spliceosome prior to the catalysis of splicing. A mutation in yeast U6 RNA that hyperstabilizes the 3' stem confers cold sensitivity and inhibits U4/U6 assembly as well as a later step in splicing. Here we show that extragenic suppressors of the 3' stem mutation map to the gene coding for splicing factor Prp24. The suppressor mutations are located in the second and third of three RNA-recognition motifs (RRMs) in Prp24 and are predicted to disrupt RNA binding. Mutations in U6 RNA predicted to destabilize a novel helix adjacent to the 3' stem also suppress the 3' stem mutation and enhance the growth defect of a suppressor mutation in RRM2 of Prp24. Both phenotypes are reverted by a compensatory mutation that restores pairing in the novel helix. These results are best explained by a model in which RRMs 2 and 3 of Prp24 stabilize an extended intramolecular structure in U6 RNA that competes with the U4/U6 RNA interaction, and thus influence both association and dissociation of U4 and U6 RNAs during the splicing cycle.  相似文献   

9.
The N-terminal RNA binding domain of the human U1A protein (RBD1) specifically binds an RNA hairpin of U1 snRNA as well as two internal loops in the 3' UTR of its own mRNA. Here, a single cysteine has been introduced into Loop 1 of RBD1, which is subsequently used to attach (EDTA-2-aminoethyl) 2-pyridyl disulfide-Fe3+ (EPD-Fe). This EDTA-Fe derivative is used to generate hydroxyl radicals to cleave the proximal RNA sugar-phosphate backbone in the RNA-RBD complexes. RBD1(K20C)-EPD-Fe cleaves the 5' strand of the RNA hairpin stem, centered four base pairs away from the base of the loop, and cleaves the UTR in two places, again centered on the 5' side of the fourth base pair from each internal loop. These data, extrapolated to the position of Lys 20 in RBD1, orient the two proteins bound to the UTR, and provide direct biochemical evidence for the proposed model of the RBD1:UTR complex.  相似文献   

10.
The kink-turn, a stem I-internal loop-stem II structure of the 5 ' stem-loop of U4 and U4atac small nuclear (sn) RNAs bound by 15.5K protein is required for binding of human Prp31 protein (hPrp31) during U4 and U4atac snRNP assembly. In box C/D snoRNPs a similar kink-turn with bound 15.5K protein is required for selective binding of proteins NOP56 and NOP58. Here we analyzed RNA structural requirements for association of hPrp31 with U4 snRNP in vitro by hydroxyl radical footprinting. hPrp31 induced protection of the terminal penta-loop, as well as of stems I and II flanking the kink-turn. Similar protection was found with U4/U6 snRNA duplex prebound with 15.5K protein. A detailed mutational analysis of the U4 snRNA elements by electrophoretic mobility shift analysis revealed that stem I could not be shortened, although it tolerated sequence alterations. However, introduction of a third Watson-Crick base pair into stem II significantly reduced hPrp31 binding. While stem I of U4atac snRNA showed relaxed binding requirements, its stem II requirements were likewise restricted to two base pairs. In contrast, as shown previously, stem II of the kink-turn motif in box C/D snoRNAs is comprised of three base pairs, and NOP56 and NOP58 require a G-C pair at the central position. This indicates that hPrp31 binding specificity is achieved by the recognition of the two base pair long stem II of the U4 and U4atac snRNAs and suggests how discrimination is achieved by RNA structural elements during assembly of U4/U6 and U4atac/U6atac snRNPs and box C/D snoRNPs.  相似文献   

11.
This is the first study in which the complex of a monoclonal autoantibody fragment and its target, stem loop II of U1 snRNA, was investigated with enzymatic and chemical probing. A phage display antibody library derived from bone marrow cells of an SLE patient was used for selection of scFvs specific for stem loop II. The scFv specificity was tested by RNA immunoprecipitation and nitrocellulose filter binding competition experiments. Immunofluorescence data and immunoprecipitation of U1 snRNPs containing U1A protein, pointed to an scFv binding site different from the U1A binding site. The scFv binding site on stem loop II was determined by footprinting experiments using RNase A, RNase V1, and hydroxyl radicals. The results show that the binding site covers three sequence elements on the RNA, one on the 5' strand of the stem and two on the 3' strand. Hypersensitivity of three loop nucleotides suggests a conformational change of the RNA upon antibody binding. A three-dimensional representation of stem loop II reveals a juxtapositioning of the three protected regions on one side of the helix, spanning approximately one helical turn. The location of the scFv binding site on stem loop II is in full agreement with the finding that both the U1A protein and the scFv are able to bind stem loop II simultaneously. As a consequence, this recombinant monoclonal anti-U1 snRNA scFv might be very useful in studies on U1 snRNPs and its involvement in cellular processes like splicing.  相似文献   

12.
Large-scale changes in RNA secondary structure, such as those that occur in some of the spliceosomal RNAs during pre-mRNA splicing, have been proposed to be catalyzed by ATP-dependent RNA helicases. Here we show that deproteinized human U4/U6 spliceosomal RNA complex, which has the potential for extensive intermolecular base pairing, contains a cis-acting element that promotes its dissociation into free U4 and U6 RNAs. The destabilzing element corresponds to the bae of putative intramolecular stem in U6 RNA that includes the 3' three-quarters of the molecule. Oligonucleotides expected to compete for U6 RNA 3' stem formation promote assembly of the human U4/U6 RNA complex under conditions that otherwise result in dissociation of the U4/U6 complex. Truncation of the putative 3' stem-forming sequences in U6 RNA by oligonucleotide-directed RNase H cleavage increases the melting temperature of the U4/U6 RNA complex by almost 20 degree C, to a level commensurate with its intermolecular base-pairing potential. We conclude that the stability of the competing human U6 RNA intramolecular 3' stem, combined with a low activation energy for conformational rearrangement, causes the human U4/U6 RNA complex to be intrinsically unstable despite its base-pairing potential. Therefore a helicase activity may not be necessary for disassembly of the human U4/U6 complex during activation of the spliceosome. We propose that a previously identified base-pairing interaction between U6 and U2 RNAs may stabilize the human U4/U6 RNA complex by antagonizing U6 RNA 3' stem formation.  相似文献   

13.
Prp24 is an essential yeast U6 snRNP protein with four RNA recognition motifs (RRMs) that facilitates the association of U4 and U6 snRNPs during spliceosome assembly. Genetic interactions led to the proposal that RRMs 2 and 3 of Prp24 bind U6 RNA, while RRMs 1 and 4 bind U4 RNA. However, the function of each RRM has yet to be established through biochemical means. We compared the binding of recombinant full-length Prp24 and truncated forms lacking RRM 1 or RRM 4 with U6 RNA. Contrary to expectations, we found that the N-terminal segment containing RRM 1 is important for high-affinity binding to U6 RNA and for discrimination between wild-type U6 RNA and U6 with point mutations in the 3' intramolecular stem-loop. In contrast, deletion of RRM 4 and the C terminus did not significantly alter the affinity for U6 RNA, but resulted in the formation of higher order Prp24.U6 complexes. Truncation and internal deletion of U6 RNA mapped three Prp24-binding sites, with the central site providing most of the affinity for Prp24. A newly identified temperature-sensitive lethal point mutation in RRM 1 is exacerbated by mutations in the U6 RNA telestem, as is a mutation in RRM 2, but not one in RRM 3. We propose that RRMs 1 and 2 of yeast Prp24 bind the same central site in U6 RNA that is bound by the two RRMs of human Prp24, and that RRMs 3 and 4 bind lower affinity flanking sites, thereby restricting the stoichiometry of Prp24 binding.  相似文献   

14.
Y Tang  L Nilsson 《Biophysical journal》1999,77(3):1284-1305
RNA-protein interactions are essential to a wide range of biological processes. In this paper, a 0.6-ns molecular dynamics simulation of the sequence-specific interaction of human U1A protein with hairpin II of U1 snRNA in solution, together with a 1.2-ns simulation of the free RNA hairpin, is reported. Compared to the findings in the x-ray structure of the complex, most of the interactions remained stable. The nucleotide U8, one of the seven conserved nucleotides AUUGCAC in the loop region, was unusually flexible during the simulation, leading to a loss of direct contacts with the protein, in contrast to the situation in the x-ray structure. Instead the sugar-phosphate backbone of nucleotide C15 was found to form several interactions with the protein. Compared to the NMR structure of U1A protein complexed with the 3'-untranslated region of its own pre-mRNA, the protein core kept the same conformation, and in the two RNA molecules the conserved AUUGCAC of the loop and the closest CG base pair were located in very similar positions and orientations, and underwent very similar interactions with the protein. Therefore, a common sequence-specific interaction mechanism was suggested for the two RNA substrates to bind to the U1A protein. Conformational analysis of the RNA hairpin showed that the conformational changes of the RNA primarily occurred in the loop region, which is just involved in the sites of binding to the protein and in agreement with experimental observation. Both the loop and stem of the RNA became more ordered upon binding to the protein. It was also demonstrated that the molecular dynamics method could be successfully used to simulate the dynamical behavior of a large RNA-protein complex in aqueous solution, thus opening a path for the exploration of the complex biological processes involving RNA at a molecular level.  相似文献   

15.
The essential splicing factor Prp24 contains four RNA Recognition Motif (RRM) domains, and functions to anneal U6 and U4 RNAs during spliceosome assembly. Here, we report the structure and characterization of the C-terminal RRM4. This domain adopts a novel non-canonical RRM fold with two additional flanking α-helices that occlude its β-sheet face, forming an occluded RRM (oRRM) domain. The flanking helices form a large electropositive surface. oRRM4 binds to and unwinds the U6 internal stem loop (U6 ISL), a stable helix that must be unwound during U4/U6 assembly. NMR data indicate that the process starts with the terminal base pairs of the helix and proceeds toward the loop. We propose a mechanistic and structural model of Prp24's annealing activity in which oRRM4 functions to destabilize the U6 ISL during U4/U6 assembly.  相似文献   

16.
The U1 small nuclear ribonucleoprotein (U1 snRNP) binds to the pre-mRNA 5' splice site (ss) at early stages of spliceosome assembly. Recruitment of U1 to a class of weak 5' ss is promoted by binding of the protein TIA-1 to uridine-rich sequences immediately downstream from the 5' ss. Here we describe a molecular dissection of the activities of TIA-1. RNA recognition motifs (RRMs) 2 and 3 are necessary and sufficient for binding to the pre-mRNA. The non- consensus RRM1 and the C-terminal glutamine-rich (Q) domain are required for association with U1 snRNP and to facilitate its recruitment to 5' ss. Co-precipitation experiments revealed a specific and direct interaction involving the N-terminal region of the U1 protein U1-C and the Q-rich domain of TIA-1, an interaction enhanced by RRM1. The results argue that binding of TIA-1 in the vicinity of a 5' ss helps to stabilize U1 snRNP recruitment, at least in part, via a direct interaction with U1-C, thus providing one molecular mechanism for the function of this splicing regulator.  相似文献   

17.
J D Puglisi  J R Wyatt  I Tinoco 《Biochemistry》1990,29(17):4215-4226
The hairpin conformation adopted by the RNA sequence 5'GCGAUUUCUGACCGCC3' has been studied by one- and two-dimensional NMR spectroscopy. Exchangeable imino spectra in 60 mM Na+ indicate that the hairpin has a stem of six base pairs (indicated by boldface type) and a loop of three nucleotides. NOESY spectra of nonexchangeable protons confirm the formation of the stem region. The duplex has an A-conformation and contains an A.C apposition; a G.U base pair closes the loop region. The stem nucleotides have C3'-endo sugar conformations, as expected of an A-form duplex, whereas the three loop nucleotides adopt C2'-endo sugar puckers. Stacking within the loop, C8 upon the sugar of U7, stabilizes the structure. The pH dependence of both the exchangeable and nonexchangeable NMR spectra is consistent with the formation of an A+.C base pair, protonated at the N1 position of adenine. The stability of the hairpin was probed by using absorbance melting curves. The hairpin structure with the A+.C base pair is about +2 kcal/mol less stable in free energy at 37 degrees C than the hairpin formed with an A.U pair replacing the A+.C pair.  相似文献   

18.
The 20-nucleotide SL1 VBS RNA, 5'-GGAGACGC[GAUUC]GCGCUCC (bulged A underlined and loop bases in brackets), plays a crucial role in viral particle binding to the plus strand and packaging of the RNA. Its structure was determined by NMR spectroscopy. Structure calculations gave a precisely defined structure, with an average pairwise root mean square deviation (RMSD) of 1.28 A for the entire molecule, 0.57 A for the loop region (C8-G14), and 0.46 A for the bulge region (G4-G7, C15-C17). Base stacking continues for three nucleotides on the 5' side of the loop. The final structure contains a single hydrogen bond involving the guanine imino proton and the carbonyl O(2) of the cytosine between the nucleotides on the 5' and 3' ends of the loop, although they do not form a Watson-Crick base pair. All three pyrimidine bases in the loop point toward the major groove, which implies that Cap-Pol protein may recognize the major groove of the SL1 loop region. The bulged A5 residue is stacked in the stem, but nuclear Overhauser enhancements (NOEs) suggest that A5 spends part of the time in the bulged-out conformation. The rigid conformation of the upper stem and loop regions may allow the SL1 VBS RNA to interact with Cap-Pol protein without drastically changing its own conformation.  相似文献   

19.
20.
The U1A-SL2 RNA complex is a model system for studying interactions between RNA and the RNA recognition motif (RRM), which is one of the most common RNA binding domains. We report here kinetic studies of dissociation of the U1A-SL2 RNA complex, using laser temperature jump and stopped-flow fluorescence methods with U1A proteins labeled with the intrinsic chromophore tryptophan. An analysis of the kinetic data suggests three phases of dissociation with time scales of ∼ 100 μs, ∼ 50 ms, and ∼ 2 s. We propose that the first step of dissociation is a fast rearrangement of the complex to form a loosely bound complex. The intermediate step is assigned to be the dissociation of the U1A-SL2 RNA complex, and the final step is assigned to a reorganization of the U1A protein structure into the conformation of the free protein. These assignments are consistent with previous proposals based on thermodynamic, NMR, and surface plasmon resonance experiments and molecular dynamics simulations. Together, these results begin to build a comprehensive model of the complex dynamic processes involved in the formation and dissociation of an RRM-RNA complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号