首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Collaborative research was conducted at the INRA Research Centers to assess the microbial control potential of Beauveria bassiana- and Lecanicillium lecanii-based formulations against whiteflies in protected crops under Mediterranean conditions. Four series of small-scale glasshouse trials were performed in 1999 and 2000 in southern France. Two applications at 4–5 day intervals of Naturalis-L and Mycotal were conducted on young larvae of the greenhouse whitefly, Trialeurodes vaporariorum, at rates recommended by the manufacturers. Because of the expectation that environmental conditions prevailing in Mediterranean greenhouse crops may lead to greater climatic constraints for mycoinsecticide efficacy than in more temperate areas, manipulation of the greenhouse climate has been used to aim at optimizing mycoinsecticide efficacy. The climatic management strategy was mainly based on closing the ridge vents 2 h more at night-time in so-called “humid” glasshouse compartment than in a “dry” one. Thus, the daily period at high humidity (>90% RH) was two or three times longer in the “humid” compartment than in the “dry” one. In spite of this differential, mycoinsecticide treatments reduced numbers of surviving whitefly larvae by >85% in the “humid” compartment as expected as favorable, as well as in the “dry” compartment, expected as unfavorable. The results indicated clearly that both B. bassiana- and L. lecanii-based mycoinsecticides have a strong potential for microbial control of whitefly larvae infesting tomato crops at moderate ambient humidity in Mediterranean glasshouses. Our investigations provided strong arguments for explaining these unexpected results. The RH conditions prevailing in the targeted insect habitat should be greatly disconnected from that of the ambient glasshouse air. We suggest that strategies of mycoinsecticide optimization against phyllophagous insects in protected crops have to take into account factors acting on the leaf transpiration activity.  相似文献   

2.
As part of a 3-fold approach to select potential mycoinsecticides for whitefly control, we evaluated infectivity, thermal requirements, and toxicogenic activity of the entomopathogenic fungus Beauveria bassiana (Ascomycota: Clavicipitaceae) under laboratory conditions. Twenty-five native B. bassiana isolates and a commercially available mycoinsecticide (based on B. bassiana) were evaluated for virulence to fourth instar nymphs of sweetpotato whitefly, Bemisia tabaci, and greenhouse whitefly, Trialeurodes vaporariorum, at a concentration of 1 × 107 conidia/ml. All isolates were pathogenic for both whitefly species, whereas mortality rates varied from 3 to 85%. A second series of bioassays was conducted on 10 selected isolates using four 10-fold concentrations ranging from 1 × 105 to 1 × 108 conidia/ml. Median lethal concentrations (LC50) of the four most virulent isolates varied from 1.1 × 105 to 6.2 × 106 conidia/ml and average survival time (AST) of treated nymphs from 5.9 to 7.4 days. T. vaporariorum were significantly more susceptible to all B. bassiana isolates than B. tabaci. The thermal biology of the eight most virulent isolates to both whitefly species was investigated at six temperatures (10–35 °C). The colony radial growth rate was estimated from the slope of the linear regression of colony radius on time and data were then fitted to a modified generalized β function that accounted for 90.5–99.3% of the data variance. Optimum temperatures for extension rate ranged from 23.1 to 27.1 °C, whereas maximum temperatures for fungal growth varied from 31.8 to 36.6 °C. On the basis of their virulence and thermal requirements, three isolates showed promise as candidates for whitefly management in Mediterranean greenhouses. Whilst in vitro production of macromolecular compounds toxic to Galleria mellonella larvae was not a requisite for virulence, ASTs of larvae injected with Sephadex G-25 fractions from candidate isolates ranged from 1.4 to 3.7 days compared with 5–6 days for non-toxic G-25 fractions. In addition, proteinase K treatment significantly reduced their toxic activity suggesting that they were proteins and revealing the potential of these isolates to be further improved through biotechnology to kill the pest more quickly.  相似文献   

3.
Bemisia tabaci biotype B is a key pest in pepper crops in Argentina. The parasitoid Eretmocerus mundus is frequently found parasitizing this whitefly in greenhouses without pesticide applications. The present studies were carried out with the objective of evaluating control obtained with different rate and number of parasitoid releases under experimental conditions. Release rate: cages with pepper pots were positioned in an experimental greenhouse and randomly assigned to the release rate treatments (0, 1 and 3 pairs of E. mundus/plant/week with a total of three introductions). Number of releases: similar cages were assigned to the number of parasitoid introduction treatments (0, 1, 2 and 3) with the best release rate obtained in the previous trial. In both assays whitefly (adults and nymphs) and parasitoid (parasitized nymphs) population sizes in each cage were monitored weekly for a period of 10 weeks. Results suggested that the introduction of 2 E. mundus/plant/week was enough to suppress host population compared to control treatment (peaks of 7.75 adults and 58.75 nymphs/cage and 643.75 adults and 1598 nymphs/cage, respectively) (p < 0.05), with 85% of parasitism. E. mundus had to be introduced three times to achieve the best pest control (peaks of 1.17 adults and 20.33 nymphs/cage vs. 55.67 adults and 75 nymphs/cage in control treatment) with 84% of parasitism (p < 0.05). These results were then validated in a pepper crop under experimental greenhouse conditions. Whitefly population was lower in those greenhouses where E. mundus was released compared to control greenhouses (0.15 adults and 0.71 nymphs/4 leaves and 0.73 adults and 1.64 nymphs/4 leaves, respectively), with a peak of 54% of parasitism (p < 0.05). We concluded that good suppression of B. tabaci could be achieved using E. mundus under spring conditions in Argentina.  相似文献   

4.
Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) is common in vegetable crops of the Mediterranean area, with an increasing worldwide range of geographical distribution. This omnivore is a reputed predator of small arthropod pests, but also produces injuries on vegetative and reproductive plant parts. The aim was to estimate density thresholds based on N. tenuis and whitefly abundance for the management of N. tenuis in tomato crops. The assay was carried out in mesh-walled and plastic greenhouses in southern Spain during 2004 and 2007. The natural population dynamics of N. tenuis and whitefly were monitored, and impact on yield quantified. The economic injury level and intervention threshold were predicted based on the zoophytophagous response of N. tenuis and the yield compensation of tomato plants. The proportion of aborted flowers on the tomato plants was related directly to the abundance of N. tenuis and inversely to the interaction between the number of N. tenuis and the number of whitefly immatures. Over-compensation of fruit weight was predicted for flower abortion rates due to N. tenuis lower than 0.171. No yield reduction is expected for values <0.65 N. tenuis per leaf, independent of the whitefly abundance, nor for up to 5 N. tenuis and >26 whitefly immatures per leaf. For intermediate N. tenuis levels, the outcome depends on the prey density. The probability of N. tenuis producing yield loss in tomato crops increases at N. tenuis:whitefly ratios >0.168. Yield reduction is expected after N. tenuis population peaks, when whitefly numbers have been reduced.  相似文献   

5.
We conducted three experiments for management of Bemisia tabaci (Gennadius) biotype ‘B’ on tomatoes under greenhouse conditions: (i) vertically placing yellow sticky cards either parallel or perpendicular to tomato rows at a rate of 1 per 3‐m row; (ii) releasing Eretmocerus sp. nr. rajasthanicus once at 30 adults/m2 in the high whitefly density greenhouses (> 10 adults/plant), or twice at 15 adults/m2 at a 5‐day interval in the low whitefly density greenhouses (< 10 adults/plant); and (iii) using combinations of yellow sticky cards that were placed vertically parallel to tomato rows and parasitoids released once at 30/m2 in high whitefly density greenhouses or twice at 15/m2 at a 5‐day interval in low whitefly density greenhouses. Our data show that yellow sticky cards trapped B. tabaci adults and significantly reduced whitefly populations on tomato. The yellow sticky cards that were placed parallel to tomato rows caught significantly more whitefly adults than those placed perpendicular to tomato rows on every sampling date. In the treatment where parasitoids were released once at 30/m2 in high whitefly density greenhouses, the number of live whitefly nymphs were reduced from 4.6/leaf to 2.9/leaf in 40 days as compared with those on untreated plants on which live whitefly nymphs increased from 4.4/leaf to 8.9/leaf. In the treatment where parasitoids were released twice at 15/m2 in low whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.1/leaf to 1.7/leaf in 20 days as compared with those on untreated plants on which numbers of live nymphs of B. tabaci increased from 2.2/leaf to 4.5/leaf. In the treatment of yellow sticky cards and parasitoid release once at 30/m2 in high whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 7.2/leaf to 1.9/leaf, and in the treatment of yellow sticky cards and parasitoid release twice at 15/m2 at a 5‐day interval at low whitefly density, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.5/leaf to 0.8/leaf; whereas the numbers of live nymphs of B. tabaci on untreated plants increased from 4.4/leaf to 8.9/leaf. An integrated program for management of B. tabaci on greenhouse vegetables by using yellow sticky cards, parasitoids and biorational insecticides is discussed.  相似文献   

6.
Colonization of tomato greenhouses by native predatory mirid bugs at the end of the spring cycle is common in the western Mediterranean area when no broad-spectrum insecticides are applied. Due to their polyphagy, these predators interact with pest populations and also with other natural enemies present in the crop. In this work we evaluate the abundance and timing of greenhouse colonization by these predators and their interaction with the greenhouse whitefly Trialeurodes vaporariorum, a key crop pest, and its introduced parasitoid Encarsia formosa. Although quite unpredictable, natural colonization of greenhouses by Macrolophus caliginosus and Dicyphus tamaninii, the two predominant species in our location, usually leads to the establishment of predator populations in the crop that subsequently prey on greenhouse whitefly. No preference for parasitized pupae was observed in greenhouse samples, while laboratory experiments revealed a marked tendency to avoid parasitoid pupae. In our area, IPM programs for greenhouse tomatoes and other vegetables should take advantage of the presence of this predator complex by allowing the immigration and establishment of its populations without disturbing them with highly toxic and non-selective insecticides.  相似文献   

7.
The white grub, Hoplia philanthus Füessly (Coleoptera: Scarabaeidae), is a major pest of turf and ornamental plants in Belgium. Previously, the combination of lethal concentration of the entomopathogenic nematodes Heterorhabditis megidis or Steinernema glaseri with the entomopathogenic fungus Metarhizium anisopliae (strain CLO 53) caused additive or synergistic mortality to third-instar H. philanthus in the laboratory and greenhouse. In this present study, we examined this interaction under field conditions and compared a combination of a commercial formulation of Heterorhabditis bacteriophora (Nema-green®) and M. anisopliae. Controls were M. anisopliae, chlorpyrifos (Dursban 5 Granules) and H. bacteriophora. Field applications (surface or subsurface) were made against a mixed population of second/third-instar H. philanthus at a sport field and lawn infested in the province of West-Flanders. In both trials, the combination of M. anisopliae with H. bacteriophora at 5 × 1012 conidia/ha +2.5 × 109 infective juveniles/ha resulted in additive or synergistic effects, causing more than 95% grub mortality when the nematodes was applied 4 weeks after the application of fungus. However, application of nematode, chlorpyrifos or fungus alone provided 39–66%, 42–60% (surface) and 33–76%, 82–100% or 37–65%, (subsurface) control of H. philanthus. We concluded that the pathogen combinations we tested are compatible elements of integrated pest management and are likely to improve control of H. philanthus larvae and perhaps other insect pests beyond what is expected from single application of the pathogen.  相似文献   

8.
We determined host plant effect on susceptibility of the silverleaf whitefly,Bemisia argentifolii, to the entomopathogenic fungusPaecilomyces fumosoroseus. Whiteflies were reared on three vegetable species (cucumber, cabbage, and tomato) and three cultivars of tomato (Heatwave, Better Boy, and Rutgers). Second instars were sprayed with 5 × 104conidia/cm2ofPfr97, aP. fumosoroseusstrain, used as a microbial control agent of whiteflies. Trials were conducted in an experimental greenhouse, where temperature and relative humidity were adjusted to favor infection (22–33°C, and 68–100% RH). Larval susceptibility to fungal infection was high and not significantly affected by the host plant. Mortality was > 70% 1 week after treatment and increased further during the second week. Percentages of cadavers with subsequent production of conidia observed in the greenhouse did not vary significantly either with the host vegetable species (85–93% 7 days after treatment and 99–100% 14 days after treatment), or with the cultivar of tomato (96–97% 7 days after treatment and 99–100% 14 days after treatment). After incubation under optimal laboratory conditions, the percentages based on the total number of sporulating cadavers (includingin situsporulating individuals and cadavers sporulating afterin vitroincubation) were not significantly influenced either by host vegetable or cultivar of tomato. According to the conditions prevailing in the series of experiments with the three vegetable species or in the series of experiments with the three cultivars of tomatoes, the production of newly formed conidia varied from approximately 10,000 to 18,000 conidia/cadaver. However, in both series, there was no significant influence of the host vegetable species or cultivar. The survival of the newly formed conidia harvested 7 days following treatment reached more than 50% but was not affected by host plant. These results indicate thatP. fumosoroseusshows potential as a microbial control agent for controllingB. argentifoliion greenhouse crops.  相似文献   

9.
The life table and biological characteristics of the predatory bug Macrolophus pygmaeus Rambur (Hemiptera: Miridae) were studied when the bugs were fed with Myzus persicae (Sulzer) (Homoptera: Aphididae) feeding on eggplant and with Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae) feeding on tomato plants. The tests were done at five temperatures between 15 and 30 °C, using a L16:D8 photoperiod and 65 ± 5% r.h. Most eggs (range 85 to 90%) hatched at 15 and 20 °C. Incubation period was shortest at 27.5 °C (8.45 and 8.38 days on eggplant and tomato, respectively). Preoviposition was also shortest at 27.5 °C (5.10 and 4.75 days on eggplant and tomato, respectively) whereas fecundity was highest at 20 °C (213.90 and 228.25 eggs on eggplant and tomato, respectively). Maximum longevity of females was at 15 °C (122.40 and 129.35 days on eggplant and tomato, respectively). Mean generation time was longest at 15 °C on both host plants (122.75 and 124.64 days, respectively). The intrinsic rate of increase of M. pygmaeus was highest at 27.5 °C with similar values on eggplant (0.0981 day–1) and tomato (0.1040 day–1). Doubling time was shortest at 27.5 °C (7.06 and 6.67 days on eggplant and tomato, respectively) and, also, finite rate of increase was highest at 27.5 °C (1.1031 and 1.1096 on eggplant and tomato, respectively). The results show that the predator M. pygmaeus develops well on the aphid M. persicae or on the whitefly T. vaporariorum, both of which are important pests of vegetable crops. This predator is also well adapted to the temperatures that occur both in greenhouses and in the open field in the Mediterranean region. Compared to other natural enemies of whiteflies, such as Encarsia formosa Gahan (Hymenoptera: Aphelinidae), Macrolophus pygmaeus can increase at relatively low temperatures.  相似文献   

10.
The response of Dicyphus hesperus Knight (Heteroptera: Miridae) to whitefly populations in tomato greenhouses was measured in the presence and absence of mullein (Verbascum thapsus L.) as an alternative host plant. The dynamics of the D. hesperus population on tomato (Lycopersicon esculentum Mill.) and on mullein plants were followed through an entire growing season. In houses with mullein plants, more predators occurred on mullein when whitefly density was low on tomato. A mark-release-recapture experiment where rabbit IgG was used as an external marker showed that D. hesperus adults moved from mullein plants to tomato plants. D. hesperus was always more abundant in houses with mullein than in the houses with tomato plants alone. Movements between tomato and mullein plants are discussed as a strategy to optimize predator foraging. The use of mullein as an alternative host plant may contribute to the establishment of D. hesperus and help to preserve the predator population when prey on tomato crops is scarce.  相似文献   

11.
W.Z. Tan  Q.J. Li  L. Qing 《BioControl》2002,47(4):463-479
Alligatorweed (Alternanthera philoxeroidesG.) has become a serious weed in different crops in China. A fungal pathogen was found in Chongqing and Sichuan Provinces and was identified as a species in the Fusarium genus. The fungus produced macroconidia and chlamydospores abundantly on potato sucrose agar (PSA) plates. The bestconidial production and germination and colonygrowth of Fusarium sp. were at 23–31°C and pH 6.7–7.0. Light period and flooding did not affect fungal growth and conidium formation. The herbicides, glyphosate and paraquat, inhibited the fungal development in vitro. The fungus did not affect seed germination and seedling growth of paddy rice, wheat, maize, oilseed rape and broad bean inlaboratory or greenhouse trials. Inoculum density and wetness duration influenced the efficiency of Fusarium sp. to control alligatorweed; a concentration of 1.0 × 105 spores–1 ml and 12 h of high humidity duration after inoculation produced goodinfections on the weed at 23°C in the laboratory. When the fungus was applied to alligatorweed grown in greenhouse and in the field, good biocontrol efficiency was obtained: the plants started to wilt after four to five (greenhouse) or six days (field), and were killed 9–10 (greenhouse) or 13–14 (field) days after spraying the fungal inoculum. This was similar to the control efficiency resulting from glyphosate treatment. Therefore, this Fusarium sp. appeared to be a good candidatefor further studies and a promising biocontrol agent to manage alligatorweed in some terrestrial and aquatic crops.  相似文献   

12.
Stratiolaelaps ( = Hypoaspis) miles (Berlese) (Acari: Mesostigmata: Laelapidae) is a polyphagous soil-dwelling predatory mite that is widely marketed for use in greenhouse production systems to manage populations of dark-winged fungus gnats, Bradysia spp. (Diptera: Sciaridae) and for supplemental control of thrips. The suggestion by Walter and Campbell (2003, Biol. Control 26: 253–269) that North American commercial cultures of S. miles may actually be S. scimitus was confirmed. The development and reproduction at 21–23 °C of S. scimitus provided ad libidum with one of three different prey – the fungus gnat Bradysia aff. coprophila (Lintner), potworms (Enchytraeidae), or Sancassania aff. sphaerogaster (Zachvatkin, 1937) (Acari: Astigmata: Acaridae) – were compared. Developmental duration of the egg and non-feeding larval stages were 2.47 and 1.11 days, respectively; mortalities were 8.3 and 5.5%. Stratiolaelaps scimitus failed to develop beyond the protonymphal stage when provided with S. aff. sphaerogaster alone, although some feeding was observed. Development and reproduction of S. scimitus was successful on both fungus gnat larvae and enchytraeids, with no influence of prey on protonymphal duration (4.70 days) and mortality (8.3%), or on deutonymphal duration (4.61 days) and mortality (6.1%). Adult female S. scimitus feeding on potworms, compared to those feeding on fungus gnat larvae, had a significantly shorter pre-oviposition period (2.69 vs. 4.59 days). However, diet did not influence other adult female developmental or reproductive characteristics (oviposition period, 18.6 days; post-oviposition period, 6.2 days; total adult longevity, 27.3 days; total number of eggs, 26.5). S. scimitus reared on potworms tended (p = 0.06) to have a higher intrinsic rate of increase, a higher finite rate of increase and a shorter doubling time (r m = 0.142 day−1, λ = 1.153, Dt = 4.85 days) than those reared on fungus gnat larvae (r m = 0.105 day−1, λ = 1.110, Dt = 6.58 days), but differences in net reproductive rate (R 0) and generation time (G) were not significant.  相似文献   

13.
The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is a pest of various fruit, vegetable, fiber, and seed crops; including cotton. Lygus spp. populations often build on alternate host plants before moving to cotton, and in the midsouthern U.S. wild host plants, such as pigweed (Amaranthus spp.), play a major role in L. lineolaris population development. Three isolates of the entomopathogenic fungus Beauveria bassiana (Balsamo) were evaluated for L. lineolaris control in redroot pigweed (Amaranthus retroflexus L.): one from L. lineolaris in Mississippi (TPB3); one from Lygus hesperus (Knight) in California (WTPB2); and one commercial isolate from Mycotrol® (GHA). Fungal applications resulted in moderate to high mycosis in adults (33 to 80%) and moderate mycosis in nymphs (36 to 53%) that were collected from field plots at 2 days post-treatment and incubated under laboratory conditions. Although TPB3 was previously found to be more pathogenic in laboratory bioassays, there was not a consistent separation of this isolate from the other two isolates in field trials. Where differences in adult mycosis or mortality were observed, TPB3 was the most pathogenic. However, in one field trial 7 day mortality for nymphs treated with GHA was higher than those treated with TPB3 or WTPB2. Infection rates at 2, 7, and 14 days post-treatment from caged and non-caged adults suggested that movement of adults among plots occurred, which could have masked some treatment effects. Fungal treatments did not significantly reduce populations relative to controls. This may have been caused by delayed mortality rates under field conditions and/or difficulties with estimating population change under field conditions characteristic of wild host plant populations (e.g., heterogeneous populations, adult movement, and small plot size). Further work evaluating time–dose–mortality over dynamic temperatures, spring and fall field trials on this and other wild hosts, and improved methods for estimating populations on wild hosts are needed.  相似文献   

14.
The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a key pest of tomato (Solanum lycopersicum L.) and other vegetable crops worldwide. To combat this pest, a non-crop banker plant system was evaluated that employs a parasitoid, Encarsia sophia (Girault & Dodd) (Hymenoptera: Aphelinidae) with whitefly, Trialeurodes variabilis (Quaintance) (Hemiptera: Aleyrodidae), as an alternative host for rearing and dispersal of the parasitoid to the target pest. (a) Multi-choice and no-choice greenhouse experiments were conducted to determine host specificity of T. variabilis to papaya (Carica papaya L.) and three vegetable crops including tomato, green bean (Phaseolus vulgaris L.), and cabbage (Brassica oleracea L.). The result showed that papaya was an excellent non-crop banker plant for supporting the non-pest alternative host, T. variabilis, whose adults had a strong specificity to papaya plants for feeding and oviposition in both multi-choice and no-choice tests. (b) The dispersal ability of E. sophia was investigated from papaya banker plants to tomato and green bean plants infested with B. tabaci, as well as to papaya control plants infested with T. variabilis; and (c) the percent parasitism by E. sophia on T. variabilis reared on papaya plants and on B. tabaci infested on tomato plants was also evaluated. These data proved that E. sophia was able to disperse at least 14.5 m away from papaya plants to target tomato, bean or papaya control plants within 48–96 h. Furthermore, E. sophia was a strong parasitoid of both T. variabilis and B. tabaci. There was no significant difference in percent parasitism by E. sophia on T. variabilis (36.2–47.4%) infested on papaya plants or B. tabaci (29–45.9%) on tomato plants. Thus, a novel banker plant system for the potential management of B. tabaci was established using papaya as a non-crop banker plant to support a non-pest alternative host, T. variabilis for maintaining the parasitoid to control B. tabaci. The established banker plant system should provide growers with a new option for long-term control of B. tabaci in greenhouse vegetable production. Ongoing studies on the papaya banker plant system are being performed in commercial greenhouses.  相似文献   

15.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmooLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

16.
Generalist herbivores can face many challenges when choosing their host plant. This can be particularly difficult if their choice and performance are affected by host experience. Greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), is an invasive generalist herbivore, which has established in year‐round greenhouses at northern latitudes where it cannot overwinter outdoors. It mainly uses crops such as cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), and ornamentals as host plants. However, every summer the insect escapes greenhouses and is exposed to natural vegetation. We evaluated the performance of T. vaporariorum on diverse vegetation outside greenhouses after prolonged experience of greenhouse crops. First, we surveyed the vegetation near infested greenhouses. Development success of the insect differed among wild hosts. We identified five new hosts among 12 plant species that bore pupae and were thus considered suitable as the insect's host plants. Members of the Urticaceae and Onagraceae were the most preferred and frequently inhabited by all insect life stages. The highest abundance of insects occurred in plots with low plant species richness, independent of plant family in these habitats. We then studied experimentally the impact of 1 year of preconditioning to one of three common greenhouse crops, cucumber, tomato, or poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch), on the performance of the preconditioned adults and their progeny on four wild plants. Adults from tomato and poinsettia preferred the novel host species over the species to which they were preconditioned. The whitefly population preconditioned to cucumber was the most fecund on all offered hosts. We conclude that generalist herbivores can have large variation in performance, despite polyphagy, on novel hosts as shown by the variable abundance of T. vaporariorum pupae among outdoor hosts. Furthermore, performance of whiteflies on natural vegetation was affected by experience on greenhouse crops. Based on our observations, we provide insights and recommendations for pest management.  相似文献   

17.
An assay system was developed for the adult silverleaf whitefly, Bemisia argentifolii Bellows & Perring (Homoptera: Aleyrodidae). This practical device was constructed from standard disposable laboratory materials. Whiteflies were harvested directly from the leaf and into a collection vial by vacuum aspiration, minimizing physical damage to the insect. Insects were fed through a cellulose mixed-ester membrane on a diet of 20–27% sucrose alone or sucrose in an extract of zucchini (Curcurbita moschata Duchense). Mortality and honeydew production were scored. At 22–25°C and 50–55% relative humidity, control mortality generally remained at or below 15% during a 48 h assay period. The bioassay system was first tested using the insecticide, Imidacloprid, then used to screen a number of natural products with potential insecticidal activity against the whitefly. Destruxins extracted from the entomopathogenic fungus, Metarhizium anisopliae, and the natural insecticide/nematicide, Ivermectin, as well as bee venom and two of its components, melittin and phospholipase A2, were found to be toxic to B. argentifolii. Five lectins, Bacillus thuringiensis toxins, gossypol, an extract of Paeciliomyces fumosoroseus, wasp and scorpion venom, and a trypsin inhibitor were not found to be insecticidal to adult B. argentifolii.  相似文献   

18.
An ongoing debate in biological control consists of whether interference between biological agents can disrupt pest control. This study investigated the outcome of interactions between the entomopathogen Beauveria bassiana with the whitefly predator Dicyphus hesperus and the parasitoid Encarsia formosa, as well as their effect on the control of the greenhouse whitefly Trialeurodes vaporariorum on greenhouse tomato crops. Our objective was to determine whether the generalist B. bassiana would disrupt biological control by interfering with D. hesperus or E. formosa. In experimental greenhouses, whitefly, parasitoid and predator populations were established, and over 27 days, tomato plants were sprayed with three applications of the B. bassiana based product BotaniGard® (5.13×103 conidia/mm2) or water (control). Populations of greenhouse whitefly and biological control organisms were regularly monitored in control and B. bassiana-treated compartments. Overall, 10.6% of all whiteflies in treated compartments were infected, and 0.98% were both infected and parasitized. There were 31.7 and 22.3% fewer immature and adult whiteflies, respectively, on B. bassiana-treated plants relative to controls. Parasitism by E. formosa and predation by D. hesperus occurred at rates of 7.5 and 2.5%, respectively, in B. bassiana-treated compartments, and 5 and 6%, respectively in control compartments. Our study suggests that applications of B. bassiana for short-term biological control of greenhouse whiteflies are compatible with the concurrent use of E. formosa and D. hesperus on greenhouse tomato crops.  相似文献   

19.
Pristhesancus plagipennis (Walker) is a predator of larvae and nymphs of many pestiferous insects for which natural enemies are not commercially available. This paper describes a containerized mass-rearing method for P. plagipennis using hot water-killed larvae of Tenebrio molitor (L.) and Helicoverpa armigera (Hübner). In addition, the effect of P. plagipennis density during nymphal rearing and adult oviposition was investigated. The rearing method minimizes P. plagipennis cannibalism, avoids the need for live insect prey, and is space and labor efficient. Larvae of the yellow mealworm, T. molitor, were the most suitable prey for minimizing nymphal development time and mortality while producing insects with the highest body weight. When reared on a diet of T. molitor, the optimum rearing density was 20–27 nymphs per 5-liter container. This rearing density minimized nymphal mortality to 16–22%. The optimum density for oviposition was 16 adults per 5-liter container, which provided the best compromise between egg production and space utilization.  相似文献   

20.
Laboratory bioassays were conducted to determine host plant effect on pathogenicity of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuill. (Ascomycota: Hypocreales) to the sweetpotato whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Fourth instar B. tabaci reared on cucumber, tomato, melon, green pepper, potato, eggplant, marrow, cabbage, bean or cotton, were treated with 1 × 107 conidia/ml B. bassiana EABb 93/14-Tp isolate. Mortality caused by B. bassiana significantly increased with time and it was significantly affected by the host plant on which the nymphs were reared. Mean mortality of nymphs 8 days after inoculation ranged between 52.3±7.3 for nymphs reared on cotton and 91.8±5.8 for nymphs reared on cucumber. Average survival times of nymphs treated with the fungal suspensions were also significantly influenced by the host plant, with a mean of 4.7±0.1 days for nymphs reared on cucumber, 6.6±0.2 days for cotton and 6.9±0.1 days for green pepper. The production of newly formed conidia was also affected by host plant and varied from 111000±8600 conidia/cadaver for nymphs reared on cotton to 597000±28000 conidia/cadaver for those reared on melon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号