首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
Summary Processes of magnocellular neurosecretory cells (MNCs) are easily identifiable on the basis of their content in neurosecretory granules in the neuropil of the rostral division of the paraventricular nucleus (PVN) of the domestic fowl. In specimens sacrificed during the winter the synaptic organization of the neuropil and the pattern of synapses ending on neurosecretory processes were studied at the ultrastructural level. Synapses in the rostral part of the PVN neuropil may be divided into three main categories on the basis of their morphology and their content of clear and dense-core synaptic vesicles. These different types of terminals can be attributed to aminergic, peptidergic or other types of synapses. The percent distribution of synapses within these categories differs when all synapses observed in the neuropil or only those ending on MNC processes are compared. Present ultrastructural data obtained in birds support two physiological hypotheses already suggested for mammals, i.e., the probable existence of a recurrent pathway to MNCs via an interneuron, and the importance of aminergic and peptidergic input in regulating the electrical activity of MNCs.This work was partly supported by a CNR grant (n. 81.00377.04)  相似文献   

2.
The paraventricular nucleus alpha 2-noradrenergic system and the glucocorticoid hormone, corticosterone, are known to modulate feeding behavior and exhibit a circadian pattern which may be related to the natural periodicity of feeding in the rat. The results of the present study indicate that the binding of [3H]p-aminoclonidine to alpha 2-noradrenergic receptors specifically in the paraventricular nucleus varies concomitantly with plasma corticosterone levels, as well as spontaneous feeding. A monophasic peak of paraventricular noradrenergic receptor binding is detected at the onset of the dark period, when corticosterone levels are highest and feeding is initiated. On the other hand, the supraoptic nucleus exhibits the reverse diurnal pattern, i.e., a significant decline of [3H]p-aminoclonidine binding at the onset of the dark period. Other hypothalamic and extra-hypothalamic areas fail to show significant changes in alpha 2-noradrenergic receptors as a function of the diurnal cycle. This study supports other evidence indicating a close interaction between circulating corticosterone and alpha 2-noradrenergic receptors in specific hypothalamic areas. It also reveals a potential importance for this interaction in control of the natural feeding rhythm.  相似文献   

3.
Summary An immunocytochemical study of the magnocellular neurosecretory nuclei was performed in the snake Natrix maura and the turtle Mauremys caspica by use of antisera against: (1) a mixture of both bovine neurophysins, (2) bovine oxytocin-neurophysin, (3) arginine vasotocin, and (4) mesotocin. Arginine vasotocin- and mesotocin-immunoreactivities were localized in individual neurons of the supraoptic and paraventricular nuclei, with a distinct pattern of distribution in both species. The same cells appeared to be stained by the anti-oxytocin-neurophysin and anti-mesotocin sera. The supraoptic nucleus can be subdivided into rostral medial and caudal portions. In N. maura, but not in M. caspica, neurophysin-immunoreactive neurons were found in the retrochiasmatic nucleus. No immunoreactive elements were seen in the suprachiasmatic nucleus of both species after the use of any of the antisera. A dorsolateral aggregation of neurophysin-containing cells, localized over the lateral forebrain bundle, was present in both species. Magnocellular and parvocellular neurophysin-immunoreactive neurons were present in the paraventricular nucleus of both species. In the turtle, the paraventricular neurons were arranged into four distinct layers parallel to the ependyma; these neurons were bipolar with the major axis perpendicular to the ventricle, and many of them projected processes toward the cerebrospinal-fluid compartment. In N. maura a group of large neurons of the paraventricular nucleus was found in a very lateral position. The posterior lobe of the hypophysis and the external zone of the median eminence contained arginine vasotocin- and mesotocin-immunoreactive nerve fibers. The lamina terminalis of both species was supplied with a dense bundle of fibers containing immunoreactive neurophysin. Neurophysin-immunore-active fibers were also present in the septum, some telencephalic regions, including the cortex and the olfactory tubercule, in the paraventricular organ, and the periventricular and periaqueductal gray of the brainstem.This work was partially supported by a Grant S-85-39 from the Direccion de Investigaciones, Universidad Austral de Chile to E.M. Rodriguez  相似文献   

4.
Summary 1. Corticotropin-releasing factor (CRF) is thought to be involved in the regulation of the diurnal activity of the hypothalamus-pituitary-adrenal (HPA) axis and to act as a neurotransmitter in the brain. To date it is unknown whether the binding sites of the central CRF system are subject to diurnal variations. 2. We measured the number of CRF binding sites over the course of a complete 24-hr light-dark cycle in the pituitary, amygdala, bed nucleus of the stria terminalis (BNST), cingulate cortex, visceral cortex, paraventricular nucleus of the hypothalamus, hippocampus, and locus ceruleus of rats byin vitro receptor autoradiography with iodinated ovine CRF. A 24-hr time course was also established for plasma CRF and corticosterone. 3. The diurnal pattern of plasma CRF does not correlate with the pattern of plasma corticosterone. Within the brain, CRF binding in the basolateral nucleus of the amygdala showed a U-shaped curve with maximum levels in the morning and a wide hallow between 1500 and 0100. A biphasic profile with a small depression in the afternoon and a more pronounced depression in the second half of the activity period is characteristic for the other brain areas and the pituitary. The profile for the pituitary correlates with those for the BNST and the area of the locus ceruleus. Furthermore, the diurnal pattern of CRF binding sites in the BNST correlates with that of the hippocampus, and the daytime pattern of the visceral cortex is similar to that of both the hippocampus and the BNST. 4. Since the CRF-binding profiles in the brain and the pituitary clearly differ from the profiles of both plasma CRF and corticosterone, one may assume that the diurnal pattern of central CRF binding sites is not directly coupled to the activity of the HPA axis.  相似文献   

5.
We have analysed the karyometric development of four topographic subdivisions of the paraventricular nucleus (rostral, medial, lateral and caudal) and three topographic subdivisions of the ventromedial nucleus (ventral, central and dorsal) of the hypothalamus in neonatally castrated male mice. Castration at birth produces a decrease of the nuclear sizes from the 10th to the 35th postnatal day, but after this age, no differences were detected in comparison with the sizes of the control male mice. Neonatal gonadal hormone deprivation also produces changes in the nuclear shape of the nuclei, that tend to be more spherical in both centres, as we could establish after the study of the form factor parameter (perimeter/area ratio). We have found differences in the response of both hypothalamic nuclei to neonatal castration and differences in the response of the topographic subdivisions of both of them.  相似文献   

6.
A scanning (SEM) and transmission electron microscopic (TEM) study of the ventricular wall of the hypothalamus of Triturus vulgaris was performed with special regard to the intraventricular dendrite terminals of the cerebrospinal fluid (CSF) contacting neurons of the preoptic area (magnocellular and parvocellular preoptic nuclei), the infundibular lobe (anterior periventricular nucleus, infundibular nucleus), and the paraventricular organ. In the preoptic area and infundibular lobe, the terminals were knob-like or club-shaped, of various sizes (diameter about 0,5 to 3,0 micrometer) and located immediately above the ependyma. Ultrastructurally, they may contain dense-core vesicles of varying sizes. The CSF contacting dendrite endings of the paraventricular organ built up a supraependymal labyrinthic layer which could be divided into a rostral crest-like part and a caudal flat and broad division. In both parts, three main types of terminals of various size and shape could be distinguished: a) ramifying, b) elongated, and c) bulb-like dendrite endings which also differed by their TEM structure. The bulk-like terminals, first of all the small ones, originated from the distal part of the nucleus of the organ (nucleus organi paraventricularis) while the other two types took their origin from its intra- and subependymal part. In all areas investigated, each intraventricular dendrite ending gave rise to a solitary cilium (type 9 X 2 + 0). It differed from the ependymal kinocilia by both SEM and TEM characteristics. In the paraventricular organ, the neuronal cilia were hidden inside, or below the supraependymal layer of terminals. There were intraventricular axons which formed synapses on CSF contacting dendrite endings of both parts of the paraventricular organ. Free intraventricular neurons, further ependymal areas heavily or scarcely ciliated, were described. The CSF contacting dendrite terminals were predominantly present near ventricular recesses and in regions where the ependyma was scarcely ciliated.  相似文献   

7.
The purpose of this study was to examine the gastrin-releasing peptide (GRP) mediated regulation of 5-HT neuronal activity in the paraventricular nucleus of the hypothalamus under basal and restraint stress conditions. Intracerebroventricular (icv) administration of GRP (1, 10, 100 ng/rat) increased 5-HIAA concentrations in the paraventricular nucleus (PVN) of the hypothalamus, but was without effect in the accumbens, suprachiasmatic and arcuate nuclei. Administration of (Leu(13)-psi-CH(2)NH-Leu(14)) Bombesin (10, 100 and 1000 ng/rat; icv), a GRP antagonist, had no effect by itself on PVN serotonergic activity; however, a dose of 1 microg/rat of this compound, completely blocked the increase of 5-HIAA concentrations induced by GRP (10 ng). Restraint stress increased serotonergic activity -as shown by an elevation of 5-HIAA in the PVN- as well as plasma ACTH and corticosterone. This stress-induced activation of both the serotonergic neurons and the hypothalamus-pituitary-adrenal axis was blocked by CRF and GRP antagonists. Interestingly, when the activation of hypothalamic 5-HT neurons was induced by GRP administration, alpha-helical (9-41) CRF was ineffective.These data suggest that GRP, by acting on GRP receptors but not via CRF receptors, increases 5-HT neuronal activity in the PVN. In turn, it appears that endogenous GRP and CRF receptor ligands are both simultaneously involved in the regulation of the increase in 5-HT neuronal activity, ACTH and corticosterone secretion, under stress conditions.  相似文献   

8.
King CM  Hentges ST 《PloS one》2011,6(10):e25864
Proopiomelanocortin (POMC) neurons send projections widely throughout the brain consistent with their role in regulating numerous homeostatic processes and mediating analgesia and reward. Recent data suggest that POMC neurons located in the rostral and caudal extents of the arcuate nucleus of the hypothalamus may mediate selective actions, however it is not clear if POMC neurons in these regions of the arcuate nucleus innervate specific target sites. In the present study, fluorescent microspheres and cholera toxin B were used to retrogradely label POMC neurons in POMC-DsRed transgenic mice. The number and location of POMC cells projecting to the supraoptic nucleus, periaqueductal gray, ventral tegmental area, paraventricular nucleus, lateral hypothalamic nucleus, amygdala and the dosal vagal complex was determined. Tracer injected unilaterally labeled POMC neurons in both sides of the arcuate nucleus. While the total number of retrogradely labeled cells in the arcuate nucleus varied by injection site, less than 10% of POMC neurons were labeled with tracer injected into any target area. Limited target sites appear to be preferentially innervated by POMC neurons that reside in the rostral or caudal extremes of the arcuate nucleus, whereas the majority of target sites are innervated by diffusely distributed POMC neurons. The modest number of cells projecting to each target site indicates that relatively few POMC neurons may mediate potent and specific physiologic responses and therefore disturbed signaling in a very few POMC neurons may have significant consequences.  相似文献   

9.
Although early paternal deprivation significantly affects offspring behavioral and neuroendocrine development, the link between paternal deprivation and social play behavior remains unclear. Mandarin voles (Microtus mandarinus) are socially monogamous and display bi-paternal care. The present study examined the development of social play in juvenile male mandarin voles and the paternal influence on play-fighting, vasopressin- and oxytocin-immunoreactive neurons and serum corticosterone and testosterone levels. The results show that social play was more pronounced during postnatal days 28–35, differing from the ontogenetic pattern of other forms of social behavior. On postnatal day 35, the peak in play-fighting activity, paternal deprivation reduced boxing/wrestling levels and vasopressin-immunoreactive neurons in the anterior hypothalamus and oxytocin-immunoreactive neurons in the paraventricular nucleus, but increased vasopressin-immunoreactive neurons in the paraventricular nucleus and corticosterone levels. These results suggest that mandarin voles engage in social play according to an inverted U-shaped curve in ontogeny, and paternal deprivation influences the development of offspring play-fighting; hypothalamic vasopressin, oxytocin and serum corticosterone may play a modulatory role in the alteration of play-fighting elicited by paternal deprivation; decreased play-fighting may correlate with depressed vasopressin levels in the anterior hypothalamus.  相似文献   

10.
This study was conducted to examine the psycho-emotional effects of repeated oral exposure to capsaicin, the principal active component of chili peppers. Each rat received 1 mL of 0.02% capsaicin into its oral cavity daily, and was subjected to behavioural tests following 10 daily administrations of capsaicin. Stereotypy counts and rostral grooming were significantly increased, and caudal grooming decreased, in capsaicin-treated rats during the ambulatory activity test. In elevated plus maze test, not only the time spent in open arms but also the percent arm entry into open arms was reduced in capsaicin-treated rats compared with control rats. In forced swim test, although swimming duration was decreased, struggling increased in the capsaicin group, immobility duration did not differ between the groups. Repeated oral capsaicin did not affect the basal levels of plasma corticosterone; however, the stress-induced elevation of plasma corticosterone was prolonged in capsaicin treated rats. Oral capsaicin exposure significantly increased c-Fos expression not only in the nucleus tractus of solitarius but also in the paraventricular nucleus. Results suggest that repeated oral exposure to capsaicin increases anxiety-like behaviours in rats, and dysfunction of the hypothalamic-pituitary-adrenal axis may play a role in its pathophysiology.  相似文献   

11.
Summary Two different monoclonal antibodies raised against choline acetyltransferase were used, together with preembedding immunocytochemical techniques, to visualize the possible cholinergic innervation of the supraoptic and paraventricular nuclei of the rat hypothalamus. Light microscopy confirmed the presence of a group of bipolar and multipolar immunoreactive neurones in the hypothalamus dorsolateral to the supraoptic nucleus as well as numerous immunopositive fibers. Electron microscopy showed that the immunopositive cell bodies contained the usual perikaryal organelles while most immunoreactive fibers appeared dendritic; immunonegative terminals made synaptic contact onto these profiles. Immunopositive terminals making synaptic contact onto dendritic profiles were also noted in this area. In contrast, light microscopy showed no immunoreactivity to choline acetyltransferase in the magnocellular nuclei themselves. Electron microscopy revealed some immunopositive profiles along the boundaries of both nuclei, along the optic chiasm adjacent to the supraoptic nucleus and in the ventral glial lamina but not within the nuclei proper. Surprisingly, these immunopositive profiles appeared dendritic and were often contacted by one or more immunonegative synapses. Our observations thus indicate that cell bodies and dendrites in the supraoptic and paraventricular nuclei are not directly innervated by cholinergic synapses. The functional significance of the putative cholinergic dendrites in close proximity to magnocellular neurones remains to be determined.  相似文献   

12.
3H-corticoids were localized by autoradiography in small neurons in the area of the magnocellular paraventricular nucleus of mallard ducks. Correlative data show that: (1) the label is principally unmetabolized steroid, (2) the hypothalamus competitively binds corticosterone, (3) the paraventricular nucleus contains immunoreactive neurophysin, is richly innervated by boutons of monoaminergic nerves and is involved in the adaptive response to osmotic stress.  相似文献   

13.
J K Rao  H Hu  C Prasad  A Jayaraman 《Peptides》1987,8(2):327-334
The distribution pattern of alpha-melanocyte stimulating hormone-like immunoreactivity (alpha-MSH-Li) was studied in cats using avidin-biotin modification of immunocytochemical method. Cell bodies containing alpha-MSH-Li were observed in the medial basal hypothalamus, especially in the infundibular nucleus, the lateral hypothalamus and near zona incerta. Fibers with alpha-MSH-Li extended beyond the hypothalamus, into the paraventricular nucleus of the thalamus, rostral amygdala, periaqueductal gray, locus ceruleus, parabrachial nucleus and medial nucleus of the nucleus tractus solitarius. Axons with alpha-MSH-Li were also seen diffusely in various cortical areas, but more extensively in the limbic cortical regions. The distribution pattern of the cell bodies and fibers containing alpha-MSH-Li bears several similarities to that seen in rats, but differs in that the alpha-MSH-Li was not observed in cell bodies in locations other than the medial basal and lateral hypothalamus.  相似文献   

14.
Summary The hypothalamus of Japanese quail, Coturnix coturnix japonica, has been studied by means of the peroxidase-antiperoxidase immunocytochemical method, with the use of antibodies to synthetic neurotensin (NT). A number of immunoreactive neuronal perikarya occur in the medial preoptic nucleus of the rostral hypothalamus and a few in the accessory part of paraventricular nucleus and dorsal portion of the infundibular nucleus. Some of them correspond to the parvocellular neurons previously identified tentatively as neurosecretory (Mikami et al. 1975, 1976). Large numbers of immunoreactive neuronal fibers are found in the preoptic area, which extend as a remarkable fiber tract from this area to the ventral septal area and to the subfornical organ. A few immunoreactive fibers also extend ventrocaudally to the infundibular nucleus and to the neural lobe.This investigation was supported by Scientific Research Grants No. 556196 and No. 576176 from the Ministry of Education of Japan to Professor Mikami and Mr. Yamada  相似文献   

15.
The distribution of oxytocin (OXT) and vasopressin (VP) neurons in the diencephalon of the hibernating Japanese horseshoe bat, Rhinolophus ferrumequinum, was immunohistochemically investigated by the avidin-biotin complex method. Magnocellular OXT and VP neurons were localized mainly in the paraventricular nucleus and the supraoptic nucleus. In addition to these main nuclei, both kinds of magnocellular neurons were also found in the periventricular nucleus, perifornical area and lateral hypothalamic area. Extensively distributed parvocellular neurons containing only VP were observed in the rostral and middle portions of the suprachiasmatic nucleus. The size of OXT and VP magnocellular neurons was almost equal in the paraventricular and ventromedial supraoptic nuclei, whereas VP neurons were significantly larger than OXT neurons in the dorsolateral supraoptic nucleus. The OXT and VP cells in the ventral supraoptic nucleus showed a distinctive elliptical shape. Both OXT and VP fibers were distributed in the lateral habenular nucleus, stria medullaris thalami, lateral preoptic area, stria terminalis, and medial and supracapsular part of the bed nucleus of the stria terminalis. Moreover, OXT fibers were found in the substantia nigra, and VP fibers were noted in the nucleus reunions and the paraventricular nucleus of the thalamus.  相似文献   

16.
The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studied by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80-120 nm dense core granules and 30-50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine-beta-hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial parvocellular subnucleus of PVN. Labeled terminal boutons contained 70-100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN. Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN. In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70-120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons. These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.  相似文献   

17.
Summary The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the central nervous system of the domestic mallard was studied by means of the peroxidase-antiperoxidase technique. After colchicine pretreatment, the highest number of TRH-immunoreactive perikarya was found in the parvocellular subdivision of the paraventricular nucleus and in the preoptic region; a smaller number of immunostained perikarya was observed in the lateral hypothalamic area and in the posterior medial hypothalamic nucleus. TRH-immunoreactive nerve fibers were detected throughout the hypothalamus, forming a dense network in the periventricular area, paraventricular nucleus, preoptic-suprachiasmatic region, and baso-lateral hypothalamic area. TRH-containing nerve fibers and terminals occurred in the organon vasculosum of the lamina terminalis and in the external zone of the median eminence in juxtaposition with hypophyseal portal vessels. Scattered fibers were also seen in the internal zone of the median eminence and in the rostral portion of the neural lobe. Numerous TRH-immunoreactive fibers were detected in extra-hypothalamic brain regions: the highest number of immunoreactive nerve fibers was found in the lateral septum, nucleus accumbens, olfactory tubercle, and parolfactory lobe. Moderate numbers of fibers were located in the basal forebrain, dorsomedial thalamic nuclei, hippocampus, interpeduncular nucleus, and the central gray of the mesencephalon. The present findings suggest that TRH may be involved in hypophysiotropic regulatory mechanisms and, in addition, may also act as neuromodulator or neurotransmitter in other regions of the avian brain.  相似文献   

18.
The aim of the present investigations was to test the involvement of the glutamatergic innervation of the hypothalamic paraventricular nucleus in the prolactin response to stress. A non-NMDA (6-cyano-7-nitroquinoxaline-2,3-dione disodium, CNQX) or an NMDA glutamate receptor antagonist (dizocilpine hydrogen malate, MK-801) was injected bilaterally into the paraventricular nucleus of freely moving male rats and 15 min later the animals were exposed to formalin stress. Blood samples for prolactin and corticosterone were taken at different time points before and after administration of formalin. CNQX, when injected into the paraventricular nucleus, inhibited the formalin-induced rise in plasma prolactin and not significantly the increase in corticosterone. A similar effect was not observed if MK-801 was administered into the paraventricular nuclei or CNQX was injected outside the cell group. The findings indicate that the glutamatergic innervation of the paraventricular nucleus is involved in the mediation of the formalin-induced prolactin release.Special Issue Dedicated to Miklós Palkovits.  相似文献   

19.
Peptidyl-glycine alpha-amidating monooxygenase (PAM) is a posttranslational processing enzyme which catalyzes the formation of biologically active alpha-amidated peptides. The two major neuropeptides involved in the regulation of ACTH secretion [CRF and arginine vasopressin (AVP)], synthesized in the parvocellular part of the hypothalamic paraventricular nucleus (PVN), are amidated, and their synthesis and/or release is negatively regulated by glucocorticoids. In this study, using in situ hybridization, we have shown that PAM mRNA is abundantly expressed in the hypothalamic paraventricular and supraoptic nucleus. Surgical adrenalectomy (ADX) induced increases in PAM, CRF, and AVP mRNA in the parvocellular part of the PVN, while corticosterone treatment normalized these values. PAM and AVP gene expression were not changed in the magnocellular part of the PVN or in the supraoptic nucleus. These observations suggest that in addition to stimulation of CRF and AVP synthesis, ADX induces an increase in PAM synthesis in the PVN and, thus, support the hypothesis of increased secretion of both CRF and AVP after ADX.  相似文献   

20.
Summary The interrelationships of corticotropin-releasing factor (CRF) immunoreactive neuronal cell bodies and processes have been examined in the paraventricular nucleus (PVN) of adrenalectomized-dexamethesone treated rats. Antisera generated against ovine CRF (oCRF) were used in the peroxidase-anti-peroxidase-complex (PAP)-immunocytochemical method at both the light and electron microscopic levels. In this experimental model, a great number of CRF-immunoreactive neurons were detected in the parvocellular subdivisions of the PVN and a few scattered labelled parvocellular neurons were also observed within the magnocellular subunits. Characteristic features of immunolabeled perikarya included hypertrophied rough endoplasmic reticulum with dilated endoplasmic cisternae, well developed Golgi complexes and increased numbers of neurosecretory granules. These features are interpreted to indicate accelerated hormone synthesis as a result of adrenalectomy. Afferent fibers communicated with dendrites and somata of CRF-immunoreactive neurons via both symmetrical and asymmetrical synapses. Some neurons exhibited somatic appendages and these structures were also observed to receive synaptic terminals. Within both the PVN and its adjacent neuropil, CRF-immunoreactive axons demonstrated varicosites which contained accumulations of densecore vesicles. CRF-containing axons were observed to branch into axon collaterals. These axons or axon collaterals established axo-somatic synapses on CRF-producing neurons in the parvocellular regions of the PVN, while in the magnocellular area of the nucleus they were found in juxtaposition with unlabeled magnocellular neuronal cell bodies or in synaptic contact with their dendrites. The presence of CRF-immunoreactive material in presynaptic structures suggests that the neurohormone may participate in mechanisms of synaptic transfer.These ultrastructural data indicate that the function of the paraventricular CRF-synthesizing neurons is adrenal steroid hormone dependent. They also provide morphological evidence for the existence of a neuronal ultrashort feedback mechanism within the PVN for the regulation of CRF production and possibly that of other peptide hormones contained within this complex.Supported by NIH grant NS 19266 to WKP  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号