首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
1. The effect of the alpha-2 adrenergic agonist clonidine on short-circuit current (SCC) across isolated skins of Bufo arenarum toads was investigated. 2. Clonidine inhibited basal SCC in a dose-dependent manner. 3. Blockade of the effect of clonidine on basal SCC by the selective alpha-2 antagonist yohimbine supports the hypothesis that the inhibitory effect is mediated by the stimulation of alpha-2 adrenergic receptors. 4. The fact that the inhibitory effect of clonidine is higher in skins with spontaneous positive SCC than in the negative ones, and that the alpha-2 agonist was unable to alter amiloride-induced negative SCC suggests that the inhibitory effect of clonidine may probably be mediated by inhibition of sodium transport.  相似文献   

2.
The influence of the central adrenergic system on basal prolactin secretion was investigated in the rat. Several selective adrenoceptor blockers were centrally administered and their effects on prolactin secretion were observed. Blockade of beta-1 receptors by practolol, beta-2 receptors by IPS 339 and alpha-2 receptors by DG-5128 did not modify basal prolactin secretion, but alpha-1 adrenoceptor blockade by prazosin strongly enhanced prolactin plasma levels. These findings suggest that noradrenergic pathways in the central nervous system exert inhibitory tone on basal prolactin secretion, and that this effect seems to be mediated by alpha-1 adrenoceptors.  相似文献   

3.
Atrial myocardium is the source of a recently described peptide hormone termed atriopeptin. Atriopeptin is thought to have a role in the regulation of systemic arterial pressure, fluid balance and plasma electrolyte homeostasis. Isolated rat hearts release atriopeptin into the coronary effluent, and we have found that this release is stimulated by the administration of norepinephrine, a compound with alpha and beta adrenergic properties. Infusion of the pure beta-receptor agonist, isoproterenol, failed to stimulate the release; however, the alpha-1 receptor agonist phenylephrine induced the release in a dose-dependent manner. The stimulation of atriopeptin release by norepinephrine and phenylephrine was inhibited by alpha-blockade with phentolamine. Administration of BHT-920, a selective alpha-2 agonist, had no effect on atriopeptin release. We conclude that atriopeptin secretion by the atrial myocyte is stimulated by activation of the alpha-1 adrenergic receptor. This finding suggests an involvement of the sympathetic nervous system in the physiologic regulation of the secretion of this hormone.  相似文献   

4.
5.
Peripheral administration of vasopressin (VP) was previously shown to exert a negative feedback influence on its own release and on the release of oxytocin (OT). In this study we examined the possible influence that OT has on the function of hypothalamic magnocellular neurones. Oxytocin was administered intraperitoneally and its effects on release from VP neurones and from OT neurones were determined as indexed by plasma concentrations of vasopressin-associated neurophysin ([VP-RNP]) and oxytocin-associated neurophysin ([OT-RNP]) under basal conditions and conditions of high plasma osmolality (Posm) induced by acute salt loading. Studies were performed on conscious, chronically instrumented Long-Evans rats. Oxytocin (1 nmol or 10 nmol) dissolved in 1 mL of 0.9% saline was administered intraperitoneally to animals 1 h before they received an intravenous infusion of hypertonic saline over 60 min at a rate designed to raise Posm by approximately 0.75 mosmol.min-1. Intraperitoneal injection of vehicle or 1 nmol of OT did not significantly alter [VP-RNP], [OT-RNP], or basal Posm. Administration of 10 nmol OT also had no effect on [VP-RNP] or [OT-RNP], but this dose of peptide significantly lowered basal Posm (299 +/- 2 to 290 +/- 2 mosmol/kg H2O, p less than 0.001). Both doses of OT did not significantly alter the responsiveness of VP neurones to hyperosmotic stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The sympathetic neurotransmitter norepinephrine (NE) influences renal sodium excretion via activation of adrenergic receptors. The thick ascending limb (THAL) possesses both alpha-2 and beta-adrenergic receptors. However, the role(s) different adrenergic receptors play in how isolated THALs respond to NE are unclear. We tested the hypothesis that both alpha-2 and beta-adrenergic receptors are responsive to NE in the isolated THAL, with alpha-2 receptors inhibiting and beta-receptors stimulating chloride flux (J(Cl)). THALs from male Sprague-Dawley rats were perfused in vitro, and the effects of 1) incremental NE, 2) the alpha-2 agonist clonidine, and 3) the beta-agonist isoproterenol on J(Cl) were measured. Low concentrations (0.1 nM) of NE decreased J(Cl) from a rate of 114.2 +/- 8.1 to 93.5 +/- 14.6 pmol. mm(-1). min(-1) (P < 0.05), with the nadir occurring at 1 nM (67.7 +/- 8.8 pmol. mm(-1). min(-1); P < 0.05). In contrast, greater concentrations of NE significantly increased J(Cl) from the nadir to a maximal rate of 131.0 +/- 28.5 pmol. mm(-1). min(-1) at 10 microM (P < 0.05). To evaluate the adrenergic receptors mediating these responses, the THAL J(Cl) response to NE was measured in the presence of selective antagonists of beta- and alpha-2 receptors. A concentration of NE (1 microM), which alone tended to increase J(Cl), decreased THAL J(Cl) (from 148.9 +/- 16.4 to 76.2 +/- 13.6 pmol. mm(-1). min(-1); P < 0.01) in the presence of the beta-antagonist propranolol. In contrast, a concentration of NE (0.1 microM), which alone tended to decrease J(Cl), increased THAL J(Cl) (from 85.5 +/- 20.1 to 111.8 +/- 20.1 pmol. mm(-1). min(-1); P < 0.05) in the presence of the alpha-2 antagonist rauwolscine. To further clarify the role of different adrenergic receptors, selective adrenergic agonists were used. The alpha-2 agonist clonidine decreased J(Cl) from 102.4 +/- 9.9 to 54.0 +/- 15.7 pmol. mm(-1). min(-1), a reduction of 49.1 +/- 11.0% (P < 0.02). In contrast, the beta-agonist isoproterenol stimulated J(Cl) from 95.3 +/- 11.6 to 144.1 +/- 15.0 pmol. mm(-1). min(-1), an increase of 56 +/- 14% (P < 0.01). We conclude that 1) the sympathetic neurotransmitter NE exerts concentration-dependent effects on J(Cl) in the isolated rat THAL, 2) selective alpha-2 receptor activation inhibits THAL J(Cl), and 3) selective beta-receptor activation stimulates THAL J(Cl). These data indicate the response elicited by the isolated rat THAL to NE is dependent on the neurotransmitter concentration, such that application of NE in vitro biphasically modulates J(Cl) via differential activation of alpha-2 and beta-adrenergic receptors in a concentration-dependent manner.  相似文献   

7.
Catecholamines are important in the modulation of smooth muscle contractile activity; this study was undertaken to evaluate adrenoceptor stimulation of intracellular inositol-phosphate production in a genital tract smooth muscle myocyte. DDT1 MF-2 smooth muscle myocytes, derived from a hamster ductus deferens leiomyosarcoma, were loaded with 3H-inositol, incubated in 10 mM LiCl, then stimulated with adrenergic agonists with and without antagonists. Subsequently, the inositol phosphates were isolated by anion-exchange chromatography. In the presence of norepinephrine (NE), inositol trisphosphate (IP3) was produced by 30 s and peaked at 2 min; inositol 1-phosphate was also apparent by 30 s, and continued to increase over 15 min. Clonidine (an alpha-2 agonist), isoproterenol, and NE in the presence of phentolamine or prazosin (an alpha-1 antagonist) failed to increase IP3. In contrast, NE in the presence of yohimbine (an alpha-2 antagonist) or propranolol stimulated IP3 production to levels comparable to that stimulated by NE alone. These studies provide evidence that inositol phosphate production is involved in alpha-1 adrenergic signal transduction in DDT1 MF-2 myocyte.  相似文献   

8.
Abstract

Subtypes of alpha adrenergic receptors were studied using selective adrenergic agonists. A-53693, A-54741, and related compounds were evaluated for their affinity for alpha receptor subtypes using radioligand binding techniques. Efficacy and potency were also evaluated using in vitro bioassays of alpha-1 receptors in rabbit aorta smooth muscle and alpha-2 receptors in the phenoxybenzamine-pretreated canine saphenous vein. Active and inactive compounds were then submitted for computer-assisted molecular modeling evaluation to ascertain the structural requirements for optimal potency and selectivity. Rigid catecholamines such as A-53693 display a high degree of selectivity for alpha-2 compared to alpha-1 receptors, probably because of the unique regions of space at the ligand binding site occupied by active compounds. Imidazolines such as A-54741 also interact with extremely high affinity and potency for alpha-2 receptors, and to a lesser extent at alpha-1 receptors. The spatial domains occupied by phenethylamines and imidazolines differ, each having unique regions of permissable space at alpha receptors. Compounds such as A-53693 and A-54741 are extremely useful probes of the molecular interactions of alpha agonistic compounds which will help in the design of even more selective drugs for alpha adrenergic receptors.  相似文献   

9.
The short (5-60 min) and long (24 hrs) term effects of norepinephrine (10 uM) and the phorbol ester, 12-0-tetradecanoyl phorbol-13-acetate (10 nM), on total cellular and surface-accessible alpha-1 adrenergic receptor number were determined in DDT1 MF-2 smooth muscle cells. The density of alpha-1 adrenergic receptors was determined with [3H]-prazosin in a crude cellular homogenate (total cellular receptors) and in intact cells at 4 degrees C (surface-accessible receptors). Under basal conditions, all receptors were accessible to the cell surface at 4 degrees C. Short term norepinephrine exposure caused an approximately 40% decrease in surface-accessible binding without a change in total receptor number. Long term norepinephrine exposure caused a further decrease in surface-accessible binding, and an approximately 30% decrease in total receptor number. In contrast, phorbol ester had no effect on surface-accessible or total receptor number with either short or long term exposure. These data suggest that sequestration of cell surface alpha-1 adrenergic receptors is an early step in the process of agonist-mediated down-regulation. In DDT1 MF-2 cells, phorbol ester, alone, does not mimmick the effect of agonist on receptor sequestration or number.  相似文献   

10.
The metabolism of inositol phospholipids in response to epinephrine was investigated in intact human platelets. In platelets prelabelled with [3H]-myo-inositol in Ca2+-free HEPES buffer containing 10 mM LiCl, epinephrine caused an accumulation of inositol-1-phosphate in a concentration-dependent manner. The EC50 value for epinephrine was 5 microM. Yohimbine (1 microM), a selective alpha-2 adrenergic receptor antagonist, inhibited 88% of the epinephrine (10 microM) response, whereas prazosin (1 microM), a selective alpha-1 adrenergic receptor antagonist, failed to inhibit the response. Yohimbine inhibited the epinephrine (10 microM) response in a concentration-dependent manner. The inhibition constant (Ki) value for yohimbine was 60.3 nM. These data indicate that epinephrine stimulates phosphoinositide (PI) turnover by activating adrenergic receptors of the alpha-2 type in human platelets. In addition, this PI response elicited by epinephrine was found to be inhibited in a concentration-dependent manner by treatment of platelets with dibutyryl cyclic AMP and 8-bromo-cyclic GMP which are known as potent inhibitors for platelet activation, and may therefore be a useful biochemical index for the study of the function of human alpha-2 adrenergic receptors.  相似文献   

11.
We have previously indicated that epinephrine stimulates phosphoinositide (PI) hydrolysis by activating alpha-2 adrenergic receptors in human platelets [H. Mori et. al. Life Sci., 741-747 44 (1989)]. This method involves the measurement of the accumulation of [3H]-inositol-1-phosphate (IP-1) as an index of PI hydrolysis; lithium is added to inhibit the metabolism of IP-1, thus giving an enhanced signal. In the present study, we assessed the platelet alpha-2 adrenergic receptor-mediated PI responses in samples from 15 unmedicated patients with endogenous depression and 15 age- and sex-matched control subjects. The responses to epinephrine (10 microM and 100 microM) in the depressed patients were significantly higher than those of the controls, whereas the basal values did not differ significantly. These results support the hypothesis that platelet alpha-2 adrenergic receptors may be supersensitive in patients with endogenous depression.  相似文献   

12.
In vitro incubation studies with bovine parathyroid gland slices compared the relative responsiveness of parathyroid hormone (PTH) secretion to isoprotherenol, epinephrine or norepinephrine. Isoproterenol was the most potent and norepinephrine the least potent of the three stimuli, suggesting a beta 2 type of an adrenergic response. However in this in vitro system, tazalol, a selective beta 1 adrenergic agonist significantly stimulated PTH secretion, whereas terbutaline, a selective beta 2 agonist had no effect. In addition, practolol, a selective beta 1 adrenergic antagonist blocked isoproterenol- or tazolol-stimulated PTH secretion. In vivo studies in normal human subjects showed that injection of te nonselective beta agonist, isoproterenol, (0.15 mg s.c.) significantly increased, whereas injection of the selective beta 2 agonist, terbulatine (0.3 mg s.c.) had no effect on serum PTH levels. These latter studies with putative selective beta adrenergic agents suggest that the beta adrenergic receptor mediating PTH secretion is of the beta 1 type (in contrast to the studies above with nonselective agents). The studies suggest that the beta adrenergic receptor mediating PTH secretion apparently differs from the classical beta 1 receptor described in th myocardium or the classical beta 2 receptor described in the bronchial smooth muscle.  相似文献   

13.
Cross-talk between insulin and the adrenergic system is important in the regulation of energy homeostasis. In cultured, differentiated mouse brown adipocytes, beta3-adrenergic stimulation induced a 4.5-fold increase in uncoupling protein-1 (UCP-1) expression, which was diminished by 25% in the presence of insulin. Beta3-adrenergic stimulation also activated mitogen-activated protein (MAP) kinase by 3.5-fold and caused a decrease in basal phosphoinositide (PI) 3-kinase activity detected in p110gamma- and Gbeta-subunit-immunoprecipitates in a time-dependent manner, whereas insulin stimulated p110alpha- and phosphotyrosine-associated PI 3-kinase activity. Inhibition of MAP kinase or PI 3-kinase potentiated the beta3-adrenergic effect on UCP-1 expression, both alone and in the presence of insulin. Thus, insulin inhibits beta3-adrenergic stimulation of UCP-1, and both MAP kinase and PI 3-kinase are negative regulatory elements in the beta3-adrenergic control of UCP-1 expression. Cross-talk between the adrenergic and insulin signaling systems and impaired regulation of UCP-1 might contribute to the development of a reduced energy balance, resulting in obesity and insulin resistance.  相似文献   

14.
Exposure of brown fat cells to phenylephrine, an agonist of alpha-1 adrenergic receptors, activates a phospholipase A2 which releases arachidonic acid. Since receptor activation of phospholipase A2 requires calcium, experiments were undertaken to define more precisely the role played by calcium in the regulation of enzyme activity. In this study, adipocytes were loaded with the fluorescent calcium chelator quin2 in order to buffer intracellular calcium and block receptor stimulated changes in its concentration. When quin2 loaded adipocytes were incubated in buffer containing 0.10 mM calcium, the ability of phenylephrine to stimulate release of arachidonic acid was severely reduced. At an intracellular quin2 concentration of 6.6 mM stimulated arachidonic acid release was inhibited by more than 50% and at 13 mM it was completely blocked. In contrast, phenylephrine stimulation of inositol phosphate accumulation was unaffected by quin2. Quin2 also did not affect the liberation of arachidonic acid in response to exogenous phospholipase C, A23187 or forskolin. The intracellular calcium antagonist TMB-8 also inhibited phenylephrine-stimulation of arachidonic acid release and this effect was reversed by ionomycin. Basal phospholipase A2 activity was increased by introduction of high calcium concentrations into cells rendered permeable with digitonin, but phenylephrine still caused a further increase in enzyme activity. These findings show a selective inhibition of phenylephrine activation of phospholipase A2 by either the chelation of intracellular calcium with quin2 or by the calcium antagonist TMB-8 and suggest an essential role for intracellular calcium in alpha adrenergic stimulation of enzyme activity. However, because phenylephrine still stimulates enzyme activity in cells rendered permeable with digitonin, we suggest that the action of phenylephrine cannot be attributed solely to changes in intracellular calcium.  相似文献   

15.
Rat parotid acinar cells dispersed by a combination of enzymatic treatments remain sensitive to adrenergic and cholinergic agonists. Previous studies have implicated Ca2+ in both adrenergic and cholinergic responses. This paper describes the effects of adrenergic and cholinergic stimulation upon 45Ca2+ fluxes in isolated parotid acinar cells. Suspensions of dispersed cells took up 45Ca2+ from the medium. The net rate of isotope influx was increased by the adrenergic agonists epinephrine, norepinephrine, isoproterenol, and phenylephrine, and by the cholinergic agonists acetylcholine and carbamylcholine. In 1 mM Ca2+, epinephrine was capable of increasing the 45Ca2+ influx in 40 min to three times that of resting cells. Isoproterenol, a beta-adrenergic agonist, was only half as effective as epinephrine in stimulating maximal calcium uptake although it was equally effective in stimulating maximal amylase release in the same cells. Experiments with the alpha-adrenergic antagonist phentolamine, the beta-adrenergic antagonist propranolol, and the cholinergic antagonist atropine confirmed that alpha- and beta-adrenergic and cholinergic stimulation each had a direct stimulatory effect on 45Ca2+ uptake. N6,O2'-Dibutyryl adenosine 3':5'-monophosphate also caused some stimulation of net calcium uptake. Direct measurement of Ca2+ efflux indicated that the increased calcium uptake in the presence of epinephrine was not the indirect result of a decrease in efflux. The rates of both basal and epinephrine-stimulated calcium uptake increased with increasing calcium concentration in the medium. Epinephrine had little effect on the rate of calcium uptake at 0.15 mM Ca2+. Although the energy poison NaCN had little effect on the basal rate of calcium uptake, the stimulable component of calcium uptake was inhibited by NaCN at all calcium concentrations tested (0.2 to 4.1 mM).  相似文献   

16.
The effect of opiate peptides on basal and potassium-stimulated endogenous dopamine (DA) release from striatal slices was studied in vitro. Dual stimulation of the striatal slices gave a reproducible increase in DA release that was calcium dependent. Addition of the delta-opiate receptor agonists Met5-enkephalin, [D-Ala2,D-Leu5]enkephalin (DADLE), and [D-Ser2]Leu-enkephalin-Thr (DSLET), increased the basal DA release without affecting potassium-stimulated release in a dose-dependent manner. The effect of DADLE was antagonized by the addition of naloxone. In contrast, the mu-opioid receptor agonist [D-Ala2,N-MePhe4,Gly-ol5]enkephalin (DAGO) and the epsilon-opioid agonist beta-endorphin inhibited the stimulated DA release without changing the basal release. The inhibitory effect of DAGO on potassium-stimulated release was antagonized by naloxone. The addition of ethanol (75 mM) to the incubation media produced a delayed increase of both the basal and stimulated DA release. There was no change in stimulated DA release when the change in basal release was subtracted, suggesting that ethanol produced a dose-dependent, selective increase in basal DA release. Naloxone and the selective delta-opiate antagonist ICI 174864 inhibited the ethanol-induced increase in basal DA release. Naloxone and ICI 174864 added alone did not alter either basal or stimulated DA release. We therefore suggest that the ethanol-induced increase in basal DA release is an indirect effect involving an endogenous delta-opiate agonist.  相似文献   

17.
In many tissues, norepinephrine appears to inhibit its own release through an interaction at alpha adrenergic receptors. We have developed an assay for measuring the release of endogenous norepinephrine based on HPLC and have studied the regulation of release in the rat submandibular gland by alpha adrenergic antagonists. The method uses electrochemical detection to quantitate norepinephrine released from tissue slices and does not require preloading of the tissue with [3H]norepinephrine. Yohimbine, an alpha-2 adrenergic antagonist, potentiates by 50% the release caused by potassium induced depolarization with an EC50 of 0.14 microM. Prazosin, an alpha-1 antagonist, has a similar effect, but is less potent with an EC50 of 0.77 microM. Thus, the alpha adrenergic receptor mediating the regulation of norepinephrine release is of the alpha-2 subtype. The observed equal efficacies and lack of additivity of release potentiation by yohimbine and prazosin at maximal doses suggest that both drugs act at the same receptor. The five-fold difference in potency between prazosin and yohimbine is consistent with the recent observations indicating species differences between rodent and non-rodent alpha-2 adrenergic receptors.  相似文献   

18.
The study examined the effects of a norepinephrine transporter (NET) inhibitor reboxetine (RBX) on an attentional performance test. Adult SD rats trained with five-choice serial reaction time task (5-CSRTT) were administered with RBX (0, 3.0 and 10 mg/kg) in the testing day. Alpha-1 adrenergic receptor antagonist PRA and alpha-2 adrenergic receptor antagonist RX821002 were used to clarify the RBX effect. Results revealed that rat received RBX at 10 mg/kg had an increase in the percentage of the correct response and decreases in the numbers of premature response. Alpha-1 adrenergic receptor antagonist Prazosin (PRA) at 0.1 mg/kg reversed the RBX augmented correct responding rate. However, alpha-2 adrenergic receptor antagonist RX821002 at 0.05 and 0.1 mg/kg dose dependently reversed the RBX reduced impulsive responding. Our results suggested that RBX as a norepinephrine transporter inhibitor can be beneficial in both attentional accuracy and response control and alpha-1 and alpha-2 adrenergic receptors might be involved differently.  相似文献   

19.
Yohimbine reduces morphine tolerance in guinea-pig ileum   总被引:2,自引:0,他引:2  
Opiates are known to inhibit electrically-evoked twitches of longitudinal muscle-myenteric plexus strips from guinea-pig ileum. When this preparation was incubated with morphine for 1 h tolerance developed to the inhibitory effect, since dose-response curves were shifted to the right. In the present study, the effects of alpha-2 adrenergic agents on the tolerance induced by morphine in this preparation was investigated. Addition of yohimbine 10 microM (but not 0.1 or 1 microM) to the incubating medium reduced the magnitude of opiate tolerance. This effect did not appear in the presence of the alpha-2 agonists clonidine or guanfacine (10 microM). Our results provide evidence of the longitudinal muscle-myenteric plexus as a useful model for the study of the relationship between morphine tolerance and alpha-2 adrenergic mechanisms.  相似文献   

20.
Rabbit myometrium contains postsynaptic alpha-1, alpha-2, and beta-2 adrenoreceptors. The response to endogenous catecholamines depends on the summation of interactions at these receptors and is influenced by the hormonal environment. Estrogen treatment of ovariectomized rabbits increases the alpha adrenergic contractile response whereas progesterone treatment of estrogen primed animals results in a predominance of the beta adrenergic response, which is inhibition of contractions. Of the receptor subtypes, only the alpha-2 receptor concentration is increased at physiological estrogen concentrations. However, alpha-2 receptors have not been shown to be directly involved in myometrial contraction, which appears to be mediated solely by alpha-1 adrenergic interactions. To test whether alpha-2 receptors might indirectly affect contraction by opposing interactions at the beta receptor, we examined the ability of alpha adrenergic stimulation to reduce myometrial cyclic adenosine 3',5'-monophosphate (cAMP) generation. We find that alpha-2 receptors inhibit myometrial ade adenylate cyclase through the guanine nucleotide regulatory protein, Gi. In addition, we find that activation of alpha-1 receptors also reduces cAMP generation. This interaction, which can be demonstrated in the absence but not the presence of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, does not appear to be mediated through Gi. These findings illustrate the complexity of adrenergic interactions in tissues containing several adrenergic subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号