首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Maximal ADP-stimulated mitochondrial respiration depends on convergent electron flow through Complexes I + II to the Q-junction of the electron transport system (ETS). In most studies of respiratory control in mitochondrial preparations, however, respiration is limited artificially by supplying substrates for electron input through either Complex I or II. High-resolution respirometry with minimal amounts of tissue biopsy (1–3 mg wet weight of permeabilized muscle fibres per assay) provides a routine approach for multiple substrate-uncoupler-inhibitor titrations. Under physiological conditions, maximal respiratory capacity is obtained with glutamate + malate + succinate, reconstituting the operation of the tricarboxylic acid cycle and preventing depletion of key metabolites from the mitochondrial matrix. In human skeletal muscle, conventional assays with pyruvate + malate or glutamate + malate yield submaximal oxygen fluxes at 0.50–0.75 of capacity of oxidative phosphorylation (OXPHOS). Best estimates of muscular OXPHOS capacity at 37 °C (pmol O2 s−1 mg−1 wet weight) with isolated mitochondria or permeabilized fibres, suggest a range of 100–150 and up to 180 in healthy humans with normal body mass index and top endurance athletes, but reduction to 60–120 in overweight healthy adults with predominantly sedentary life style. The apparent ETS excess capacity (uncoupled respiration) over ADP-stimulated OXPHOS capacity is high in skeletal muscle of active and sedentary humans, but absent in mouse skeletal muscle. Such differences of mitochondrial quality in skeletal muscle are unexpected and cannot be explained at present. A comparative database of mitochondrial physiology may provide the key for understanding the functional implications of mitochondrial diversity from mouse to man, and evaluation of altered mitochondrial respiratory control patterns in health and disease.  相似文献   

2.
For quantitative elucidation of maximal mitochondrial oxidation capacities in human mononuclear cells, cultured human skin fibroblasts and human thrombocytes the optimal amount of digitonin for plasma membrane permeabilization was determined to be 5, 10, and 0.1 μg/106 cells, respectively. Using these concentrations the rate of respiration of permeabilized cells with the mitochondrial substrates succinate (+ rotenone) or glutamate + malate can be stimulated between two- and fourfold by ADP and inhibited by carboxyatractyloside. The maximal respiratory activities of well-characterized preparations of permeabilized mononuclear cells of five patients with chronic progressive external ophthalmoplegia were compared to healthy controls and a 30 to 50% decrease of the ADP-stimulated respiration rates with glutamate + malate and succinate + rotenone was detected. This is an indication for the presence of the mitochondrial defect in respiratory active blood cells. Additionally, for two of these patients the mitochondrial defects were proven to be detectable by the determination of maximal oxygen consumption rates of digitonin-permeabilized cultured skin fibroblasts. Therefore, the determination of maximal oxidation capacities of a well-defined cell population using strictly standardized conditions of digitonin permeabilization is judged as a useful and sensitive method for the elucidation of mitochondrial function in extramuscular tissue.  相似文献   

3.
Spinal muscular atrophy is an inherited motor neuron disease that results from a deficiency of the survival of motor neuron (SMN) protein. SMN is ubiquitinated and degraded through the ubiquitin proteasome system (UPS). We have previously shown that proteasome inhibition increases SMN protein levels, improves motor function, and reduces spinal cord, muscle, and neuromuscular junction pathology of spinal muscular atrophy (SMA) mice. Specific targets in the UPS may be more efficacious and less toxic. In this study, we show that the E3 ubiquitin ligase, mind bomb 1 (Mib1), interacts with and ubiquitinates SMN and facilitates its degradation. Knocking down Mib1 levels increases SMN protein levels in cultured cells. Also, knocking down the Mib1 orthologue improves neuromuscular function in Caenorhabditis elegans deficient in SMN. These findings demonstrate that Mib1 ubiquitinates and catalyzes the degradation of SMN, and thus represents a novel therapeutic target for SMA.  相似文献   

4.
The mdx mouse, an animal model of the Duchenne muscular dystrophy, was used for the investigation of changes in mitochondrial function associated with dystrophin deficiency. Enzymatic analysis of skeletal muscle showed an approximately 50% decrease in the activity of all respiratory chain-linked enzymes in musculus quadriceps of adult mdx mice as compared with controls, while in cardiac muscle no difference was observed. The activities of cytosolic and mitochondrial matrix enzymes were not significantly different from the control values in both cardiac and skeletal muscles. In saponin-permeabilized skeletal muscle fibers of mdx mice the maximal rates of mitochondrial respiration were about two times lower than those of controls. These changes were also demonstrated on the level of isolated mitochondria. Mdx muscle mitochondria had only 60% of maximal respiration activities of control mice skeletal muscle mitochondria and contained only about 60% of hemoproteins of mitochondrial inner membrane. Similar findings were observed in a skeletal muscle biopsy of a Duchenne muscular dystrophy patient. These data strongly suggest that a specific decrease in the amount of all mitochondrial inner membrane enzymes, most probably as result of Ca2+ overload of muscle fibers, is the reason for the bioenergetic deficits in dystrophin-deficient skeletal muscle.  相似文献   

5.
Mitochondria, that provide most of the ATP needed for cell work, and that play numerous specific functions in biosyntheses and degradations, as well as contributing to Ca2+; signaling, also play a key role in the pathway to cell death. Impairment of mitochondrial functions caused by mutations of mt-genome, and by acute processes, are responsible for numerous diseases.The involvement of impaired mitochondria in the pathogenesis of sepsis is discussed. By means of the skinned fiber technique and high resolution respirometry, we have detected significantly reduced rates of mitochondrial respiration in heart and skeletal muscle of endotoxaemic rabbits. Mitochondria from heart were more affected than those from skeletal muscle. Decreased respiration rates were accompanied by reduced activities of complex I+III of the respiratory chain. Endotoxin-caused impairment was also detectable at the level of the Langendorff perfused heart, where the coronary vascular resistance was significantly increased.For an investigation of the influence of bacteraemia on the mitochondrial respiratory chain, baboons were made septic by infusion of high and low amounts of E. coli. For complex I+III and II+III, a clear dose-dependent decrease was detectable and in animals which died in septic shock, a further decrease of enzyme activities in comparison to the controls were found.These results are discussed in the light of current knowledge on the role of mitochondria in cell pathology in respect to sepsis.In conclusion, we present evidence that mitochondrial function is disturbed during sepsis. Besides ischaemic and poison-induced disturbances of mitochondrial function, sepsis is a further example of an acute disease where impaired mitochondria have to be taken into account.  相似文献   

6.
Spinal muscular atrophy (SMA) is a severe neuromuscular disease characterized by loss of spinal α-motor neurons, resulting in the paralysis of skeletal muscle. SMA is caused by deficiency of survival motor neuron (SMN) protein levels. Recent evidence has highlighted an axon-specific role for SMN protein, raising the possibility that axon degeneration may be an early event in SMA pathogenesis. The Wallerian degeneration slow (Wlds) gene is a spontaneous dominant mutation in mice that delays axon degeneration by approximately 2-3 weeks. We set out to examine the effect of Wlds on the phenotype of a mouse model of SMA. We found that Wlds does not alter the SMA phenotype, indicating that Wallerian degeneration does not directly contribute to the pathogenesis of SMA development.  相似文献   

7.
This report describes the isolation procedure and properties of tightly coupled flight muscle mitochondria of the bumblebee Bombus terrestris (L.). The highest respiratory control index was observed upon oxidation of pyruvate, whereas the highest respiration rates were registered upon oxidation of a combination of the following substrates: pyruvate + malate, pyruvate + proline, or pyruvate + glutamate. The respiration rates upon oxidation of malate, glutamate, glutamate + malate, or succinate were very low. At variance with flight muscle mitochondria of a number of other insects reported earlier, B. terrestris mitochondria did not show high rates of respiration supported by oxidation of proline. The maximal respiration rates were observed upon oxidation of α-glycerophosphate. Bumblebee mitochondria are capable of maintaining high membrane potential in the absence of added respiratory substrates, which was completely dissipated by the addition of rotenone, suggesting high amount of intramitochondrial NAD-linked oxidative substrates. Pyruvate and α-glycerophosphate appear to be the optimal oxidative substrates for maintaining the high rates of oxidative metabolism of the bumblebee mitochondria.  相似文献   

8.
The NAD content was determined in mitochondria isolated from sugar-beet roots at various stages of plant development. A high NAD content (7.6 ± 0.9 nmol/mg mitochondrial protein) was observed in the mitochondria of actively growing roots of 80–95-day-old plants, but it decreased ca. twofold by the end of the first year of plant development, before the roots were harvested for storage. The mitochondria isolated from roots stored at low temperature for two to three months and those after five to eight days of regrowth during the second year of plant development manifested an even lower NAD content (2.2 ± 0.4 and 2.0 ± 0.5 nmol/mg protein, respectively). A drastic decrease in the NAD content in mitochondria from stored roots did not result from the impairment of the inner membrane of these organelles and was evidently regulatory in its nature. The effect of developmental changes in the intramitochondrial NAD content on the malate oxidation pattern was studied. In the mitochondria of stored roots, the low NAD content limited the rate of malate oxidation in state 3, because the addition to the reaction mixture of exogenous NAD, which can be transported to the mitochondrial matrix, promoted malate oxidation by 30–50%. Rotenone inhibited malate oxidation in the stored-root mitochondria by more than 70%; in this case, the rate of rotenone-resistant malate oxidation in these organelles increased by several times in the presence of exogenous NAD. In the mitochondria of the growing root, exo-genous NAD did not affect the rate of malate oxidation, and rotenone inhibited it only by 25–35%. The analysis of the data obtained here and the published evidence suggests the existence of a universal mechanism of respiration control and the regulation of the functional activity of plant mitochondria. This mechanism acts through a change in the NAD content in the organelle matrix. This NAD can be used in the course of plant development, e.g., during the transition of sugar-beet-root cells in the dormant state, when the respiration rate must decline.  相似文献   

9.
Palmitylcarnitine oxidation by isolated liver mitochondria has been used to investigate the interaction of fatty acid oxidation with malate, glutamate, succinate, and the malate-aspartate shuttle. Mitochondria preincubated with fluorocitrate were added to a medium containing 2mM ATP and ATPase. This system, characterized by a high energy change, allowed titration of respiration to any desired rate between States 4 and 3 (Chance, B., and Williams, G. R. (1956) Adv. Enzymol. Relat. Areas Mol. Biol. 17, 65-134). When respiration (reference, with palmitylcarnitine and malate as substrates) was set at 75% of State 3, the oxidation of palmitylcarnitine was limited by acetoacetate formation. The addition of malate or glutamate approximately doubled the rate of beta oxidation. Malate circumvented this limitation by citrate formation, but the effect of glutamate apparently was due to enhancement of the capacity for ketogenesis. The rate of beta oxidation was curtailed when malate and glutamate were both present. This curtailment was more pronounced when the malate-aspartate shuttle was fully reconstituted. Among the oxidizable substrates examined, succinate was most effective in inhibiting palmitylcarnitine oxidation. Mitochondrial NADH/NAD+ ratios were correlated positively with suppression of beta oxidation. The degree of suppression of beta oxidation by the malate-aspartate shuttle (NADH oxidation) or by succinate oxidation was dependent on the respiratory state. Both substrates extensively reduced mitochondrial NAD+ and markedly suppressed beta oxidation as respiration approached State 4. Calculations of the rates of flux of hydrogen equivalents through beta oxidation show that the suppression of beta oxidation by glutamate or by the malate-aspartate shuttle is accounted for by increased flux of reducing equivalents through mitochondrial malic dehydrogenase. This increased Flux is accompanied by an increase in the steady state NADH/NAD+ ratio and a marked decrease in the synthesis of citrate. The alpha-glycerophosphate shuttle was reconstituted with mitochondria isolated from rats treated with L-thyroxine. This shuttle was about equal to the reconstructed malate-aspartate shuttle in supression of palmitylcarnitine oxidation. This interaction could not be demonstrated in euthyroid animals owing to the low activity of the mitochondrial alpha-glycerol phosphate dehydrogenase. It is concluded that beta oxidation can be regulated by the NADH/NAD+ ratio. The observed stimulation of flux through malate dehydrogenase both by glutamate and by the malate-aspartate shuttle results in an increased steady state NADH/NAD+ ratio, and is linked to a stoichiometric outward transport of aspartate. We suggest, therefore, that some of the reducing pressure exerted by the malate-aspartate shuttle and by glutamate plus malate is provided through the energy-linked, electrogenic transport of aspartate out of the mitochondria. These results are discussed with respect to the mechanism of the genesis of ethanol-induced fatty liver.  相似文献   

10.
Mitochondrial function in saponin-permeabilized muscle fibres can be studied by high-resolution respirometry, laser-excited fluorescence spectroscopy and fluorescence microscopy. We applied these techniques to study metabolic effects of changes in the pattern of mitochondrial enzymes in skeletal muscle of patients with chronic progressive external ophthalmoplegia or Kearns-Sayre syndrome harbouring large-scale deletions of mitchondrial DNA (mtDNA). In all patients combined deficiencies of respiratory chain enzymes containing mitochondrially encoded subunits were observed. The citrate synthase-normalized activity ratios of these enzymes decreased linearly with increasing mtDNA heteroplasmy. This indicates the absence of any well-defined mutation thresholds for mitochondrial enzyme activities in the entire skeletal muscle. We applied metabolic control analysis to perform a quantitative estimation of the metabolic influence of the observed enzyme deficiencies. For patients with degrees of mtDNA heteroplasmy below about 60% we observed at almost normal maximal rates of respiration an increase in flux control coefficients of complexes I and IV. Permeabilized skeletal-muscle fibres of patients with higher degrees of mtDNA heteroplasmy and severe enzyme deficiencies exhibited additionally decreased maximal rates of respiration. This finding indicates the presence of a 'metabolic threshold' which can be assessed by functional studies of muscle fibres providing the link to the phenotypic expression of the mtDNA mutation in skeletal muscle.  相似文献   

11.

Objective

To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia.

Methods and Design

Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20–22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion.

Results

Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion.

Conclusions

Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of mitochondrial complexes also in pancreatic islets, highlighting adaptive capacities of possible importance in an islet transplantation setting. Results also indicate idiosyncrasies of β-cells that do not respire in response to a standard inclusion of malate in SUIT protocols.  相似文献   

12.
Nitric oxide (NO) and prostaglandins (PG) together play a role in regulating blood flow during exercise. NO also regulates mitochondrial oxygen consumption through competitive binding to cytochrome-c oxidase. Indomethacin uncouples and inhibits the electron transport chain in a concentration-dependent manner, and thus, inhibition of NO and PG synthesis may regulate both muscle oxygen delivery and utilization. The purpose of this study was to examine the independent and combined effects of NO and PG synthesis blockade (L-NMMA and indomethacin, respectively) on mitochondrial respiration in human muscle following knee extension exercise (KEE). Specifically, this study examined the physiological effect of NO, and the pharmacological effect of indomethacin, on muscle mitochondrial function. Consistent with their mechanism of action, we hypothesized that inhibition of nitric oxide synthase (NOS) and PG synthesis would have opposite effects on muscle mitochondrial respiration. Mitochondrial respiration was measured ex vivo by high-resolution respirometry in saponin-permeabilized fibers following 6 min KEE in control (CON; n = 8), arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA; n = 4) and Indo (n = 4) followed by combined inhibition of NOS and PG synthesis (L-NMMA + Indo, n = 8). ADP-stimulated state 3 respiration (OXPHOS) with substrates for complex I (glutamate, malate) was reduced 50% by Indo. State 3 O(2) flux with complex I and II substrates was reduced less with both Indo (20%) and L-NMMA + Indo (15%) compared with CON. The results indicate that indomethacin reduces state 3 mitochondrial respiration primarily at complex I of the respiratory chain, while blockade of NOS by L-NMMA counteracts the inhibition by Indo. This effect on muscle mitochondria, in concert with a reduction of blood flow accounts for in vivo changes in muscle O(2) consumption during combined blockade of NOS and PG synthesis.  相似文献   

13.
Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K(m)) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle.  相似文献   

14.
The aim was to test the hypothesis that rotenone-insensive electron transport (bypass of complex I) may underlie rapid state 4 (ADP-limited) mitochondrial respiration. A comparison of mitochondria from soybean ( Glycine max L. cv. Bragg) cotyledons and nodules showed that ADP-sufficient (state 3) malate plus pyruvate oxidation by mitochondria from 7-day-old cotyledons was inhibited 50% by rotenone and state 4 rates were rapid, whereas nodule mitochondria were 80% inhibited by rotenone and had slower state 4 rates of malate plus pyruvate oxidation. Respiration of malate alone (pH 7.6) by cotyledon mitochondria was slow, especially in the absence of ADP; subsequent addition of pyruvate dramatically increased state 4 oxygen uptake concomitant with a rapid rise in mitochondrial NADH (determined by fluorimetry). Rotenone had no effect on this increased rate of state 4 respiration. The rate of malate oxidation by nodule mitochondria was relatively rapid compared with cotyledon mitochondria. The addition of pyruvate in state 4 caused a slow increase in matrix NADH and only a slight stimulation of oxygen uptake. Rotenone inhibited state 4 malate plus pyruvate oxidation by 50% in these mitochondria. From a large number of cotyledon and nodule mitochondrial preparations, a close correlation was found between the rate of state 4 oxygen uptake and rotenone-resistance. During cotyledon development increased rotenone-resistance was associated with an increase in the alternative oxidase. Addition of pyruvate to cotyledon mitochondria, during state 4 oxidation of malate in the presence of antimycin A, significantly stimulated O2 uptake and also almost eliminated respiratory control. Such combined operation of the rotenone-insensitive bypass and the alternative oxidase in vivo will significantly affect the extent to which adenylates control the rate of electron transport.  相似文献   

15.
The possible existence of a malonate-sensitive dicarboxylate-mediated electron shuttle between microsomal NAD-linked fatty acid α-oxidation and the mitochondrial electron transport chain in uncoupled fresh potato slices was investigated. Uncoupled slice respiration is inhibited by benzylmalonate and butylmalonate, inhibitors of dicarboxylate transport into mitochondria. Uncoupled slice respiration is also inhibited by rotenone, an indication of intramitochondrial NADH oxidation. Since fatty acid α-oxidation per se is rotenone insensitive, rotenone and benzylmalonate inhibition of the oxidation of carboxyl-labeled myristate in slices points to a dicarboxylic acid shuttle linking microsomal fatty acid a-oxidation with intramitochondrial NADH dehydrogenase.
Malonute inhibits both respiration and 14CO2, release from carboxyl-labeled myristate in fresh uncoupled slices, as do inhibitors of dicarboxylate transport. Mitochondrial studies show that malonate inhibits malate oxidation but not malate dehydrogenase per se. Furthermore, malonate inhibits malate transport more severely than malate oxidation. Accordingly, mulonate inhibition of uncoupled slice respiration in the absence of tricarboxylic acid cycle activity is attributed to its interference with mitochondrial malate transport, and its consequent curtailment of a putative malate-OAA shuttle linked to cytosolic NAD-mediated fatty acid α-oxidation.  相似文献   

16.
The aim of the study was to determinate mitochondrial oxidative phosphorylation (OXPHOS) functions in rat rhabdomyosarcoma R1H (R1H) and rat skeletal muscles. For that purpose skinned fiber technique and multiple substrate inhibitor titration were adapted to tumor samples. In our animal tumor model (R1H) functional abnormalities of OXPHOS were found compared to skeletal muscles. In R1H the state 3 respiration of pyruvate + malate was decreased: 0.56 +/- 0.28 nmol O(2)/mg/min versus 2.32 +/- 1.19 nmol O(2)/mg/min, P < 0.001, whereas the state 3 respiration of succinate + rotenone was increased: 36 +/- 14% versus 19 +/- 11%, P < 0.001. In R1H the rotenone-insensitive respiration reached higher levels than the antimycin A-insensitive respiration, whereas in normal muscles the converse was observed. Additionally, the obvious difference between the CAT- and the antimycin A-independent respiration indicates an increased part of leak respiration in R1H. By now, the high feasibility of these techniques is appreciated for the investigation of muscles and prospectively for tumors, too.  相似文献   

17.
Pham HN  Gregory P 《Plant physiology》1980,65(6):1173-1175
Helminthosporium maydis Race T toxin caused the expected changes in freshly isolated mitochondria from T cytoplasm corn, namely complete uncoupling of oxidative phosphorylation, pronounced stimulation of succinate and NADH respiration, complete inhibition of malate respiration, and increased mitochondrial swelling. In contrast, identical toxin treatments of the mitochondria after 12 hours aging on ice resulted in partial uncoupling, much lower stimulation of succinate and NADH respiration, no inhibition of malate respiration, and no mitochondrial swelling. Almost all of the toxin sensitivity was lost by 6 hours aging. At this stage, the mitochondria were 208× and 66× less sensitive to toxin-induced changes in coupling of malate respiration and state 4 malate respiration rates, respectively. Loss of toxin sensitivity did not occur when the mitochondria were aged under nitrogen or in the presence of 5 millimolar dithiothreitol. This suggested that the aging effect was due to oxidation, possibly of sulfhydryl groups in one or more mitochondrial membrane proteins.  相似文献   

18.
Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1), and spinal muscular atrophy (SMA) are the most prevalent neuromuscular disorders (NMDs) in children and adults. Central to a healthy neuromuscular system are the processes that govern mitochondrial turnover and dynamics, which are regulated by AMP-activated protein kinase (AMPK). Here, we survey mitochondrial stresses that are common between, as well as unique to, DMD, DM1, and SMA, and which may serve as potential therapeutic targets to mitigate neuromuscular disease. We also highlight recent advances that leverage a mutation-agnostic strategy featuring physiological or pharmacological AMPK activation to enhance mitochondrial health in these conditions, as well as identify outstanding questions and opportunities for future pursuit.  相似文献   

19.
Hanning I  Heldt HW 《Plant physiology》1993,103(4):1147-1154
The functioning of isolated spinach (Spinacia oleracea L.) leaf mitochondria has been studied in the presence of metabolite concentrations similar to those that occur in the cytosol in vivo. From measurements of the concentration dependence of the oxidation of the main substrates, glycine and malate, we have concluded that the state 3 oxidation rate of these substrates in vivo is less than half of the maximal rates due to substrate limitation. Analogously, we conclude that under steady-state conditions of photosynthesis, the oxidation of cytosolic NADH by the mitochondria does not contribute to mitochondrial respiration. Measurements of mitochondrial respiration with glycine and malate as substrates and in the presence of a defined malate:oxaloacetate ratio indicated that about 25% of the NADH formed in vivo during the oxidation of these metabolites inside the mitochondria is oxidized by a malate-oxaloacetate shuttle to serve extramitochondrial processes, e.g. reduction of nitrate in the cytosol or of hydroxypyruvate in the peroxisomes. The analysis of the products of the oxidation of malate indicates that in the steady state of photosynthesis the activity of the tricarboxylic acid cycle is very low. Therefore, we have concluded that the mitochondrial oxidation of malate in illuminated leaves produces mainly citrate, which is converted via cytosolic aconitase and NADP-isocitrate dehydrogenase to yield 2-oxoglutarate as the precursor for the formation of glutamate and glutamine, which are the main products of photosynthetic nitrate assimilation.  相似文献   

20.
Sweet potato mitochondria exhibited respiratory control duringthe oxidation of malate and succinate with ADP/O ratios approachingthe theoretical P/O values. Prior to the addition of ADP themitochondria showed a considerable rate of substrate oxidation,defined as the basic respiration, which was of the same magnitudeas state 4 respiration. Electrons from state 4 and the basicrespiration were at least partially mediated by the cytochromechain, as shown by effects of cyanide, azide and amytal, andby spectrophotometric evidence. The nature of ATPase was studied and the influence of inhibitorsof ATPase activity on oxidation helped to establish the relationshipbetween the several states of oxidation and ATPase activity.The ADP/O ratio and ADP-stimulated respiration were slightlydecreased by fluoride, while state 4, the basic respirationand ATPase activity were effectively inhibited. Chlorpromazineinhibited DNP-stimulated ATPase activity, respiration uncoupledby DNP and all the states of malate oxidation. However, state4 and basic respiration were less sensitive than was state 3of malate oxidation to 0.3 mM chlorpromazine. It was concluded that mitochondrial ATPase played a role inthe basic respiration and in state 4 oxidation. 1Present address: Department of Biochemistry Tel-Aviv University,Tel-Aviv, Israel (Received August 1, 1969; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号