首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrauterine overnutrition is associated with development of cardiovascular disease in adulthood although the underlying mechanism has not been precisely elucidated. This study evaluated the effects of maternal overnutrition on fetal cardiac morphometry and hypertrophy-related mRNA/protein expression. Multiparous ewes were fed either 150% of National Research Council (NRC) nutrient requirements (overfed group) or 100% of NRC requirements (control group) from 60 days before mating to Day 75 (D75) of gestation, when ewes were euthanized. Cardiac morphometry, histology and expression of Akt, forkhead-3a (Foxo3a), glycogen synthase kinase-3β (GSK3β), mammalian target of rapamycin (mTOR), NFATc3 and GATA4, atrial natriuretic factor (ANF), calcineurin A and caspase-8 were examined. Crown rump length, left and right ventricular free wall weights and left ventricular wall thickness were increased in D75 overnourished fetuses. Hematoxylin and eosin staining revealed irregular myofiber orientation and increased interstitial space in heart tissues from overfed group. Masson's trichrome staining displayed myofiber hypertrophy and fascicular disarray in heart tissues from overfed group. Overfeeding significantly enhanced Foxo3a phosphorylation in both ventricles, while protein expression of Akt, Foxo3a, GSK3β and caspase-8 as well as phosphorylated Akt and GSK3β in either ventricle was unaffected. Overfeeding increased left ventricular mTOR, NFATc3 (both total and phosphorylated) and calcineurin A. GATA4, pGATA4 and ANF expression were unchanged in both ventricles. Collectively, our data suggested that overfeeding during early to mid gestation (D75) leads to morphometric changes without overt pathology which may be related to elevated expression of mTOR, NFATc3, calcineurin A and phosphorylation of Foxo3a, mTOR and NFATc3.  相似文献   

2.
3.
Epidemiological studies have shown that infants exposed to an increased supply of nutrients before birth are at increased risk of type 2 diabetes in later life. We have investigated the hypothesis that fetal overnutrition results in reduced expression and phosphorylation of the cellular fuel sensor, AMP-activated kinase (AMPK) in liver and skeletal muscle before and after birth. From 115 days gestation, ewes were fed either at or approximately 55% above maintenance energy requirements. Postmortem was performed on lamb fetuses at 139-141 days gestation (n = 14) and lambs at 30 days of postnatal age (n = 21), and liver and quadriceps muscle were collected at each time point. The expression of AMPKalpha1 and AMPKalpha2 mRNA was determined by quantitative RT-PCR (qRT-PCR). The abundance of AMPKalpha and phospho-AMPKalpha (P-AMPKalpha) was determined by Western blot analysis, and the proportion of the total AMPKalpha pool that was phosphorylated in each sample (%P-AMPKalpha) was determined. The ratio of AMPKalpha2 to AMPKalpha1 mRNA expression was lower in fetuses compared with lambs in both liver and muscle, independent of maternal nutrition. Hepatic %P-AMPKalpha was lower in both fetuses and lambs in the Overfed group and %P-AMPKalpha in the lamb liver was inversely related to plasma glucose concentrations in the first 24 h after birth (r = 0.73, P < 0.025). There was no effect of maternal overnutrition on total AMPKalpha or P-AMPKalpha abundance in liver or skeletal muscle. We have, therefore, demonstrated that AMPKalpha responds to signals of increased nutrient availability in the fetal liver. Suppression of hepatic AMPK phosphorylation may contribute to increased glucose production, and basal hyperglycemia, present in lambs of overfed ewes in early postnatal life.  相似文献   

4.
5.
Amino acids and polyamines are essential for placental and fetal growth, but little is known about their availability in the conceptus in response to maternal undernutrition. We hypothesized that maternal nutrient restriction reduces concentrations of amino acids and polyamines in the ovine conceptus. This hypothesis was tested in nutrient-restricted ewes between Days 28 and 78 (experiment 1) and between Days 28 and 135 (experiment 2) of gestation. In both experiments, ewes were assigned randomly on Day 28 of gestation to a control group fed 100% of National Research Council (NRC) nutrient requirements and to an nutrient-restricted group fed 50% of NRC requirements. Every 7 days beginning on Day 28 of gestation, ewes were weighed and rations adjusted for changes in body weight. On Day 78 of gestation, blood samples were obtained from the uterine artery and umbilical vein for analysis. In experiment 2, nutrient-restricted ewes on Day 78 of gestation either continued to be fed 50% of NRC requirements or were realimented to 100% of NRC requirements until Day 135. Fetal weight was reduced in nutrient-restricted ewes at both Day 78 (32%) and Day 135 (15%) compared with controls. Nutritional restriction markedly reduced (P < 0.05) concentrations of total alpha-amino acids (particularly serine, arginine-family amino acids, and branched-chain amino acids) and polyamines in maternal and fetal plasma and in fetal allantoic and amniotic fluids at both mid and late gestation. Realimentation of nutrient-restricted ewes increased (P < 0.05) concentrations of total alpha-amino acids and polyamines in all the measured compartments and prevented intrauterine growth retardation. These novel findings demonstrate that 50% global nutrient restriction decreases concentrations of amino acids and polyamines in the ovine conceptus that could adversely impact key fetal functions. The results have important implications for understanding the mechanisms responsible for both intrauterine growth retardation and developmental origins of adult disease.  相似文献   

6.
Insulin resistance and obesity are components of the metabolic syndrome that includes development of cardiovascular disease and diabetes with advancing age. The thrifty phenotype hypothesis suggests that offspring of poorly nourished mothers are predisposed to the various components of the metabolic syndrome due to adaptations made during fetal development. We assessed the effects of maternal nutrient restriction in early gestation on feeding behavior, insulin and glucose dynamics, body composition, and liver function in aged female offspring of ewes fed either a nutrient-restricted [NR 50% National Research Council (NRC) recommendations] or control (C: 100% NRC) diet from 28 to 78 days of gestation, after which both groups were fed at 100% of NRC from day 79 to lambing and through lactation. Female lambs born to NR and C dams were reared as a single group from weaning, and thereafter, they were fed 100% NRC recommendations until assigned to this study at 6 yr of age. These female offspring were evaluated by a frequently sampled intravenous glucose tolerance test, followed by dual-energy X-ray absorptiometry for body composition analysis prior to and after ad libitum feeding of a highly palatable pelleted diet for 11 wk with automated monitoring of feed intake (GrowSafe Systems). Aged female offspring born to NR ewes demonstrated greater and more rapid feed intake, greater body weight gain, and efficiency of gain, lower insulin sensitivity, higher insulin secretion, and greater hepatic lipid and glycogen content than offspring from C ewes. These data confirm an increased metabolic "thriftiness" of offspring born to NR mothers, which continues into advanced age, possibly predisposing these offspring to metabolic disease.  相似文献   

7.
T lymphocytes of fetal origin found in maternal circulation after gestation have been reported as a possible cause for autoimmune diseases. During gestation, mothers acquire CD34+CD38+ cells of fetal origin that persist decades. In this study, we asked whether fetal T and B cells could develop from these progenitors in the maternal thymus and bone marrow during and after gestation. RAG-/--deficient female mice (Ly5.2) were mated to congenic wild-type Ly5.1 mice (RAG+/+). Fetal double-positive T cells (CD4+CD8+) with characteristic TCR and IL-7R expression patterns could be recovered in maternal thymus during the resulting pregnancies. We made similar observations in the thymus of immunocompetent mothers. Such phenomenon was observed overall in 12 of 68 tested mice compared with 0 of 51 controls (p=0.001). T cells could also be found in maternal spleen and produced IFN-gamma in the presence of an allogenic or an Ag-specific stimulus. Similarly, CD19+IgM+ fetal B cells as well as plasma Igs could be found in maternal RAG-/- bone marrow and spleen after similar matings. Our results suggest that during gestation mothers acquire fetal lymphoid progenitors that develop into functional T cells. This fetal cell microchimerism may have a direct impact on maternal health.  相似文献   

8.
Previous work from this laboratory demonstrated that the elevation of maternal plasma corticosteroid concentrations during pregnancy is important for the support of fetal development. Reducing ovine maternal plasma cortisol concentrations to nonpregnant levels stimulates homeostatic responses that defend fetal blood volume. The present study was designed to test the hypothesis that chronic decreases or increases in maternal plasma cortisol concentration alter uterine and placental blood flow and morphology. Three groups of pregnant ewes and their fetuses were chronically catheterized and studied: ewes infused with cortisol (1 mg.kg(-1).day(-1); high cortisol), ewes adrenalectomized and underreplaced with cortisol (0.5 mg.kg(-1).day(-1); low cortisol), and control ewes. The normal increment in uterine blood flow between 120 and 130 days was eliminated in the low-cortisol ewes; conversely, uterine blood flow was increased in the high-cortisol group compared with the control group. Fetal arterial blood pressure was increased in the high-cortisol group compared with controls, but there was no increase in fetal arterial pressure from 120 to 130 days of gestation in the low-cortisol group. The fetuses of both low-cortisol and high-cortisol groups had altered placental morphology, with increased proportions of type B placentomes, and overall reduced fetal placental blood flow. The rate of fetal somatic growth was impaired in both low-cortisol and high-cortisol groups compared with the fetuses in the intact group. The results of this study demonstrate that maternal plasma cortisol during pregnancy is an important contributor to the maternal environment supporting optimal conditions for fetal homeostasis and somatic growth.  相似文献   

9.
10.
The bioactive peptide salusin-β is highly expressed in human atheromas; additionally, infusion of antiserum against salusin-β suppresses the development of atherosclerosis in atherogenic mice. This study examined the roles of salusin-β in vascular inflammation during atherogenesis. Infusion of antiserum against salusin-β attenuated the induction of VCAM-1, monocyte chemoattractant protein (MCP)-1, and IL-1β and as well as nuclear translocation of NF-κB in aortic endothelial cells (ECs) of LDL receptor-deficient mice, which led to the prevention of monocyte adhesion to aortic ECs. In vitro experiments indicated that salusin-β directly enhances the expression levels of proinflammatory molecules, including VCAM-1, MCP-1, IL-1β, and NADPH oxidase 2, as well as THP-1 monocyte adhesion to cultured human umbilical vein ECs (HUVECs). Both salusin-β-induced VCAM-1 induction and monocyte/HUVEC adhesion were suppressed by pharmacological inhibitors of NF-κB, e.g., Bay 11-7682 and curcumin. Furthermore, the VCAM-1 induction was significantly prevented by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002, whereas it was accelerated by the ERK inhibitor, U-0126. Treatment of HUVECs with salusin-β, but not with salusin-α, accelerated oxidative stress and nuclear translocation of NF-κB as well as phosphorylation and degradation of IκB-α, an endogenous inhibitor of NF-κB. Thus, salusin-β enhanced monocyte adhesion to vascular ECs through NF-κB-mediated inflammatory responses in ECs, which can be modified by PI3K or ERK signals. These findings are suggestive of a novel role of salusin-β in atherogenesis.  相似文献   

11.
12.
Our goal was to develop a model for the study of maternal adrenal gland regulation and the effects of maternal cortisol secretion on fetal homeostasis. At about 108 days of gestation, before the time of rapid fetal growth or fetal adrenocortical maturation, ewes, under halothane anesthesia with controlled ventilation and positioned in sternal recumbency, were adrenalectomized. Ewes were treated with aldosterone by intravenous infusion (3 micrograms/kg of body weight per day) to induce normal late-gestation aldosterone concentration. Ewes were also treated with cortisol; for 2 postoperative days, this infusion (1 to 2 micrograms/kg per min) induced plasma concentration similar to that associated with stress. Thereafter, the dosage of cortisol was reduced to induce plasma values similar to normal late-gestation cortisol concentration in ewes (1 mg/kg per day), or to values in nonpregnant ewes (0.6 mg/kg per day). Administration of cortisol and aldosterone was required to prevent electrolyte imbalance and signs of hypoadrenocorticism. With steroid replacement, plasma protein, electrolyte, and glucose concentrations in adrenalectomized ewes were not different from those in sham-operated pregnant ewes. Of 11 adrenalectomized ewes, one died as a result of failure of the infusion pump, and one died as a result of inappropriate treatment for hypoglycemia. Of the remaining ewes, two aborted fetuses, three ewes each delivered one live and one dead fetus, two delivered live singleton fetuses, and two delivered twins. Therefore, this model of relative hypoadrenocorticism in pregnancy is feasible and practical for studying the influence of maternal cortisol concentration on maternal and fetal homeostasis.  相似文献   

13.
We hypothesized that acute fetal metabolic acidosis decreases fetal myocardial motion in a chronic sheep model of increased placental vascular resistance (R(ua)). Eleven ewes and fetuses were instrumented at 118-122 days of gestation. After 5 days of recovery and 24 h of placental embolization to increase R(ua), longitudinal myocardial velocities of the right and left ventricles and interventricular septum (IVS) were assessed at the level of the atrioventricular valve annuli via tissue Doppler imaging (TDI). Ventricular inflow (E and A waves) and outflow velocities were obtained, and cardiac outputs were calculated. All measurements were performed at baseline and during fetal acidosis caused by epidural anesthesia-induced maternal hypotension, which decreased uterine artery volume blood flow, fetal oxygenation, arterial pH, and base excess and increased lactate. Compared with baseline, the peak isovolumic myocardial contraction and relaxation velocities of the ventricles and IVS, early relaxation velocity (E') of the ventricles, and systolic velocity of the IVS decreased during metabolic acidosis. The proportion of isovolumic contraction time of the cardiac cycle increased but the isovolumic relaxation and ejection time proportions and the TDI Tei index did not change. The E-to-E' ratio for both ventricles was higher during metabolic acidosis than at baseline. During metabolic acidosis, right and left ventricular cardiac outputs remained unchanged compared with baseline. In sheep fetuses with increased R(ua) and acute metabolic acidosis, global cardiac function was preserved. However, acute metabolic acidosis impaired myocardial contractility during the isovolumic phase and relaxation during the isovolumic and early filling phases of the cardiac cycle.  相似文献   

14.
15.
The effect of maternal nutrition level during the periconception period on the muscle development of fetus and maternal–fetal plasma hormone concentrations in sheep were examined. Estrus was synchronized in 55 Karayaka ewes and were either fed ad libitum (well-fed, WF, n=23) or 0.5×maintenance (under-fed, UF, n=32) 6 days before and 7 days after mating. Non-pregnant ewes (WF, n=13; UF, n=24) and ewes carrying twins (WF, n=1) and female (WF, n=1; UF, n=3) fetuses were removed from the experiment. The singleton male fetuses from well-fed (n=8) and under-fed (n=5) ewes were collected on day 90 of gestation and placental characteristics, fetal BWs and dimensions, fetal organs and muscles weights were recorded. Maternal (on day 7 after mating) and fetal (on day 90 of pregnancy) blood samples were collected to analyze plasma hormone concentrations. Placental characteristics, BW and dimensions, organs and muscles weights of fetuses were not affected by maternal feed intake during the periconception period. Maternal nutrition level did not affect fiber numbers and the muscle cross-sectional area of the fetal longissimus dorsi (LD), semitendinosus (ST) muscles, but the cross-sectional area of the secondary fibers in the fetal LD and ST muscles from the UF ewes were higher than those from the WF ewes (P<0.05). Also, the ratio of secondary to primary fibers in the ST muscle were tended to be lower in the fetuses from the UF ewes (P=0.07). Maternal nutrition level during the periconception period did not cause any significant changes in fetal plasma insulin and maternal and fetal plasma IGF-I, cortisol, progesterone, free T3 and T4 concentrations. However, maternal cortisol concentrations were lower while insulin concentrations were higher in the WF ewes than those in the UF ewes (P<0.05). These results indicate that the reduced maternal feed intake during the periconception period may alter muscle fiber diameter without affecting fiber types, fetal weights and organ developments and plasma hormone concentrations in the fetus.  相似文献   

16.
The influence of streptozotocin-induced maternal diabetes on choline phosphate cytidylyltransferase activity (EC.2.7.7.15) glycogen content and disaturated phosphatidyl choline in fetal lung was studied between 19 and 21 days of gestation. In this experimental model, induction of maternal diabetes two days after mating, resulted in fetal hyperglycemia and hyperinsulinemia; the fetuses were neither macrosomic nor showed any evidence of fetal growth retardation. The glycogen content of lungs on days 19 and 20, but not on day 21 of gestation was significantly higher in fetuses of diabetic rats than in controls. The pulmonary cytosol cytidylyltransferase activity was similar in the two groups of fetuses on days 19 and 20. On day 21 of gestation the enzyme activity was significantly lower in fetuses of diabetic rats than in those of controls. On day 21 of gestation and in newborns of diabetic mothers, although there was no difference in the total pulmonary phospholipids, the levels of disaturated phosphatidyl cholines were significantly lower than in controls.  相似文献   

17.
To determine the effects of chronic maternal renal insufficiency on fetal renal function, we studied nine fetuses whose mothers underwent subtotal nephrectomy at least 2 mo before mating (STNxF) and seven fetuses from intact ewes (IntF) (126-128 days of gestation, term 150 days). STNxF had lower hematocrit (P < 0.05), plasma chloride (P < 0.01), and creatinine levels (P < 0.01), and the length-to-width ratio of their kidneys was reduced (P < 0.05). They excreted twice as much urine (P < 0.05) and sodium (P < 0.01). Total (P = 0.01) and proximal fractional sodium reabsorptions (P < 0.05) were lower in STNxF; distal delivery of sodium (P < 0.05) and distal fractional sodium reabsorption (P < 0.05) were higher. They tended to have suppressed renin levels (P = 0.06). Infusions of amino acids (alanine, glycine, proline, and serine at 0.32 mmol/min for 1 h and 0.64 mmol/min for 2 h intravenously), known to stimulate renal blood flow and glomerular filtration rate in fetal sheep, did so in IntF (P < 0.01). Arterial pressure also increased (P < 0.01). These effects were not observed in STNxF. In summary, chronic maternal renal insufficiency was associated with profound alterations in fetal renal excretion of fluid and electrolytes and impaired renal hemodynamic and glomerular responses to amino acid infusion. Whether these marked changes in the renal function of fetuses carried by STNx ewes are associated with alterations in renal function in postnatal or adult life remains to be determined.  相似文献   

18.
Fetal cardiac ultrasonography has become an important tool in the evaluation of fetuses at risk for cardiac anomalies. It can both guide prenatal treatment and assist the management and timing of delivery. We recommend that a fetal echocardiogram be done when there is a family history of congenital heart disease; maternal disease that may affect the fetus; a history of maternal drug use, either therapeutic or illegal; evidence of other fetal abnormalities; or evidence of fetal hydrops. The optimal timing of evaluation is 18 to 22 weeks'' gestation. An entire range of structural cardiac defects can be visualized prenatally, including atrioventricular septal defect, ventricular septal defect, cardiomyopathy, ventricular outlet obstruction, and complex cardiac defects. The outcome for a fetus with a recognized abnormality is unfavourable, with less than 50% surviving the neonatal period. Fetal cardiac arrhythmias are also a common occurrence, 15% in the series described here. Premature atrial or ventricular contractions are most commonly seen and usually require no treatment. Supraventricular tachycardia can result in hydrops and require in utero treatment to prevent fetal demise. Complete heart block, particularly in association with structural heart disease, has a poor prognosis for fetal survival.  相似文献   

19.
Fetal and placental growth, and fetal and maternal urea synthesis in late gestation, were studied in 2-year-old Corriedale ewes on a maintenance ration (M) except when subjected to moderate dietary restriction from day 50 to day 100 (RM), day 100 to day 135 (MR) or day 50 to day 135 (RR). In comparison with fetuses of ewes maintained throughout the experiment (MM), RR fetuses were smaller and RM fetuses were larger whereas MR fetuses were unaffected; all restrictions were associated with increased placental size. Fetal urea synthesis at day 133 in the well-nourished ewes (MM) was 21.5 mg N h-1 kg-1 increasing to, respectively, 25.7, 27.3 and 38.8 mg N h-1 kg-1 in groups MR, RM and RR; these values were 1.6, 3.9, 2.2 and 3.8 times the maternal rates of synthesis. On the basis of the observed urea synthesis rates, amino acid oxidation could have accounted for up to, respectively, 32, 38, 40 and 57% of fetal oxygen consumption in groups MM, MR, RM and RR. Amino acids, in addition to their role in tissue accretion, may be key energy substrates for the fetus.  相似文献   

20.
The possible r?le of the fetal hypothalamic-pituitary axis in regulating the secretion of ovine placental lactogen (oPL) was investigated in chronically-catheterised ewes and fetuses in late pregnancy. Intravascular administration of agents to fetuses that significantly increased fetal prolactin concentrations (chlorpromazine 6.25 mg;thyrotrophin releasing hormone, 10 micrograms), significantly reduced fetal prolactin concentrations (bromocriptine, 0.033 mg/h), or significantly reduced fetal growth hormone (GH) concentrations (somatostatin, 2.5 micrograms/min), had no effect on maternal or fetal oPL concentrations. Mean fetal levels of prolactin or GH in late gestation could not be correlated with oPL concentrations, although fetal hypophysectomy prevented the normal prepartum fall in oPL concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号