首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Pyruvate dehydrogenase complex (PDHC) was purified from bovine kidney with a specific activity of 12-16 mumol of NADH or acetyl-CoA formed/min/mg protein. The four peptides comprising its three catalytic components were separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Rabbit antibodies against this highly purified PDHC (anti-PDHC) exhibited similar binding affinity to the phospho-PDHC as it did to the PDHC antigen. To test whether there exist brain isozymes of PDHC differing from kidney enzyme, which has been extensively characterized, the PDHCs in bovine brain and kidney were compared using this anti-PDHC. The PDHC activities in the brain and kidney mitochondrial extracts were inhibited to the same degree by varying amounts of anti-PDHC. Brain PDHC was precipitated with the anti-PDHC and resolved by SDS-PAGE. The four brain PDHC peptides isolated immunochemically with anti-PDHC had the same sizes as the kidney PDHC peptides. These PDHC peptides from kidney and brain were further compared by their peptide fragment patterns, which were generated by partial proteolysis with Staphylococcus aureus V8 protease or by CNBr and resolved by SDS-PAGE. The peptide patterns generated with the former method indicated that the alpha and beta peptides of the pyruvate dehydrogenase (E1) component and the peptide of dihydrolipoyl transacetylase (E2) component of kidney PDHC were very similar to the corresponding peptides immunologically isolated from brain. The peptide patterns generated with CNBr further confirmed that the beta E1 and E2 peptides of kidney PDHC were similar to the corresponding peptides from brain.  相似文献   

2.
The activity of pyruvate dehydrogenase phosphate (PDHb) phosphatase in rat brain mitochondria and homogenate was determined by measuring the rate of activation of purified, phosphorylated (i.e., inactive) pyruvate dehydrogenase complex (PDHC), which had been purified from bovine kidney and inactivated by phosphorylation with Mg . ATP. The PDHb phosphatase activity in purified mitochondria showed saturable kinetics with respect to its substrate, the phospho-PDHC. It had a pH optimum between 7.0 and 7.4, depended on Mg and Ca, and was inhibited by NaF and K-phosphate. These properties are consistent with those of the highly purified enzyme from beef heart. On subcellular fractionation, PDHb phosphatase copurified with mitochondrial marker enzymes (fumarase and PDHC) and separated from a cytosolic marker enzyme (lactate dehydrogenase) and a membrane marker enzyme (acetylcholinesterase), suggesting that it, like its substrate, is located in mitochondria. PDHb phosphatase had similar kinetic properties in purified mitochondria and in homogenate: dependence on Mg and Ca, independence of dichloroacetate, and inhibition by NaF and K-phosphate. These results are consistent with there being only one type of PDHb phosphatase in rat brain preparations. They support the validity of the measurements of the activity of this enzyme in brain homogenates.  相似文献   

3.
The α-ketoglutarate dehydrogenase complex in extracts of bovine kidney and liver mitochondria is inactivated rapidly at 25 °C. This inactivation is not accompanied by loss of activity of the three component enzymes of the complex. This inactivation can be prevented by extensive washing of the mitochondria with dilute phosphate buffer prior to rupturing the mitochondria by freezing and thawing. Evidence is presented that the washings contain a protease which cleaves a peptide bond or bonds in the dihydrolipoyl transsuccinylase component of the α-ketoglutarate dehydrogenase complex, and this limited proteolysis results in dissociation of α-ketoglutarate dehydrogenase and dihydrolipoyl dehydrogenase from the transsuccinylase.The protease appears to be specific for the transsuccinylase component of the mammalian α-ketoglutarate dehydrogenase complex. It does not affect the activity of the mammalian pyruvate dehydrogenase complex or the Escherichia coli α-ketoglutarate dehydrogenase complex. The protease has been purified about 100-fold from extracts of unwashed mitochondria from bovine kidney. It requires a thiol for activity and it is not affected by treatment with diisopropyl phosphorofluoridate or phenylmethyl sulfonylfluoride.A component has been detected in highly purified preparations of the bovine kidney α-ketoglutarate dehydrogenase complex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which is present in trace amounts, if at all, in purified preparations of the bovine heart α-ketoglutarate dehydrogenase complex. This component is tightly bound to the transsuccinylase.  相似文献   

4.
The enzyme activity of the pyruvate dehydrogenase complex (PDHC) was measured in mitochondria prepared from developing rat brain, before and after steady-state dephosphorylation of the E1 alpha subunit. A marked increase in dephosphorylated (fully activated) PDHC activity occurred between days 10 and 15 post partum, which represented approx. 60% of the difference in fully activated PDHC activity measured in foetal and adult rat brain mitochondria. There was no detectable change in the active proportion of the enzyme during mitochondrial preparation nor any qualitative alteration in the detectable catalytic and regulatory components of the complex, which might account for developmental changes in PDHC activity. The PDHC protein content of developing rat brain mitochondria and homogenates was measured by an enzyme-linked immunoadsorbent assay. The development of PDHC protein in both fractions agreed closely with the development of the PDHC activity. The results suggest that the developmental increase in PDHC activity is due to increased synthesis of PDHC protein, which is partly a consequence of an increase in mitochondrial numbers. However, the marked increase in PDHC activity measured between days 10 and 15 post partum is mainly due to an increase in the amount of PDHC per mitochondrion. The development of citrate synthase enzyme activity and protein was measured in rat brain homogenates and mitochondria. As only a small increase in citrate synthase activity and protein was detected in mitochondria between days 10 and 15 post partum, the marked increase in PDHC protein and enzyme activity may represent specific PDHC synthesis. As several indicators of acquired neurological competence become apparent during this period, it is proposed that preferential synthesis of PDHC may be crucial to this process. The results are discussed with respect to the possible roles played by PDHC in changes of respiratory-substrate utilization and the acquisition of neurological competence occurring during the development of the brain of a non-precocial species such as the rat.  相似文献   

5.
An impairment of mitochondrial functions as a result of Ca-loading may be one of the significant events that lead to neuronal death after an ischemic insult. To assess the metabolic consequences of excess Ca on brain mitochondria, pyruvate oxidation was studied in isolated cerebrocortical mitochondria loaded with Ca in vitro. The flux of pyruvate dehydrogenase complex (PDHC) ([1-14C]pyruvate decarboxylation) was inhibited as the mitochondria accumulated excess Ca under the conditions tested: the inhibition in state 3 (i.e., in the presence of added ADP) was greater than in state 4 (i.e., in the absence of added adenine nucleotides). In state 4, the inhibition of the PDHC flux was accompanied by a similar reduction of the in situ activity of PDHC, indicating a change in PDHC phosphorylation. In state 3, the inhibition of the PDHC flux was greater than the corresponding decrease of the in situ PDHC activity. Thus, mechanisms other than the phosphorylation of PDHC might also contribute to the inhibition of pyruvate oxidation. Measurement of PDHC enzymatic activity in vitro indicated that PDHC, similar to -ketoglutarate dehydrogenase complex, was inhibited by millimolar levels of Ca. This observation suggests that PDHC may also be inhibited non-covalently in Ca-loaded mitochondria in a manner similar to that of -ketoglutarate dehydrogenase complex.  相似文献   

6.
K S Lau  T A Griffin  C W Hu  D T Chuang 《Biochemistry》1988,27(6):1972-1981
The subunit structures and conservation of the dihydrolipoyl transacylase (E2) components of bovine and human branched-chain alpha-keto acid dehydrogenase complexes were investigated by Western blotting, peptide sequencing, and cDNA cloning methods. Rabbit antiserum prepared against the sodium dodecyl sulfate (SDS) denaturated bovine E2 subunit recognized the inner E2 core, and the first hinge region of the E2 chain, but failed to react with the lipoyl-bearing domain as determined by Western blot analysis. The lack of antigenicity in the lipoyl-bearing domain was confirmed with antibodies directed against the native E2 component. A human E2 cDNA (1.6 kb) was isolated from a human liver cDNA library in lambda gt11 with a combination of the above anti-native and anti-SDS-denatured E2 immunoglobulin G's as a probe. The fidelity of the human E2 cDNA was established by nucleotide sequencing which showed the determined peptide sequences of the amino terminus and tryptic fragments of bovine E2. A bovine E2 cDNA (0.7 kb) was also isolated from a bovine liver cDNA library in lambda ZAP with the human E2 cDNA as a probe. Northern blot analysis using the human E2 cDNA probe showed that E2 mRNAs in bovine liver and human kidney mesangial cells are 3.3 and 4.6 kb in size, respectively. Primary structures derived from human and bovine E2 cDNAs show leader sequences including the initiator methionine and the homologous mature peptides consisting of complete lipoyl-bearing and dihydrolipoyl dehydrogenase (E3) binding domains and two hinge regions. In addition, the human E2 cDNA contains a portion of the inner E2 core sequence, a 3'-untranslated region, and a poly(A+) tail. Deduced amino acid sequences of the mammalian E2's were compared with those of Escherichia coli transacetylase and transsuccinylase and bovine kidney transacetylase. The results indicate a high degree of conservation in the sequence flanking the lipoyl-attachment site and in the E3-binding domain. Models are presented to discuss implications for the conserved structure-function relationship in the lipoyl-bearing and E3-binding domains of alpha-keto acid dehydrogenase complexes.  相似文献   

7.
The calcium channel alpha1E subunit was originally cloned from mammalian brain. A new splice variant was recently identified in rat islets of Langerhans and in human kidney by the polymerase chain reaction. The same isoform of alpha1E was detected in rat and guinea pig heart by amplifying indicative cDNA fragments and by immunostaining using peptide-specific antibodies. The apparent molecular size of cardiac alpha1E was determined by SDS-PAGE and immunoblotting (218 +/- 6 kD; n = 3). Compared to alpha1E from stably transfected HEK-293 cells, this is smaller by 28 kD. The distribution of alpha1E in cardiac muscle cells of the conducting system and in the cardiomyoblast cell line H9c2 was compared to the distribution of chromogranin, a marker of neuroendocrine cells, and to the distribution of atrial natriuretic peptide (ANP). In serial sections from atrial and ventricular regions of rat heart, co-localization of alpha1E with ANP was detected in atrium and with chromogranin A/B in Purkinje fibers of the conducting system in both rat atrium and ventricle. The kidney is another organ in which natriuretic peptide hormones are secreted. The detection of alpha1E in the distal tubules of human kidney, where urodilatin is stored and secreted, led to the conclusion that the expression of alpha1E in rat heart and human kidney is linked to regions with endocrine functions and therefore is involved in the Ca(2+)-dependent secretion of peptide hormones such as ANP and urodilatin.  相似文献   

8.
Polyclonal antibodies directed against the dihydrolipoyl transacylase (E2) and alpha subunit of branched-chain alpha-keto acid decarboxylase (E1 alpha) components of the bovine branched-chain keto acid dehydrogenase complex were shown to cross-react with the E2 and E1 alpha polypeptides of the enzyme complex of different rat tissues. Phosphorylation of the branched-chain keto acid dehydrogenase complex resulted in inhibition of enzyme activity concomitant with phosphate incorporation into the E1 alpha polypeptide. Phosphorylation of E1 alpha slowed its rate of migration through sodium dodecyl sulfate-polyacrylamide gels. This permitted resolution of the phosphorylated and unphosphorylated forms of E1 alpha on immunoblots. Liver and skeletal muscle mitochondria were prepared from rats consuming 6, 20, or 50% casein diets. The enzyme complex in mitochondria was measured by radioisotopic enzyme assay and immunoassay. Liver branched-chain keto acid dehydrogenase was 25% active in rats consuming 6% casein diets; whereas in rats consuming 20 or 50% casein diets, the liver enzyme was 82 or 100% active, respectively. Branched-chain keto acid dehydrogenase of muscle was 10, 13, and 22% active, respectively, in rats consuming 6, 20, and 50% casein diets. The amount of protein consumed by rats did not affect the total amount of the enzyme complex per unit of mitochondrial protein as measured by either the radioisotopic assay (enzyme activity) or the immunoassay. However, the protein intake of rats did affect activity of the enzyme kinase in liver. Liver branched-chain keto acid dehydrogenase kinase was more active in rats consuming 6% casein than in those fed chow or 50% casein diets. The amount of protein consumed by rats thus influences the enzyme activity in liver and muscle by affecting the reversible phosphorylation mechanism and not by induction of branched-chain keto acid dehydrogenase.  相似文献   

9.
The activity of brain pyruvate dehydrogenase complex (PDHC), is regulated by reversible phosphorylation of the alpha subunit of the E1 component (pyruvate dehydrogenase, EC 1.2.4.1) of PDHC. Using an in vitro back-titration assay, we have evaluated the postnatal development of E1 phosphorylation, as well as the effects of acute pentobarbital administration and food-deprivation on cerebral cortical E1 phosphorylation in synaptosomal and free mitochondrial compartments of the albino rat. Between birth and postnatal day 25, the back-titration phosphorylation increased ca 4-fold, with the largest increase occurring between days 15 and 20. The phosphorylation of E1 in the synaptosomal, but not free mitochondrial fraction, was decreased during pentobarbital anesthesia. Following 72 h of food-deprivation, E1 phosphorylation was decreased in both subcellular fractions.

The postnatal increase in E1 back-titration phosphorylation is consistent with and similar in magnitude to previously reported increases in the specific enzymatic activity of PDHC. These results also highlight the potential importance of localized subcellular alterations in mitochondrial metabolism and further validate the back-titration phosphorylation of E1 as a valuable tool for the study of central nervous system PDHC metabolism.  相似文献   


10.
We studied the subcellular localization of the mitochondrial type of NADP-dependent isocitrate dehydrogenase (ICD1) in rat was immunofluorescence and immunoelectron microscopy and by biochemical methods, including immunoblotting and Nycodenz gradient centrifugation. Antibodies against a 14-amino-acid peptide at the C-terminus of mouse ICD1 was prepared. Immunoblotting analysis of the Triton X-100 extract of heart and kidney showed that the antibodies developed a single band with molecular mass of 45 kD. ICD1 was highly expressed in heart, kidney, and brown fat but only a low level of ICD1 was expressed in other tissues, including liver. Immunofluorescence staining showed that ICD1 was present mainly in mitochondria and, to a much lesser extent, in nuclei. Low but significant levels of activity and antigen of ICD1 were found in nuclei isolated by equilibrium sedimentation. Immunoblotting analysis of subcellular fractions isolated by Nycodenz gradient centrifugation from rat liver revealed that ICD1 signals were exclusively distributed in mitochondrial fractions in which acyl-CoA dehydrogenase was present. Immunofluorescence staining and postembedding electron microscopy demonstrated that ICD1 was confined almost exclusively to mitochondria and nuclei of rat kidney and heart muscle. The results show that ICD1 is expressed in the nuclei in addition to the mitochondria of rat heart and kidney. In the nuclei, the enzyme is associated with heterochromatin. In kidney, ICD1 distributes differentially in the tubule segments.  相似文献   

11.
The human pyruvate dehydrogenase complex (PDHC) catalyzes the thiamine-dependent decarboxylation of pyruvate. Thiamine treatment is very effective for some patients with PDHC deficiency. Among these patients, five mutations of the pyruvate dehydrogenase (E1)alpha subunit have been reported previously: H44R, R88S, G89S, R263G, and V389fs. All five mutations are in a region outside the thiamine pyrophosphate (TPP)-binding region of the E1alpha subunit.We report the biochemical and molecular analysis of two patients with clinically thiamine-responsive lactic acidemia. The PDHC activity was assayed using two different concentrations of TPP. These two patients displayed very low PDHC activity in the presence of a low (1 x 10(-4) mM) TPP concentration, but their PDHC activity significantly increased at a high (0.4 mM) TPP concentration. Therefore, the PDHC deficiency in these two patients was due to a decreased affinity of PDHC for TPP. Treatment of both patients with thiamine resulted in a reduction in the serum lactate concentration and clinical improvement, suggesting that these two patients have a thiamine-responsive PDHC deficiency. The DNA sequence of these two male patients' X-linked E1alpha subunit revealed a point mutation (F205L and L216F) within the TPP-binding region in exon 7.  相似文献   

12.
The pyruvate dehydrogenase complex (PDC) from muscle of the adult parasitic nematode Ascaris suum plays a unique role in its anaerobic mitochondrial metabolism. Resolution of the intact complex in high salt dissociates the pyruvate dehydrogenase subunit but leaves the dihydrolipoyl dehydrogenase subunit (E3) and two other proteins with apparent M(r)s of 45 and 43 kDa bound to the dihydrolipoyl transacetylase (E2) core. These proteins are not observable on Coomassie brilliant blue-stained gels of other eukaryotic PDCs, but the 45-kDa protein is similar in apparent M(r), pI, and sensitivity to trypsin to the Kb subunit of the bovine kidney PDH alpha kinase. Acetylation of the ascarid PDC with [2-14C]pyruvate under conditions designed to maximize the incorporation of label into protein yielded only a single radiolabeled subunit, E2. These results confirm earlier reports that the ascarid PDC lacks protein X, an integral component recently identified in other eukaryotic PDCs. About 1.6 to 1.8 mol of 14C was incorporated/mole of E2, suggesting that the ascarid E2 contained two lipoly-bearing domains. Domain mapping of the 14C-acetylated ascarid E2 by limited tryptic digestion identified two lipoyl-bearing fragments with apparent M(r)s of 50 and 34 kDa and two core fragments with apparent M(r)s of 46 and 30 kDa. The ascarid E2 domain structure appears to be similar to that of other E2s. However, it appears that the subunit-binding domain (E2B) of the ascarid E2 may be significantly larger or be flanked by larger than normal interdomain regions. An enlarged E2B domain may be necessary to accommodate the additional binding of E3 to the E2 subunit in the ascarid complex, in the absence of protein X.  相似文献   

13.
Branched-chain alpha-keto acid dehydrogenase complex (BCKADH) contains decarboxylase (E1), dihydrolipoyl transacylase (E2), and dihydrolipoyl dehydrogenase (E3) as catalytic components. BCKADH purified from rainbow trout (Oncorhynchus mykiss) liver was comparable with mammalian BCKADH in various enzymatic characteristics, but less efficient in catalyzing the overall reaction. The trout E2 subunit was larger than the mammalian subunit and rather similar to the chicken one in relative molecular mass on SDS-PAGE, whereas the E1 component was similar between trout and mammalian both in relative molecular mass of its alpha and beta subunits and in the catalytic activity. Trout E2 cDNA cloning and nucleotide sequencing revealed that the mature trout E2 subunit consists of 435 residues, and possesses 14 additional residues compared with mammalian E2. Eleven of these are localized in two interdomain segments as two sequences with two and nine residues, respectively. Trout E2 was inferior to rat E2 in the capacity for binding the E1 component, similar to chicken E2. Thus, it appears that non-mammalian BCKADH E2 is distinct from that in mammals in the structure of interdomain segments, resulting in reduction of overall activity of the enzyme complex.  相似文献   

14.
1. Antibodies against the E1b and E2b components of bovine branched-chain alpha-ketoacid (BCKA) dehydrogenase (BCKAD) complex completely inhibited BCKA oxidation in mammalian and avian mitochondria. BCKA oxidation by salmonid mitochondria was less affected and the enzyme from Pseudomonas putida was unaffected. 2. In rodents, anti-E1b E2b IgG inhibited oxidation of all three BCKA in a similar dose-dependent manner: oxidation of alpha-ketobutyrate and alpha-keto-y-methiolbutyrate was also partially inhibited. 3. Except for the salmonid BCKAD, a similar Mr for the E2b and E1b alpha proteins was observed in these species. 4. After digestion with V-8 protease similar immunoreactive peptides were observed for the human and rodent complex.  相似文献   

15.
The mitochondrial matrix subfractions from rat liver, kidney cortex, brain, heart, and skeletal muscle were isolated and their protein components were resolved by two-dimensional polyacrylamide gel electrophoresis, revealing between 120 and 150 components for each matrix subfraction. Excellent resolution was obtained utilizing a pH 5 to 8 gradient in the first dimension and in 8 to 13% exponential acrylamide gradient in the second dimension, increasing the number of mitochondrial matrix proteins observed 3-fold over one-dimensional systems. Protein components tentatively identified by co-migration with pure enzymes and by known tissue distributions are carbamoyl-phosphate synthetase (EC 2.7.2.5), ornithine transcarbamylase (EC 2.1.3.3), glutamate dehydrogenase (EC 1.4.1.3), pyruvate carboxylase (EC 6.4.1.1), citrate synthase (EC 4.1.3.7), fumarase (EC 4.2.1.2), aconitase (EC 4.2.1.3), alpha-ketoglutarate dehydrogenase (EC 1.2.4.2), dihydrolipoyl transsuccinylase (EC 2.3.1.12), lipoamide dehydrogenase (EC 1.6.4.3), glutamate-aspartate aminotransferase (EC 2.6.1.1), and the two subunits of pyruvate dehydrogenase (EC 1.2.4.1). Protein components unambiguously identified by peptide mapping are citrate synthase, aconitase, and pyruvate carboxylase. The inner membrane subfraction from rat liver mitochondria was also resolved two dimensionally; the alpha and beta subunits of ATPase (F1) (EC 3.6.1.3) were identified by peptide mapping.  相似文献   

16.
Pyruvate dehydrogenase kinase was purified about 2,700-fold to apparent homogeneity from extracts of bovine kidney mitochondria. The kinase consists of two subunits (alpha beta) with molecular weights of 48,000 (alpha) and 45,000 (beta) as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Kinase activity resides in the alpha subunit. The alpha subunit is sensitive to proteolysis by chymotrypsin, whereas the beta subunit is selectively modified by trypsin. These observations, together with the results of peptide mapping, indicate that the two subunits are distinctly different proteins. It is proposed that the beta subunit is a regulatory subunit.  相似文献   

17.
The human immune response to bovine dermal collagen was characterized through histologic, serologic, and immunoblotting methods. Collagen-sensitive patients were identified by hypersensitivity to intradermal exposure to ZYDERM Collagen Implant--a pepsin-solubilized, reconstituted, bovine dermal collagen. Biopsies of test sites in the forearm were obtained from several collagen-sensitive patients. Histologic examination revealed an implant-associated palisading foreign body granuloma. The lesion also contained a mixed cell infiltrate of histiocytes, lymphocytes, and eosinophils. Sera were collected from patients who developed erythema or induration at intradermal test or treatment sites, and were evaluated for antibodies to bovine dermal collagen by an enzyme-linked immunosorbent assay (ELISA). Sera with anti-collagen antibodies were further characterized in this study. The circulating antibodies were reactive with both native and heat-denatured bovine dermal collagen. By using purified alpha 1(I) and alpha 2(I) polypeptides, these sera were found to have antibodies reactive with both alpha-chains. Each alpha-chain was fragmented by using cyanogen bromide (CB). The CB peptides were electrophoretically separated, and these sera were evaluated for antibodies to the major fragments by using an immunoblotting technique. Of the sera evaluated by this method, 89% (23/26) had antibodies to alpha 1-CB6; 77% (20/26) had antibodies to alpha 2-CB4; and 65% (17/26) had antibodies reactive with both CB fragments. In addition, most sera (77%) contained antibodies reactive with two or more (up to five) of the major CB peptides. The least antigenic fragment was alpha 2-CB3,5 (8%). In addition, these sera had antibody activity against both native and heat-denaturated bovine types III and II collagens. Little or no interspecies (rat or guinea pig) cross-reactivity (types I and II) was detected. Furthermore, these sera did not have antibodies against human types I, II, and III collagens.  相似文献   

18.
Effects of Dichloroacetate on Brain Tissue Pyruvate Dehydrogenase   总被引:3,自引:1,他引:2  
The activation of the pyruvate dehydrogenase complex (PDHC) by dichloroacetate (DCA) was studied in brain tissue. Chronic administration of DCA to rats caused no significant change of PDHC activation in brain. DCA brain concentrations were comparable to those of other tissues in which activation is known to occur. No effect of DCA on PDHC could be demonstrated from isolated brain mitochondria, whereas DCA reversed the deactivation of PDHC by ATP, alpha-ketoglutarate plus malate, and succinate in liver mitochondria. This study suggests that the regulation of PDHC activation in neural tissue differs from that in other tissues.  相似文献   

19.
Cryoelectron microscopy has been performed on frozen-hydrated pyruvate dehydrogenase complexes from bovine heart and kidney and on various subcomplexes consisting of the dihydrolipoyl transacetylase-based (E2) core and substoichiometric levels of the other two major components, pyruvate dehydrogenase (E1) and dihydrolipoyl dehydrogenase (E3). The diameter of frozen-hydrated pyruvate dehydrogenase complex (PDC) is 50 nm, which is significantly larger than previously reported values. On the basis of micrographs of the subcomplexes, it is concluded that the E1 and E3 are attached to the E2-core complex by extended (4-6 nm maximally) flexible tethers. PDC constructed in this manner would probably collapse and appear smaller than its native size when dehydrated, as was the case in previous electron microscopy studies. The tether linking E1 to the core involves the hinge sequence located between the E1-binding and catalytic domains in the primary sequence of E2, whereas the tether linking E3 is probably derived from a similar hinge-type sequence in component X. Tilting of the E2-based cores and comparison with model structures confirmed that their overall shape is that of a pentagonal dodecahedron. The approximately 6 copies of protein X present in PDC do not appear to be clustered in one or two regions of the complex and are not likely to be symmetrically distributed.  相似文献   

20.
The oxidation of pyruvate is mediated by the pyruvate dehydrogenase complex (PDHC; EC 1.2.4.1, EC 2.3.1.12 and EC 1.6.4.3) whose catalytic activity is influenced by phosphorylation and by product inhibition. 2-Oxoglutarate and 3-hydroxybutyrate are readily utilized by brain mitochondria and inhibit pyruvate oxidation. To further elucidate the regulatory behavior of brain PDHC, the effects of 2-oxoglutarate and 3-hydroxyburyrate on the flux of PDHC (as determined by [1-14C]pyruvate decarboxylation) and the activation (phosphorylation) state of PDHC were determined in isolated, non-synaptic cerebro-cortical mitochondria in the presence or absence of added adenine nucleotides (ADP or ATP). [1-14C]Pyruvate decarboxylation by these mitochondria is consistently depressed by either 3-hydroxybutyrate or 2-oxoglutarate in the presence of ADP when mitochondrial respiration is stimulated. In the presence of exogenous ADP, 3-hydroxybutyrate inhibits pyruvate oxidation mainly through the phosphorylation of PDHC, since the reduction of the PDHC flux parallels the depression of PDHC activation state under these conditions. On the other hand, in addition to the phosphorylation of PDHC, 2-oxoglutarate may also regulate pyruvate oxidation by product inhibition of PDHC in the presence of 0.5 mM pyruvate plus ADP or 5 mM pyruvate alone. This conclusion is based upon the observation that 2-oxoglutarate inhibits [1-14C]pyruvate decarboxylation to a much greater extent than that predicted from the PDHC activation state (i.e. catalytic capacity) alone. In conjunction with the results from our previous study (Lai, J. C. K. and Sheu, K.-F. R. (1985) J. Neurochem. 45, 1861–1868), the data of the present study are consistent with the notion that the relative importance of the various mechanisms that regulate brain and peripheral tissue PDHCs shows interesting differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号