首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here we characterize an LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found neither in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.  相似文献   

2.
Familial hypercholesterolemia (FH) is caused by defective low density lipoprotein (LDL) receptors and is characterized by hypercholesterolemia and premature coronary heart disease. Two strategies can be used to identify the mutation in the LDL receptor gene underlying FH. One strategy is to search for novel mutations by DNA sequencing with or without prior mutation screening. The other strategy is to screen for known mutations. In this study we employed the latter strategy to screen 75 unrelated, Norwegian FH subjects for 38 known mutations. Three of the 38 mutations were detected in our group of FH subjects. Two subjects had FH-Padova, one had FH-Cincinnati-2 and one had FH-Gujerat. When additional unrelated FH heterozygotes were screened for the three mutations, the gene frequencies were 1.3%, 1.0% and 3.0%, respectively. In addition to identifying known mutations we also detected a novel stop codon in codon 541 (S541X). We conclude that screening for known mutations in the LDL receptor gene should be used as a complementary strategy to screening for novel mutations in order to understand the molecular genetics of FH.  相似文献   

3.
Examination of low-density lipoprotein (LDL) receptor, its promoter, and major exon-intron boundaries from a sample of patients with familial hypercholesterolemia (FH) from 74 probands of St. Petersburg revealed 34 mutations and 8 widely spread polymorphisms at this locus. Only four mutations were considered silent, while the other 30 are likely associated with familial hypercholesterolemia (FH). Mutations in the LDL receptor gene, inducing the disease, were identified in 41 (55%) out of 74 families with FH. Mutation R3500Q in apolipoprotein B (APOB) gene was not detected in all probands. Therefore in the families lacking mutations hypercholesterolemia was induced by mutations in the introns of the LDL receptor gene or by other genetic factors. Nineteen mutations causing disease progression were described in St. Petersburg for the first time, while 18 of them are specific for Russia. Among Ashkenazi Jews, major mutation G197del was detected in 30% (7 out of 22) of patients with FH. In the Slavic population of St. Petersburg, no major mutations were detected. Only five mutations were identified in two families, while 24 were found in isolated families. These data are indicative of the lack of a strong founder effect for FH in the St. Petersburg population.  相似文献   

4.
Familial hypercholesterolemia (FH) is a common genetic disorder caused by mutations of the LDL-receptor gene and transmitted as a co-dominant trait. However, there are some forms of hypercholesterolemia which have a recessive type of transmission. We have identified a subject with the clinical phenotype of heterozygous FH whose parents had normal plasma lipid values, suggesting a recessive type of transmission. The analysis of the LDL-receptor gene revealed that the patient was heterozygous for a G>C transversion in exon 4, which results in a serine for cysteine substitution at position 88 (C88S) of the receptor protein. Since this novel mutation was not found in the proband's parents and non-paternity was excluded, we concluded that the patient was a carrier of a "de novo" mutation. Haplotype analysis of LDL-receptor locus indicated that this "de novo" mutation occurred in the paternal germ line. The C88S mutation is the likely cause of LDL-receptor defect as it was present in the proband's hypercholesterolemic son and was not found in 200 chromosomes of control subjects.  相似文献   

5.
Examination of low-density lipoprotein (LDL) receptor gene, its promoter, and most of exon-intron boundaries from 74 probands with familial hypercholesterolemia (FH) of St. Petersburg revealed 34 mutations and 8 widely spread polymorphisms at this locus. Only four mutations were considered neutral, while the other 30 are likely to cause familial hypercholesterolemia (FH). Mutations in the LDL receptor gene, causing the disease, were identified in 41 (55%) out of 74 families with FH. Mutation R3500Q in apolipoprotein B (APOB) gene was not detected in all probands. Therefore in the families lacking mutations hypercholesterolemia was caused by mutations in the introns of the LDL receptor gene or by other genetic factors. Nineteen mutations causing disease progression were described in St. Petersburg for the first time, while 18 of them are specific for Russia. Among Ashkenazi Jews, predominant mutation G197del was detected in 30% (7 out of 22) of patients with FH. In the Slavic population of St. Petersburg, no predominant mutations were detected. Only five mutations were identified in two Slavic families, while 24 were found in unique families. These data are indicative of the lack of a strong founder effect for FH in the St. Petersburg population.  相似文献   

6.
Two deletions of the low-density lipoprotein (LDL) receptor gene were previously shown to account for about two thirds of all mutations causing familial hypercholesterolemia (FH) in Finland. We screened the DNA samples from a cohort representing the remaining 30% of Finnish heterozygous FH patients by amplifying all the 18 exons of the receptor gene by PCR and searching for DNA variations with the SSCP technique. Ten novel mutations were identified, comprising two nonsense and seven missense mutations as well as one frameshift mutation caused by a 13-bp deletion. A single nucleotide change, substituting adenine for guanidine at position 2533 and resulting in an amino acid change of glycine to aspartic acid at codon 823, was found in DNA samples from 14 unrelated FH probands. This mutation (FH-Turku) affects the sequence encoding the putative basolateral sorting signal of the LDL receptor protein; however, the exact functional consequences of this mutation are yet to be examined. The FH-Turku gene and another point mutation (Leu380-->His or FH-Pori) together account for approximately 8% of the FH-causing genes in Finland and are particularly common among FH patients from the southwestern part of the country (combined, 30%). Primer-introduced restriction analysis was applied for convenient assay of the FH-Turku and FH-Pori point mutations. In conclusion, this paper demonstrates the unique genetic background of FH in Finland and describes a commonly occurring FH gene with a missense mutation closest to the C terminus thus far reported.  相似文献   

7.
Monogenically inherited hypercholesterolemia is most commonly caused by mutations at the low density lipoprotein receptor (LDLR) locus causing familial hypercholesterolemia (FH) or at the apolipoprotein B (APOB) locus causing the disorder familial defective apoB (FDB). Probands from 47 kindreds with a strict clinical diagnosis of FH were selected from the Cardiovascular Genetics Research Lipid Clinic, Utah, for molecular genetic analysis. Using a combination of single-strand conformation polymorphism (SSCP) and direct sequencing, 12 different LDLR gene mutations were found in 16 of the probands. Three of the probands were carriers of the APOB R3500Q mutation. In five of the remaining 28 pedigrees where no mutation had been detected, samples from enough relatives were available to examine co-segregation with the LDLR region using the microsatellite marker D19S221, which is within 1 Mb centromeric of the LDLR locus, and D19S394, sited within 150 kb telomeric of the LDLR locus. In four of the families there was strong evidence for co-segregation between the LDLR locus and the phenotype of hypercholesterolemia, but in one large family with 18 living affected members and clear-cut bimodal hypercholesterolemia, there were numerous exclusions of co-segregation. Using length polymorphic markers within and outside the APOB gene, linkage of phenotype in this family to the APOB region was similarly excluded. In this large family, the degree of hypercholesterolemia, prevalence of tendon xanthomata, and occurrence of early coronary disease were indistinguishable from the other families studied. In summary, the data provide unequivocal evidence that a third locus can be etiological for monogenic familial hypercholesterolemia and should be reinvigorating to research in this field.  相似文献   

8.
Familial hypercholesterolemia (FH) has been identified as a major risk factor for coronary vascular disease and is associated with mutations in the low-density liporotein receptor (LDLR) and apolipoprotein B (APOB) gene. The molecular basis of FH in the Dutch population is well understood. Approximately 160 different LDLR and APOB gene defects have been identified with a panel of 9 LDLR gene and 1 APOB gene frequently occurring mutations accounting for approximately 30% of all clinically diagnosed FH cases. As molecular diagnosis of FH is becoming increasingly widely applied, a variety of mutation detection rates is reported, ranging from as low as 30% and up to 80%. This variability appears to depend on the clinical criteria applied to identify patients with FH and on the strategies and methodologies used for mutation screening. In this study we describe the application of a stepwise screening approach, combining different methodologies, to detect mutations of the LDLR gene and APOB gene in 1465 patients with FH. A mutation was found in approximately 44% of the patients, which demonstrates that this is an effective strategy for the molecular diagnosis of FH.  相似文献   

9.
To establish low density lipoprotein receptor (LDLR) mutant rats as a hypercholesterolemia and atherosclerosis model, we screened the rat LDLR gene for mutations using an N-ethyl-N-nitrosourea mutagenesis archive of rat gene data, and identified five mutations in its introns and one missense mutation (478T>A) in exon 4. The C160S mutation was located in the ligand binding domain of LDLR and was revealed to be equivalent to mutations (C160Y/G) identified in human familial hypercholesterolemia (FH) patients. The wild type, heterozygous, and homozygous mutant rats were fed a normal chow diet or a high fat high cholesterol (HFHC) diet from the age of 10 weeks for 16 weeks. The LDLR homozygous mutants fed the normal chow diet showed higher levels of plasma total cholesterol and LDL cholesterol than the wild type rats. When fed the HFHC diet, the homozygous mutant rats exhibited severe hyperlipidemia and significant lipid deposition from the aortic arch to the abdominal aorta as well as in the aortic valves. Furthermore, the female homozygous mutants also developed xanthomatosis in their paws. In conclusion, we suggest that LDLR mutant rats are a useful novel animal model of hypercholesterolemia and atherosclerosis.  相似文献   

10.
BACKGROUND: Studies indicate that human peripheral blood mononuclear cells mirror low-density lipoprotein (LDL) receptor activity of other cells in the body. To measure LDL receptor activity in patients with heterozygous familial hypercholesterolemia (FH), we prepared peripheral blood mononuclear cells from individuals with molecularly verified LDL receptor defective (Trp66-Gly mutation, n = 18) or receptor negative (Trp23-stop mutation, n = 17) heterozygous FH and from healthy individuals (n = 24). METHODS: The cells were stimulated to express maximum LDL receptor by preincubation in lipoprotein-free medium. They were then incubated at 4 degrees or 37 degrees C with fluorescently conjugated LDL (DiI-LDL). T-lymphocytes and monocytes were identified by fluorescently conjugated monoclonal antibodies. DiI-LDL bound (at 4 degrees C) or internalized (at 37 degrees C) by the cells was measured using flow cytometry. Knowing the LDL receptor gene mutation of the FH patients allowed us to compare the diagnostic capability of our functional assay with the DNA diagnosis. RESULTS: The diagnostic accuracy did not allow our assay to be used for diagnosis of individual cases of heterozygous FH. CONCLUSIONS: We suggest that our two-color fluorescence flow cytometry assay can be used to characterize functionally gene mutations causing LDL receptor dysfunction in patients with heterozygous FH.  相似文献   

11.
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the low density lipoprotein (LDL) receptor gene. Here, we characterize an LDL receptor mutation that is associated with a distinct haplotype and that causes FH in the Jewish Sephardic population originating from Safed, a town in northern Israel. The mutation was found in eight FH families originating from this community comprising 10% of heterozygote FH index cases screened in Israel. The mutation was not found in four additional FH heterozygotes whose hypercholesterolemia co-segregated with an identical LDL receptor gene haplotype. A guanine to cytosine substitution results in a missense mutation (asp147 to his) in the fourth repeat of the binding domain encoded by exon 4 of the LDL receptor gene. The mutant receptor protein was synthesized in cultured cells as a 120kDa precursor form that failed to undergo normal processing to a mature cell surface form. Most of the receptor precursors were degraded in the endoplasmic reticulum. The small number of mutant receptors on the cell surface were unable to bind LDL or very low density lipoprotein. The abnormal behavior of the mutant receptor was reproduced by site-directed mutagenesis and expression of the mutant protein in CHO cells. The mutation can be diagnosed by allele-specific oligonucleotide hybridization of polymerase chain reaction amplified DNA from FH patients.  相似文献   

12.
This study reports the characterization of 60% of low density lipoprotein receptor (LDLR) gene mutations in 150unrelated Greek familial hypercholes-terolaemia (FH) heterozygous children by the analysis of six LDLR gene mutations. The linkage disequilibrium of two polymorphic microsatellites (D19S394 and D19S221) flanking the LDLR gene on chromosome19 to the four most common mutations strongly suggests that each mutation is identical-by-descent in the probands included in this study (this is also supported by the geographical distribution of FH families with these mutations throughout Greece) and permits an estimation of the number of generations from a common ancestor for each mutation. The characterization of 60% of LDLR mutations in a representative sample of Greek FH heterozygotes provides a basis for the diagnosis of FH through DNA analysis in Greece, by using single-strand conformation polymorphism analysis followed by allele-specific oligonucleotide hybridization (exon6 mutations) or restriction endonuclease analysis (C152R, V408M). A rapid diagnostic assay positive for the mutation has been developed for the most common mutation, G528D. The application of simple DNA diagnostic assays for LDLR mutation analysis are appropriate for the early identification of FH heterozygotes in Greece and are useful for the primary prevention of coronary artery disease. Received: 7 July 1997 / Accepted: 5 November 1997  相似文献   

13.
Familial hypercholesterolemia (FH) is caused by different mutations in the gene encoding the low density lipoprotein receptor (LDLR). In Caucasian patients, at least three single point mutations have been identified causing FH. The asparagine206 to glutamine, and valine408 to methionine mutations were originally described in Afrikaners and recently identified in Dutch FH patients. The proline664 to leucine mutations was previously identified in an FH homozygote of Asian Indian origin and later identified in patients from London. Any of these mutations can be identified using direct amplification of genomic DNA by the polymerase chain reaction (PCR) and restriction enzyme digestion of PCR products. In this study, 100 unrelated German FH patients were screened for these three mutations. The valine408 to methionine mutation was identified in one individual and subsequently in the hypercholesterolemic child of the proband. Haplotype analysis with 7 restriction fragment length polymorphisms (RFLPs) revealed that the mutant allele carried the same haplotype as the previously described patients in South Africa and the Netherlands. Our finding supports the previous assumption of the European origin of the mutation.  相似文献   

14.
Familial hypercholesterolemia (FH) (OMIM 143890) is an autosomal dominantly inherited disease mainly caused by mutations of the gene encoding the low density lipoprotein receptor (LDLR) and Apolipoprotein (Apo) B. First the common mutation R3500Q in ApoB gene was determined using PCR/RFLP method. Then the LDLR gene was screened for mutations using Touch-down PCR, SSCP and sequencing techniques. Furthermore, the secondary structure of the LDLR protein was predicted with ANTHEPROT5.0. The R3500Q mutation was absent in these two families. A heterozygous p.W483X mutation of LDLR gene was identified in family A which caused a premature stop codon, while a homozygous mutation p.A627T was found in family B. The predicted secondary structures of the mutant LDLR were altered. We identified two known mutations (p.W483X, p.A627T) of the LDLR gene in two Chinese FH families respectively.  相似文献   

15.
The molecular basis of familial hypercholesterolemia in The Netherlands   总被引:6,自引:0,他引:6  
Mutations in the low-density lipoprotein (LDL) receptor gene are responsible for familial hypercholesterolemia (FH). At present, more than 600 mutations in this gene are known to underlie FH. However, the array of mutations varies considerably in different populations. Therefore, the delineation of essentially all LDL-receptor gene mutations in a population is a prerequisite for the implementation of nation-wide genetic testing for FH. In the Netherlands, mutation analysis by denaturing gradient gel electrophoresis and sequencing in 1641 clinically diagnosed FH patients resulted in the characterization of 159 different LDL-receptor gene defects. The nine most common mutations were responsible for 66.5% of our FH index cases. Of these, four mutations occurred with relatively high frequencies in specific parts of the Netherlands. The remaining mutations were only encountered in single FH patients, comprising 22.2% of the patient cohort analyzed. Subsequent genetic testing of relatives of the index cases within the national FH screening program resulted in the identification of 5,531 FH patients in total. The analysis for LDL-receptor mutations is a continuing effort to update the LDL-receptor mutation catalogue. Subsequently, with the newly generated index cases, the screening program can be extended and continued to identify and treat FH patients as early as possible and reduce cardiovascular morbidity and mortality in these patients at high risk.  相似文献   

16.
Two hundred thirty-four unrelated heterozygotes for familial hypercholesterolemia (FH) were screened to detect major rearrangements in the low-density-lipoprotein (LDL) receptor gene. Total genomic DNA was analyzed by Southern blot hybridization to probes encompassing exons 1-18 of the LDL receptor gene. Six different mutations were detected and characterized by the use of exon-specific probes and detailed restriction mapping. Each mutation is unique and suggests that molecular heterogeneity underlies the molecular pathology of FH. There appear to be preferential sites within the LDL receptor gene for major rearrangements resulting in deletions.  相似文献   

17.
A novel complex mutation with the presence of both deletion and insertion in very close proximity in the same region was detected in exon 8 of the LDL receptor gene from two apparently unrelated Japanese families with familial hypercholesterolemia (FH). In this mutant LDL receptor gene, the nine bases from nucleotide (nt) 1115 to nt 1123 (AGGGTGGCT) were replaced by six different bases (CACTGA), and consequently the four amino acids from codon 351 to 354, Glu-Gly-Gly-Tyr, were replaced by three amino acids, Ala-Leu-Asn, in the conserved amino acid region of the growth factor repeat B of the LDL receptor. The nature of the amino acid substitution and data on the families suggest that this mutation is very likely to affect the LDL receptor function and cause FH. The generation of this complex mutation can be explained by the simultaneous occurrence of deletion and insertion through the formation of a hairpin-loop structure mediated by inverted repeat sequences. Thus this mutation supports the hypothesis that inverted repeat sequences influence the stability of a given gene and promote human gene mutations.  相似文献   

18.
Using an automated fluorescent single-strand conformation polymorphism (SSCP) analysis of the entire coding region, promoter zone, and exon-intron junctions of the low-density lipoprotein (LDL) receptor gene, we examined 80 DNA samples of patients with familial hypercholesterolemia (FH) from Petrozavodsk. We revealed mutations that might cause FH in five probands, including FH-North Karelia (c.925-931del7) mutation and four previously unknown mutations. These novel mutations included a transversion c.618T>G (p.S206R), one nucleotide insertion c.195_196insT (p.FsV66:D129X), a complex gene rearrangement c.192del10/ins8 (p.FsS65:D129X), and a single nucleotide deletion c.2191delG (p.FsV731:V736X). Three out of four novel mutations produce an open reading frame shift and the premature termination of translation. An analysis of the cDNA sequence of the LDL receptor showed that this might result in the formation of a transmembrane-domain-deficient receptor that is unable to bind and internalize the ligand. Our results suggest the absence of a strong founder effect associated with FH in the Petrozavodsk population.  相似文献   

19.
Summary The low-density lipoprotein (LDL) receptor genes from 18 unrelated Japanese heterozygotes and 1 homozygote with classical familial hypercholesterolemia were analyzed by Southern blot hybridization using fragments of the human LDL receptor cDNA as probes. Four different deletion mutations were detected among 20 mutant LDL receptor genes (20%); they were characterized by restriction mapping. None of these mutations has previously been reported in Caucasian patients with FH: three of the mutations were novel and one was similar to the detetion mutation of FH-Tonami described previously in Japanese patients. In three of the four deletion mutations, the rearrangements were related to intron 15 of the LDL receptor gene, in which many Alu sequences exist. The data suggest that a wide range of molecular heterogeneity exists even in major rearrangements resulting in deletions in the LDL receptor gene. The data also support the hypothesis that there are preferential sites within the LDL receptor gene for major rearrangements resulting in deletions. The possibility that a higher frequency of deletion mutations occurs in classical FH than previously suspected is discussed.  相似文献   

20.
In this report on the outcome of the first prenatal diagnosis performed for familial hypercholesterolemia (FH) in a South African family, we aim to demonstrate the value of a population-directed screening strategy to identify FH patients in populations with an enrichment for certain low-density lipoprotein receptor (LDLR) gene mutations. Prenatal diagnosis was offered to an Afrikaner couple, both partners heterozygous for the FH mutation D206E, whose first child was diagnosed with heterozygous FH and the second with homozygous FH. Genomic DNA isolated from parental peripheral blood and subsequently amniotic fluid was amplified by the polymerase chain reaction (PCR) and subjected to mutation analysis. Heterozygosity for mutation D206E was confirmed in both parents, whilst this mutation was not detected in DNA directly amplified from amniotic fluid. To exclude the possibility of a false-negative result due to the limited number of cells in the uncultured amniotic fluid sample, cells were also cultured in vitro, and the DNA extracted and subjected to a second round of analysis. This confirmed the absence of mutation D206E in the fetus. This case illustrates the application of a DNA-based mutation detection technique as a simple and rapid diagnostic aid that can be carried out at a relatively early gestational stage. Prenatal diagnosis of FH, aimed at the detection of homozygous cases, is particularly feasible in populations and families with molecularly defined LDLR gene mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号