首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Miniature inverted-repeat transposable elements (MITEs) are a particular type of defective class II elements present in genomes as high-copy-number populations of small and highly homogeneous elements. While virtually all class II transposon families contain non-autonomous defective transposon copies, only a subset of them have a related MITE family. At present it is not known in which circumstances MITEs are generated instead of typical class II defective transposons. The ability to produce MITEs could be an exclusive characteristic of particular transposases, could be related to a particular structure of certain defective class II elements, or could be the consequence of particular constraints imposed by certain host genomes on transposon populations. We describe here a new family of pogo-like transposons from Medicago truncatula closely related to the Arabidopsis Lemi1 element that we have named MtLemi1. In contrast to the Arabidopsis Lemi1, present as a single-copy element and associated with hundreds of related Emigrant MITEs, MtLemi1 has attained >30 copies and has not generated MITEs. This shows that a particular transposon can adopt completely different strategies to colonize genomes. The comparison of AtLemi1 and MtLemi1 reveals transposase-specific domains and possible regulatory sequences that could be linked to the ability to produce MITEs.  相似文献   

2.
Four previously undescribed families of miniature inverted repeat transposable elements (MITEs) were isolated by searching barley genomic DNA using structure-based criteria. Putative MITEs were confirmed by PCR to determine their insertional polymorphism in a panel of diverse barley germplasm. Copy numbers for all these familes are somewhat low (less than 1,000 copies per family per haploid genome). In contrast to previous studies, a higher proportion of insertions of the new MITEs are found within known transposable elements (27%) than are associated with genes (15%). Preliminary studies were conducted on two of the new MITE families to test their utility as molecular markers. Insertional polymorphism levels for both the families are high and diversity trees produced by both the families are similar and congruent with known relationships among the germplasm studied, suggesting that both the MITE families are useful markers of barley genetic diversity.  相似文献   

3.
MITEs(Miniature inverted-repeat transposable elements)转座子是一种特殊的转座子,其既有DNA转座子的转座特性——"剪切-粘贴"转座方式,又有RNA转座子的高拷贝特性。目前已被报道的MITEs种类和数量虽然很多,但是关于有转座活性的MITEs的报道却甚少。本文总结了近几年来有关活性MITEs的相关报道,发现具有转座活性的MITEs种类大都分布在Tourist家族,分别是m Ping、m Ging、Ph Tourist1、Tmi1和Ph Tst-3,另外还有Stowaway-like家族的d Tstu1和MITE-39以及Mutator家族的Ah MITE1。文中还分析了这些活性MITEs的结构(TIR和TSD)、拷贝数、进化模式以及转座特性等,为鉴定其他活性MITEs以及MITEs转座和扩增机制的研究奠定了基础。  相似文献   

4.
孙海悦  张志宏 《西北植物学报》2007,27(12):2571-2576
微型反向重复转座元件(miniature inverted repeat transposable element,MITE)是一类特殊的转座元件,在结构上与有缺失的DNA转座子相似,但具有反转录转座子高拷贝数的特点.MITE时常与基因相伴,对基因调控可能起重要作用,因此,MITE正逐渐成为基因和基因组进化及生物多样性研究的一种重要工具.本文综述了植物基因组MITE的结构、分类、活性及其应用研究进展.  相似文献   

5.

Main conclusion

Moso bamboo MITEs were genome-wide identified first time, and data shows that MITEs contribute to the genomic diversity and differentiation of bamboo. Miniature inverted-repeat transposable elements (MITEs) are widespread in animals and plants. There are a large number of transposable elements in moso bamboo (Phyllostachys heterocycla var. pubescens) genome, but the genome-wide information of moso bamboo MITEs is not known yet. Here we identified 362 MITE families with a total of 489,592 MITE-related sequences, accounting for 4.74 % of the moso bamboo genome. The 362 MITE families are clustered into six known and one unknown super-families. Our analysis indicated that moso bamboo MITEs preferred to reside in or near the genes that might be involved in regulation of host gene expression. Of the seven super-families, three might undergo major expansion event twice, respectively, during 8–11 million years ago (mya) ago and 22–28 mya ago; two might experience a long expansion period from 6 to 13 mya. Almost 1/3 small RNAs might be derived from the MITE sequences. Some MITE families generate small RNAs mainly from the terminals, while others predominantly from the central region. Given the high copy number of MITEs, many siRNAs and miRNAs derived from MITE sequences and the preferential insertion of MITE into gene regions, MITEs may contribute to the genomic diversity and differentiation of bamboo.
  相似文献   

6.
Miniature inverted-repeat transposable elements (MITEs) are short, non autonomous DNA elements that are widespread and abundant in plant genomes. The high sequence and size conservation observed in many MITE families suggest that they have spread recently throughout their respective host genomes. Here we present a maize genome wide analysis of three Tourist-like MITE families, mPIF, and two previously uncharacterized families, ZmV1 and Zead8. We undertook a bioinformatic analysis of MITE insertion sites, developed methyl-sensitive transposon display (M-STD) assays to estimate the associated level of CpG methylation at MITE flanking regions, and conducted a population genetics approach to investigate MITE patterns of expansion. Our results reveal that the three MITE families insert into genomic regions that present specific molecular features: they are preferentially AT rich, present low level of cytosine methylation as compared to the LTR retrotransposon Grande, and target site duplications are flanked by large and conserved palindromic sequences. Moreover, the analysis of MITE distances from predicted genes shows that 73% of 263 copies are inserted at less than 5 kb from the nearest predicted gene, and copies from Zead8 family are significantly more abundant upstream of genes. By employing a population genetic approach we identified contrasting patterns of expansion among the three MITE families. All elements seem to have inserted roughly 1 million years ago but ZmV1 and Zead8 families present evidences for activity of several master copies within the last 0.4 Mya.  相似文献   

7.
8.
MITEs (miniature inverted-repeated transposable elements) are a particular class of defective DNA transposons usually present within genomes as high copy number populations of highly homogeneous elements. Although an active MITE, the mPing element, has recently been characterized in rice, the transposition mechanism of MITEs remains unknown. It has been proposed that transposases of related transposons could mobilize MITEs in trans. Moreover, it has also been proposed that the presence of conserved terminal inverted-repeated (TIR) sequences could be the only requirement of MITEs for mobilization, allowing divergent or unrelated elements to be mobilized by a particular transposase. We present here evidence for a recent mobility of the Arabidopsis Emigrant MITE and we report on the capacity of the proteins encoded by the related Lemi1 transposon, a pogo-related element, to specifically bind Emigrant elements. This suggests that Lemi1 could mobilize Emigrant elements and makes the Lemi1/Emigrant couple an ideal system to study the transposition mechanism of MITEs. Our results show that Lemi1 proteins bind Emigrant TIRs but also bind cooperatively to subterminal repeated motifs. The requirement of internal sequences for the formation of proper DNA/protein structure could affect the capacity of divergent MITEs to be mobilized by distantly related transposases.  相似文献   

9.
Genomic distribution of MITEs in barley determined by MITE-AFLP mapping.   总被引:1,自引:0,他引:1  
H Takahashi  H Akagi  K Mori  K Sato  K Takeda 《Génome》2006,49(12):1616-1620
Miniature inverted-repeat transposable elements (MITEs) represent a large superfamily of transposons that are moderately to highly repetitive and frequently found near or within plant genes. To elucidate the organization of MITEs in the barley genome, MITEs were integrated into the genetic map of barley. In this report, we describe the use of MITEs in amplified fragment length polymorphism (AFLP) mapping, and demonstrate their superiority over conventional AFLP mapping. Barley MITEs include members of the Stowaway, Barfly, and Pangrangja families. By amplifying the flanking sequences of these MITEs, a total of 214 loci were mapped from a population of 93 doubled-haploid segregating individuals between Hordeum vulgare ssp. vulgare and H. vulgare ssp. spontaneum. The 214 MITE-AFLP and 40 anchor simple sequence repeat (SSR) loci were distributed on 7 linkage groups, covering a total map distance of 1 165 cM. The average marker density on each chromosome ranged between 3.4 and 9.6 cM per locus. Only 1 MITE-based locus was frequently found to be associated with MITE loci from the same family, resulting in clusters in chromosomal subregions. In barley, it will be possible to cover the entire genome with a limited set of MITE-based primers and to build highly dense maps of specific regions.  相似文献   

10.
Miniature inverted repeat transposable elements (MITEs) are the most ubiquitous transposable elements in eukaryotic genomes; they play a prominent role in sequence divergence and genome evolution. There are many well-characterized Stowaway-like MITE families in wheat, but their distribution, abundance, and composition at the chromosome level are still not well understood. In this study, we systematically investigated the Stowaway-like MITEs in wheat group 7 chromosomes based on the survey sequences of isolated wheat chromosomes, to compare them at the chromosome level and to reveal their evolutionary role on wheat polyploidization. In summary, 2026 MITEs were identified, of which 587, 714, and 725 were distributed on 7A, 7B, and 7D chromosomes, respectively. There are more MITEs present on 7D, compared to 7A and 7B, suggesting A and B subgenomes eliminated some repetitive elements during two hybridization processes. Furthermore, some chromosome/arm-specific MITEs were also identified, providing information on the function and evolution of MITEs in wheat genomes. The sequence diversity of the MITE insertions was also investigated. This study for the first time investigated the abundance and composition of MITEs at the chromosome level, which will be beneficial to improve our understanding of the distribution of wheat MITEs and their evolutionary role in polyploidization.  相似文献   

11.
A 128-bp insertion into the maize waxy-B2 allele led to the discovery of Tourist, a family of miniature inverted repeat transposable elements (MITEs). As a special category of nonautonomous elements, MITEs are distinguished by their high copy number, small size, and close association with plant genes. In maize, some Tourist elements (named Tourist-Zm) are present as adjacent or nested insertions. To determine whether the formation of multimers is a common feature of MITEs, we performed a more thorough survey, including an estimation of the proportion of multimers, with 30.2 Mb of publicly available rice genome sequence. Among the 6600 MITEs identified, >10% were present as multimers. The proportion of multimers differs for different MITE families. For some MITE families, a high frequency of self-insertions was found. The fact that all 340 multimers are unique indicates that the multimers are not capable of further amplification.  相似文献   

12.
Kelner MJ  Bagnell RD  Montoya MA  Lanham KA 《Gene》2000,250(1-2):109-116
We describe a new family of repetitive elements, named Mimo, from the mosquito Culex pipiens. Structural characteristics of these elements fit well with those of miniature inverted-repeat transposable elements (MITEs), which are ubiquitous and highly abundant in plant genomes. The occurrence of Mimo in C. pipiens provides new evidence that MITEs are not restricted to plant genomes, but may be widespread in arthropods as well. The copy number of Mimo elements in C. pipiens (1000 copies in a 540 Mb genome) supports the hypothesis that there is a positive correlation between genome size and the magnitude of MITE proliferation. In contrast to most MITE families described so far, members of the Mimo family share a high sequence conservation, which may reflect a recent amplification history in this species. In addition, we found that Mimo elements are a frequent nest for other MITE-like elements, suggesting that multiple and successive MITE transposition events have occurred very recently in the C. pipiens genome. Despite evidence for recent mobility of these MITEs, no element has been found to encode a protein; therefore, we do not know how they have transposed and have spread in the genome. However, some sequence similarities in terminal inverted-repeats suggest a possible filiation of some of these mosquito MITEs with pogo-like DNA transposons.  相似文献   

13.
Miniature inverted-repeat transposable elements (MITEs) are a special type of Class 2 non-autonomous transposable element (TE) that are abundant in the non-coding regions of the genes of many plant and animal species. The accurate identification of MITEs has been a challenge for existing programs because they lack coding sequences and, as such, evolve very rapidly. Because of their importance to gene and genome evolution, we developed MITE-Hunter, a program pipeline that can identify MITEs as well as other small Class 2 non-autonomous TEs from genomic DNA data sets. The output of MITE-Hunter is composed of consensus TE sequences grouped into families that can be used as a library file for homology-based TE detection programs such as RepeatMasker. MITE-Hunter was evaluated by searching the rice genomic database and comparing the output with known rice TEs. It discovered most of the previously reported rice MITEs (97.6%), and found sixteen new elements. MITE-Hunter was also compared with two other MITE discovery programs, FINDMITE and MUST. Unlike MITE-Hunter, neither of these programs can search large genomic data sets including whole genome sequences. More importantly, MITE-Hunter is significantly more accurate than either FINDMITE or MUST as the vast majority of their outputs are false-positives.  相似文献   

14.
Abstract Numerous miniature inverted repeat transposable elements (MITEs) are present in the rice genome but their transposition mechanisms are unknown. In this report, we present evidence that two novel MITE families may have arisen from Mutator-related transposable elements and thus may use a transposition mechanism similar to that of Mutator elements. Two families of novel MITEs, namely, MDM-1 and MDM-2, were identified by searching for MITEs nested with Kiddo, a previously identified MITE family. MDM-1 and MDM-2 bear hallmarks of Mutator elements, such as long terminal inverted repeats (LTIRs), 9-bp target-site duplications (TSDs), and putative transposase binding sites. Strikingly, the MDM-1 family has a 9-bp terminus identical to that of a rice Mutator-like element (MULE-9) and the MDM-2 family has an 8-bp terminus identical to that of the maize autonomous Mutator element MuDR. A putative transposase homologous to MURA protein is identified for the MDM-2 family. Thus, these two novel MITE families, with a total copy number of several hundred in rice, are designated Mutator-derived MITEs (MDMs). Interestingly, sequence decay analysis of MDM families revealed a number of insertion site duplications (ISDs) in the alignment gaps, and widespread historical nesting events are proposed to account for the existence of these ISDs. In addition to its value for discovering new MITEs, the nesting analysis approach used in this study simultaneously identifies MITE insertion polymorphisms.  相似文献   

15.
Repetitive genomic sequences might have various structural features and properties distinct from those of the known transposable elements (TE). Here, the content and properties of the repetitive sequences present in a 200-kb region around the rice waxy locus were analyzed using the available rice genomic database. In our previous Southern blotting analysis, 70% of the segments in this region showed smeared patterns, but according to the present database analysis, the proportion of repetitive sequences in this region was only 15%. The repetitive segments in this 200-kb region comprised 75 repetitive sequences that we classified into 46 subfamilies: 21 subfamilies were known TEs or repetitive sequences and 25 subfamilies consisted of newly identified TEs or novel types of repetitive sequences. The region contains no long terminal repeat (LTR) retrotransposable elements, but miniature inverted repeat transposable elements (MITEs) constituted a major class among the elements identified. These MITEs showed remarkable structural divergence: 12 elements were found to be new members of known MITE superfamilies, while five elements had novel terminal structures, and did not belong to any known TE families. Interestingly, about 10% of the repetitive sequences, including virus-like sequences did not have any of the usual characteristics of TEs, suggesting that a certain proportion of repetitive sequences that might not share the transpositional mechanisms of known elements are dispersed in the compact rice genome.  相似文献   

16.
Miniature inverted-repeat transposable elements (MITEs) are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5) were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1) were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP) analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion.  相似文献   

17.
18.
To reveal the genome-wide aspects of Xenopus T2 family miniature inverted-repeat transposable elements (MITEs), we performed a systematic search and classification of MITEs by a newly developed procedure. A terminal sequence motif (T2-motif: TTAAAGGRR) was retrieved from the Xenopus tropicalis genome database. We then selected 51- to 1,000-bp MITE candidates framed by an inverted pair of 2 T2-motifs. The 34,398 candidates were classified into possible clusters by a novel terminal sequence (TS)-clustering method on the basis of differences in their short terminal sequences. Finally, 19,242 MITEs were classified into 16 major MITE subfamilies (TS subfamilies), 10 of which showed apparent homologies to known T2 MITE subfamilies, and the rest were novel TS subfamilies. Intra- and inter-subfamily similarities or differences were investigated by analyses of diversity in GC content, total length, and sequence alignments. Furthermore, genome-wide conservation of the inverted pair structure of subfamily-specific TS stretches and their target site sequence (TTAA) were analyzed. The results suggested that some TS subfamilies might include active or at least recently active MITEs for transposition and/or amplification, but some others might have lost such activities a long time ago. The present methodology was efficient in identifying and classifying MITEs, thereby providing information on the evolutionary dynamics of MITEs.  相似文献   

19.
Bergero R  Forrest A  Charlesworth D 《Genetics》2008,178(2):1085-1092
Mechanisms involved in eroding fitness of evolving Y chromosomes have been the focus of much theoretical and empirical work. Evolving Y chromosomes are expected to accumulate transposable elements (TEs), but it is not known whether such accumulation contributes to their genetic degeneration. Among TEs, miniature inverted-repeat transposable elements are nonautonomous DNA transposons, often inserted in introns and untranslated regions of genes. Thus, if they invade Y-linked genes and selection against their insertion is ineffective, they could contribute to genetic degeneration of evolving Y chromosomes. Here, we examine the population dynamics of active MITEs in the young Y chromosomes of the plant Silene latifolia and compare their distribution with those in recombining genomic regions. To isolate active MITEs, we developed a straightforward approach on the basis of the assumption that recent transposon insertions or excisions create singleton or low-frequency size polymorphisms that can be detected in alleles from natural populations. Transposon display was then used to infer the distribution of MITE insertion frequencies. The overall frequency spectrum showed an excess of singleton and low-frequency insertions, which suggests that these elements are readily removed from recombining chromosomes. In contrast, insertions on the Y chromosomes were present at high frequencies. Their potential contribution to Y degeneration is discussed.  相似文献   

20.
We describe a new family of repetitive elements, named Mimo, from the mosquito Culex pipiens. Structural characteristics of these elements fit well with those of miniature inverted-repeat transposable elements (MITEs), which are ubiquitous and highly abundant in plant genomes. The occurrence of Mimo in C. pipiens provides new evidence that MITEs are not restricted to plant genomes, but may be widespread in arthropods as well. The copy number of Mimo elements in C. pipiens (1000 copies in a 540 Mb genome) supports the hypothesis that there is a positive correlation between genome size and the magnitude of MITE proliferation. In contrast to most MITE families described so far, members of the Mimo family share a high sequence conservation, which may reflect a recent amplification history in this species. In addition, we found that Mimo elements are a frequent nest for other MITE-like elements, suggesting that multiple and successive MITE transposition events have occurred very recently in the C. pipiens genome. Despite evidence for recent mobility of these MITEs, no element has been found to encode a protein; therefore, we do not know how they have transposed and have spread in the genome. However, some sequence similarities in terminal inverted-repeats suggest a possible filiation of some of these mosquito MITEs with pogo-like DNA transposons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号