首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Podosomes are punctate actin-rich adhesion structures which spontaneously form in cells of the myelomonocytic lineage. Their formation is dependent on Src and RhoGTPases. Recently, podosomes have also been described in vascular cells. These podosomes differ from the former by the fact that they are inducible. In endothelial cells, such a signal can be provided by either constitutively active Cdc42, the PKC activator PMA or TGFbeta, depending on the model. Consequently, other regulatory pathways have been reported to contribute to podosome formation. To get more insight into the mechanisms by which podosomes form in endothelial cells, we have explored the respective contribution of signal transducers such as Cdc42-related GTPases, Smads and PKCs in three endothelial cell models. Results presented demonstrate that, in addition to Cdc42, TC10 and TCL GTPases can also promote podosome formation in endothelial cells. We also show that PKCalpha can be either necessary or entirely dispensable, depending on the cell model. In contrast, PKCdelta is essential for podosome formation in endothelial cells but not smooth muscle cells. Finally, although podosomes vary very little in their molecular composition, the signalling pathways involved in their assembly appear very diverse.  相似文献   

2.
Podosomes are dynamic cell adhesion structures that degrade the extracellular matrix, permitting extracellular matrix remodeling. Accumulating evidence suggests that actin and its associated proteins play a crucial role in podosome dynamics. Caldesmon is localized to the podosomes, and its expression is down-regulated in transformed and cancer cells. Here we studied the regulatory mode of caldesmon in podosome formation in Rous sarcoma virus-transformed fibroblasts. Exogenous expression analyses revealed that caldesmon represses podosome formation triggered by the N-WASP-Arp2/3 pathway. Conversely, depletion of caldesmon by RNA interference induces numerous small-sized podosomes with high dynamics. Caldesmon competes with the Arp2/3 complex for actin binding and thereby inhibits podosome formation. p21-activated kinases (PAK)1 and 2 are also repressors of podosome formation via phosphorylation of caldesmon. Consequently, phosphorylation of caldesmon by PAK1/2 enhances this regulatory mode of caldesmon. Taken together, we conclude that in Rous sarcoma virus-transformed cells, changes in the balance between PAK1/2-regulated caldesmon and the Arp2/3 complex govern the formation of podosomes.  相似文献   

3.
Invadopodia and podosomes in tumor invasion   总被引:6,自引:3,他引:3  
Cell migration through the extracellular matrix (ECM) is necessary for cancer cells to invade adjacent tissues and metastasize to an organ distant from primary tumors. Highly invasive carcinoma cells form ECM-degrading membrane protrusions called invadopodia. Tumor-associated macrophages have been shown to promote the migratory phenotypes of carcinoma cells, and macrophages are known to form podosomes, similar structures to invadopodia. However, the role of invadopodia and podosomes in vivo remains to be determined. In this paper, we propose a model for possible functions and interactions of invadopodia and podosomes in tumor invasion, based on observations that macrophage podosomes degrade ECM and that podosome formation is regulated by colony-stimulating factor-1 signaling.  相似文献   

4.
Podosomes are adhesion structures characteristic of the myeloid cell lineage, encompassing osteoclasts, dendritic cells and macrophages. Podosomes are actin-based structures that are dynamic and capable of self-organization. In particular in the osteoclast, podosomes densely pack into a thick ring called the sealing zone. This adhesion structure is typical of osteoclasts and necessary for the resorption of the bone matrix. We thought to explore in more details the role of podosomes during osteoclast differentiation and migration. To this end, we made from soft to stiff substrates that had not been functionalized with extracellular matrix proteins. Such substrates did not support podosome formation in osteoclasts. With such devices, we could show that integrin activation was sufficient to drive podosome assembly, in a substrate stiffness independent fashion. We additionally report here that osteoclast differentiation is a podosome-independent process. Finally, we show that osteoclasts devoid of podosomes can migrate efficiently. Our study further illustrates the great capacity of myeloid cells to adapt to the different environments they encounter during their life cycle.  相似文献   

5.
Background information. Fluoride is a well‐known G‐protein activator. Exposure of cultured cells to its derivatives results in actin cytoskeleton remodelling. Podosomes are actin‐based structures endowed with adhesion and matrix‐degradation functions. This study investigates actin cytoskeleton reorganization induced by fluoride in endothelial cells. Results. Treatment of cultured endothelial cells with sodium fluoride (NaF) results in a rapid and potent stimulation of podosome formation. Furthermore, we show that Cdc42 (cell‐division cycle 42), Rac1 and RhoA activities are stimulated in NaF‐treated cells. However, podosome assembly is dependent on Cdc42 and Rac1, but not RhoA. Although the sole activation of Cdc42 is sufficient to induce individual podosomes, a balance between RhoGTPase activities regulates podosome formation in response to NaF, which in this case are often found in groups or rosettes. As in other models, podosome formation in endothelial cells exposed to NaF also involves Src. Finally, we demonstrate that NaF‐induced podosomes are fully competent for matrix protein degradation. Conclusions. Taken together, our findings establish NaF as a novel inducer of podosomes in endothelial cells in vitro.  相似文献   

6.
Self-organized podosomes are dynamic mechanosensors   总被引:1,自引:0,他引:1  
Podosomes are self-organized, dynamic, actin-containing structures that adhere to the extracellular matrix via integrins [1-5]. Yet, it is not clear what regulates podosome dynamics and whether podosomes can function as direct mechanosensors, like focal adhesions [6-9]. We show here that myosin-II proteins form circular structures outside and at the podosome actin ring to regulate podosome dynamics. Inhibiting myosin-II-dependent tension dissipated podosome actin rings before dissipating the myosin-ring structure. As podosome rings changed size or shape, tractions underneath the podosomes were exerted onto the substrate and were abolished when myosin-light-chain activity was inhibited. The magnitudes of tractions were comparable to those generated underneath focal adhesions, and they increased with substrate stiffness. The dynamics of podosomes and of focal adhesions were different. Torsional tractions underneath the podosome rings were generated with rotations of podosome rings in a nonmotile, nonrotating cell, suggesting a unique feature of these circular structures. Stresses applied via integrins at the apical surface directly displaced podosomes near the basal surface. Stress-induced podosome displacements increased nonlinearly with applied stresses. Our results suggest that podosomes are dynamic mechanosensors in which interactions of myosin tension and actin dynamics are crucial for regulating these self-organized structures in living cells.  相似文献   

7.
Podosomes are highly dynamic actin-rich structures in a variety of cell types, especially monocytic cells. They fulfill multiple functions such as adhesion, mechanosensing, or extracellular matrix degradation, thus allowing cells to detect and respond to a changing environment. These abilities are based on an intricate architecture that enables podosomes to sense mechanical properties of their substratum and to transduce them intracellularly in order to generate an appropriate cellular response. These processes are enabled through the tightly orchestrated interplay of more than 300 different components that are dynamically recruited during podosome formation and turnover. In this review, we discuss the different phases of the podosome life cycle and the current knowledge on regulatory factors that impact on the genesis, activity, dissolution and reemergence of podosomes. We also highlight mechanoregulatory processes that become important during these different stages, on the level of individual podosomes, and also at podosome sub- and superstructures.  相似文献   

8.
Podosomes, important structures for adhesion and extracellular matrix degradation, are claimed to be involved in cell migration. In addition, podosomes are also reported to be of importance in tissue remodelling, e.g., in osteoclast-mediated bone resorption. Podosomes are highly dynamic actin-filament scaffolds onto which proteins important for their function, such as matrix metallo-proteases and integrins, attach. The dynamics of the podosomes require the action of many proteins regulating actin assembly and disassembly. One such protein, gelsolin, which associates to podosomes, has been reported to be important for podosome formation and function in osteoclasts. However, podosome-like structures have been reported in gelsolin-deficient dendritic cells, but the identity of these structures was not confirmed, and their dynamics and function was not investigated. Like many other cells, dendritic cells of the immune system also form matrix degrading podosomes. In the present study, we show that dendritic cells form podosomes independently of gelsolin, that there are no major alterations in their dynamics of formation and disassembly, and that they exhibit matrix-degrading function. Furthermore, we found that gelsolin is not required for TLR4-induced podosome disassembly. Thus, the actin cytoskeleton of podosomes involved in dendritic cell extracellular matrix degradation appears to be regulated differently than the cytoskeleton in podosomes of osteoclasts mediating bone resorption.  相似文献   

9.
Osteoclasts are the cells responsible for physiological bone resorption. A specific organization of their most prominent cytoskeletal structures, podosomes, is crucial for the degradation of mineralized bone matrix. Each podosome is constituted of an F-actin-enriched central core surrounded by a loose F-actin network, called the podosome cloud. In addition to intrinsic actin dynamics, podosomes are defined by their adhesion to the extracellular matrix, mainly via core-linking CD44 and cloud-linking integrins. These properties allow podosomes to collectively evolve into different patterns implicated in migration and bone resorption. Indeed, to resorb bone, osteoclasts polarize, actively secrete protons, and proteases into the resorption pit where these molecules are confined by a podosome-containing sealing zone. Here, we review recent advancements on podosome structure and regulatory pathways in osteoclasts. We also discuss the distinct functions of different podosome patterns during the lifespan of a single osteoclast.  相似文献   

10.
In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases. SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells. Thus, podosome formation and function in dendritic cells is independent of SWAP-70.  相似文献   

11.
Podosomes are actin-rich adhesion structures typical for monocytic cells and are implicated in migration and invasion. Major modes of podosome regulation include RhoGTPase signaling and actin regulatory pathways. However, it is not clearly understood how these signals induce highly localized changes in podosome formation and dynamics. Here, we show that the RhoGTPase effector PAK4, a member of the p21 associated kinase family, and its regulator alphaPIX (PAK-interacting exchange factor), are central to podosome formation in primary human macrophages. Immunofluorescence, biochemical and microarray data indicate that PAK4 acts as physiological regulator of podosomes in this system. Accordingly, transfection of a specific shRNA, as well as expression of PAK4 truncation mutants, resulted in reduced numbers of podosomes per cell. Moreover, expression of kinase active or inactive PAK4 mutants enhanced or reduced the size of individual podosomes, respectively, indicating a modulatory influence of PAK4 kinase activity on podosome size. Similar to the results gained with PAK4, cellular/overexpressed PIX was shown to be closely associated with podosomes. Moreover, both overexpression of alphaPIX wt and a mutant lacking the SH3 domain led to coalescence of podosomes. In sum, we propose that PAK4 and alphaPIX can induce highly localized changes in actin dynamics and thereby regulate size and number of podosomes in primary human macrophages.  相似文献   

12.
Podosomes are actin- and fimbrin-containing adhesions at the leading edge of macrophages. In cells transfected with beta-actin-ECFP and L-fimbrin-EYFP, quantitative four-dimensional microscopy of podosome assembly shows that new adhesions arise at the cell periphery by one of two mechanisms; de novo podosome assembly, or fission of a precursor podosome into daughter podosomes. The large podosome cluster precursor also appears to be an adhesion structure; it contains actin, fimbrin, integrin, and is in close apposition to the substratum. Microtubule inhibitors paclitaxel and demecolcine inhibit the turnover and polarized formation of podosomes, but not the turnover rate of actin in these structures. Because daughter podosomes and podosome cluster precursors are preferentially located at the leading edge, they may play a critical role in continually generating new sites of cell adhesion.  相似文献   

13.
Cells from the myeloid lineage, namely macrophages, dendritic cells and osteoclasts, develop podosomes instead of stress fibers and focal adhesions to adhere and migrate. Podosomes share many components with focal adhesions but differ in their molecular organization, with a dense core of polymerized actin surrounded by scaffolding proteins, kinases and integrins. Podosomes are found either isolated both in macrophages and dendritic cells or arranged into superstructures in osteoclasts. When osteoclasts resorb bone, they form an F-actin rich sealing zone, which is a dense array of connected podosomes that firmly anchors osteoclasts to bone. It delineates a compartment in which protons and proteases are secreted to dissolve and degrade the mineralized matrix. Since Rho GTPases have been shown to control F-actin stress fibers and focal adhesions in mesenchymal cells, the question of whether they could also control podosome formation and arrangement in cells from the myeloid lineage, and particularly in osteoclasts, rapidly emerged. This article considers recent advances made in our understanding of podosome arrangements in osteoclasts and how Rho GTPases may control it.  相似文献   

14.
Metalloproteinase-dependent tissue invasion requires the formation of podosomes and invadopodia for localized matrix degradation. Actin cytoskeleton remodeling via Arp2/3-mediated actin polymerization is essential for podosome formation, and dynamic microtubules have an important role in maintaining podosome turnover in macrophages and osteoclasts. Little is known, however, about the involvement of the intermediate filament cytoskeleton in formation, stabilization, and turnover of podosomes. Here we show that vimentin intermediate filaments colocalize with the early sites of podosome formation at the stress fiber - focal adhesion interface in cultured vascular smooth muscle cells, but do not directly contribute to podosome formation, or stabilization. In unstimulated A7r5 cells the cytolinker protein plectin poorly colocalized with vimentin and the microdomains, but following induction by phorbol ester accumulated in the rings that surround the podosomes. In plectin-deficient A7r5 cells actin stress fiber remodelling is reduced in response to PDBu, and small podosomes remain localized at stable actin stress fibres. Pharmacological inhibition of actomyosin contractility by blebbistatin leads to an aberrant localization of podosomes away from the cell periphery and induces failure of plectin to surround the outer perimeter of these invasive adhesions. Taken together, we conclude that plectin is involved in growth and maturation of podosomes by reducing focal adhesion and stress fiber turnover, and that actomyosin-dependent contractility is required for the peripheral localization and specific deposition of plectin at the podosome rings.  相似文献   

15.
Yoshio T  Morita T  Kimura Y  Tsujii M  Hayashi N  Sobue K 《FEBS letters》2007,581(20):3777-3782
The podosome and invadopodium are dynamic cell-adhesion structures that degrade the extracellular matrix (ECM) and promote cell invasion. We recently reported that the actin-binding protein caldesmon is a pivotal regulator of podosome formation. Here, we analyzed the caldesmon's involvement in podosome/invadopodium-mediated invasion by transformed and cancer cells. The ectopic expression of caldesmon reduced the number of podosomes/invadopodia and decreased the ECM degradation activity, resulting in the suppression of cell invasion. Conversely, the depletion of caldesmon facilitated the formation of podosomes/invadopodia and cell invasion. Taken together, our results indicate that caldesmon acts as a potent repressor of cancer cell invasion.  相似文献   

16.
Podosomes are actin-rich adhesive foci found in several cell types, including macrophages. They have a core containing actin and actin-binding proteins and a peripheral ring of integrins and associated proteins. We show that podosomes are abundant in polarized mouse bone marrow-derived macrophages (BMM) and are found primarily in lamellae. We investigated the effects of CSF-1, which induces membrane ruffling, cell spreading, and subsequent polarization and migration, on podosome formation. CSF-1 induces a transient increase in podosome number and enhances the formation of circular arrays of podosomes. Conversely, CSF-1 withdrawal leads to a reduction in podosomes and a decrease in polarized cells. The PI 3-kinase inhibitor LY294002 induces loss of podosomes together with rapid retraction of lamellae and loss of polarity. Our results indicate that CSF-1 acts via PI 3-kinase to enhance podosome assembly and that this is linked to macrophage polarization.  相似文献   

17.
Cytoskeletal rearrangements are central to endothelial cell physiology and are controlled by soluble factors, matrix proteins, cell-cell interactions, and mechanical forces. We previously reported that aortic endothelial cells can rearrange their cytoskeletons into complex actin-based structures called podosomes when a constitutively active mutant of Cdc42 is expressed. We now report that transforming growth factor beta (TGF-beta) promotes podosome formation in primary aortic endothelial cells. TGF-beta-induced podosomes assembled together into large ring- or crescent-shaped structures. Their formation was dependent on protein synthesis and required functional Src, phosphatidylinositide 3-kinase, Cdc42, RhoA, and Smad signaling. MT1-MMP and metalloprotease 9 (MMP9), both upregulated by TGF-beta, were detected at sites of podosome formation, and MT1-MMP was found to be involved in the local degradation of extracellular matrix proteins beneath the podosomes and required for the invasion of collagen gels by endothelial cells. We propose that TGF-beta plays an important role in endothelial cell physiology by inducing the formation of podosomal structures endowed with metalloprotease activity that may contribute to arterial remodeling.  相似文献   

18.
Dendritic cells (DCs) are professional APCs that reside in peripheral tissues and survey the body for pathogens. Upon activation by inflammatory signals, DCs undergo a maturation process and migrate to lymphoid organs, where they present pathogen-derived Ags to T cells. DC migration depends on tight regulation of the actin cytoskeleton to permit rapid adaptation to environmental cues. We investigated the role of hematopoietic lineage cell-specific protein 1 (HS1), the hematopoietic homolog of cortactin, in regulating the actin cytoskeleton of murine DCs. HS1 localized to lamellipodial protrusions and podosomes, actin-rich structures associated with adhesion and migration. DCs from HS1(-/-) mice showed aberrant lamellipodial dynamics. Moreover, although these cells formed recognizable podosomes, their podosome arrays were loosely packed and improperly localized within the cell. HS1 interacts with Wiskott-Aldrich syndrome protein (WASp), another key actin-regulatory protein, through mutual binding to WASp-interacting protein. Comparative analysis of DCs deficient for HS1, WASp or both proteins revealed unique roles for these proteins in regulating podosomes with WASp being essential for podosome formation and with HS1 ensuring efficient array organization. WASp recruitment to podosome cores was independent of HS1, whereas HS1 recruitment required Src homology 3 domain-dependent interactions with the WASp/WASp-interacting protein heterodimer. In migration assays, the phenotypes of HS1- and WASp-deficient DCs were related, but distinct. WASp(-/y) DCs migrating in a chemokine gradient showed a large decrease in velocity and diminished directional persistence. In contrast, HS1(-/-) DCs migrated faster than wild-type cells, but directional persistence was significantly reduced. These studies show that HS1 functions in concert with WASp to fine-tune DC cytoarchitecture and direct cell migration.  相似文献   

19.
Podosome formation in vascular smooth muscle cells is characterized by the recruitment of AFAP-110, p190RhoGAP, and cortactin, which have specific roles in Src activation, local down-regulation of RhoA activity, and actin polymerization, respectively. However, the molecular mechanism that underlies their specific recruitment to podosomes remains unknown. The scaffold protein Tks5 is localized to podosomes in Src-transformed fibroblasts and in smooth muscle cells, and may serve as a specific recruiting adapter for various components during podosome formation. We show here that induced mislocalization of Tks5 to the surface of mitochondria leads to a major subcellular redistribution of AFAP-110, p190RhoGAP, and cortactin, and to inhibition of podosome formation. Analysis of a series of similarly mistargeted deletion mutants of Tks5 indicates that the fifth SH3 domain is essential for this recruitment. A Tks5 mutant lacking the PX domain also inhibits podosome formation and induces the redistribution of AFAP-110, p190RhoGAP, and cortactin to the perinuclear area. By expressing a catalytically inactive point mutant and by siRNA-mediated expression knock-down we also provide evidence that p190RhoGAP is required for podosome formation. Together our findings demonstrate that Tks5 plays a central role in the recruitment of AFAP-110, p190RhoGAP, and cortactin to drive podosome formation.  相似文献   

20.
Podosomes are adhesion structures with an extracellular matrix-degrading capacity mostly found in monocyte-derived cells. We have previously shown that the protein tyrosine kinase Hck, a member of the Src family, triggers the de novo formation of podosome rosettes in a lysosome-dependent manner when expressed in its constitutively active form. Hck is specifically expressed in myeloid cells. In human monocyte-derived macrophages (MDMs) it is present at podosomes. Here we addressed whether its activation by lipopolysaccharide and interferon-gamma has an effect on podosome organization in MDMs. Several structures were observed evolving from individual podosomes to clusters, aggregates and rosettes. In chronic myeloid leukemia cells, Hck is constitutively activated by the fusion protein Bcr-Abl and podosome-like structures were present. Finally, in monocyte-derived osteoclasts, Hck was found to accumulate at podosome belts. In conclusion, in monocyte-derived cells, it is likely that Hck could play a role in podosome re-arrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号