首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
There are two developmentally regulated alternatively spliced forms of Disabled-1 (Dab1) in the chick retina: an early form (Dab1-E) expressed in retinal precursor cells and a late form (Dab1-L) expressed in neuronal cells. The main difference between these two isoforms is the absence of two Src family kinase (SFK) recognition sites in Dab1-E. Both forms retain two Abl/Crk/Nck recognition sites implicated in the recruitment of SH2 domain-containing signaling proteins. One of the Dab1-L-specific SFK recognition sites, at tyrosine(Y)-198, has been shown to be phosphorylated in Reelin-stimulated neurons. Here, we use Reelin-expressing primary retinal cultures to investigate the role of the four Dab1 tyrosine phosphorylation sites on overall tyrosine phosphorylation, Dab1 phosphorylation, SFK activation and neurite formation. We show that Y198 is essential but not sufficient for maximal Dab1 phosphorylation, SFK activation and neurite formation, with Y232 and Y220 playing particularly important roles in SFK activation and neuritogenesis, and Y185 having modifying effects secondary to Y232 and Y220. Our data support a role for all four Dab1 tyrosine phosphorylation sites in mediating the spectrum of activities associated with Reelin-Dab1 signaling in neurons.  相似文献   

2.
Disabled-1 (Dab1) is a cytoplasmic adaptor protein that regulates neuronal migrations during mammalian brain development. Dab1 function in vivo depends on tyrosine phosphorylation, which is stimulated by extracellular Reelin and requires Src family kinases. Reelin signaling also negatively regulates Dab1 protein levels in vivo, and reduced Dab1 levels may be part of the mechanism that regulates neuronal migration. We have made use of mouse embryo cortical neuron cultures in which Reelin induces Dab1 tyrosine phosphorylation and Src family kinase activation. We have found that Dab1 is normally stable, but in response to Reelin it becomes polyubiquitinated and degraded via the proteasome pathway. We have established that tyrosine phosphorylation of Dab1 is required for its degradation. Dab1 molecules lacking phosphotyrosine are not degraded in neurons in which the Dab1 degradation pathway is active. The requirements for Reelin-induced degradation of Dab1 in vitro correctly predict Dab1 protein levels in vivo in different mutant mice. We also provide evidence that Dab1 serine/threonine phosphorylation may be important for Dab1 tyrosine phosphorylation. Our data provide the first evidence for how Reelin down-regulates Dab1 protein expression in vivo. Dab1 degradation may be important for ensuring a transient Reelin response and may play a role in normal brain development.  相似文献   

3.
Reelin is a large secreted signaling protein that binds to two members of the low density lipoprotein receptor family, the apolipoprotein E receptor 2 and the very low density lipoprotein receptor, and regulates neuronal positioning during brain development. Reelin signaling requires activation of Src family kinases as well as tyrosine phosphorylation of the intracellular adaptor protein Disabled-1 (Dab1). This results in activation of phosphatidylinositol 3-kinase (PI3K), the serine/threonine kinase Akt, and the inhibition of glycogen synthase kinase 3beta, a protein that is implicated in the regulation of axonal transport. Here we demonstrate that PI3K activation by Reelin requires Src family kinase activity and depends on the Reelin-triggered interaction of Dab1 with the PI3K regulatory subunit p85alpha. Because the Dab1 phosphotyrosine binding domain can interact simultaneously with membrane lipids and with the intracellular domains of apolipoprotein E receptor 2 and very low density lipoprotein receptor, Dab1 is preferentially recruited to the neuronal plasma membrane, where it is phosphorylated. Efficient Dab1 phosphorylation and activation of the Reelin signaling cascade is impaired by cholesterol depletion of the plasma membrane. Using a neuronal migration assay, we also show that PI3K signaling is required for the formation of a normal cortical plate, a step that is dependent upon Reelin signaling.  相似文献   

4.
Tyrosine phosphorylated Disabled 1 recruits Crk family adapter proteins   总被引:5,自引:0,他引:5  
Disabled 1 (Dab1) functions as a critical adapter protein in the Reelin signaling pathway to direct proper positioning of neurons during brain development. Reelin stimulates phosphorylation of Dab1 on tyrosines 198 and 220, and phosphorylated Dab1 is likely to interact with downstream signaling proteins that contain Src homology 2 (SH2) domains. To search for such proteins, we used a Sepharose-conjugated peptide containing phosphotyrosine 220 (PTyr-220) of Dab1, as an affinity matrix to capture binding proteins from mouse brain extracts. Mass spectrometric analysis of bound proteins revealed that Crk family adapter proteins selectively associated with this phosphorylation site. We further show that Crk-I and Crk-II, but not CrkL, stimulate phosphorylation of Dab1 on tyrosine 220 in a Src-dependent manner. Our results suggest that Crk family adapter proteins may play an important role in the Reelin signaling pathway during brain development.  相似文献   

5.
Katyal S  Godbout R 《The EMBO journal》2004,23(8):1878-1888
The Reelin-Disabled 1 (Dab1)-signaling pathway plays a critical role in neuronal cell positioning in the brain. We have isolated two alternatively spliced variants of Dab1 from chick retina, an early form (chDab1-E) expressed in undifferentiated cells and a late form (chDab1-L) expressed in amacrine and ganglion cells. A key difference between the two forms is the exclusion in chDab1-E of two Src-related tyrosine kinase recognition sites implicated in Reelin-mediated Dab1 tyrosine phosphorylation. Retinal cultures transfected with a chDab1-L expression construct undergo a dramatic change in morphology, accompanied by the formation of numerous thin elongated processes, increased tyrosine phosphorylation, activation of Src family kinase(s) and increased levels of the axonal outgrowth protein growth-associated protein-43. In contrast, chDab1-E transfectants retain an undifferentiated morphology. Mutational analysis implicates a specific tyrosine (tyr-198) in the morphological and biochemical alterations associated with chDab1-L expression. We propose that alternative splicing of chDab1 represents an effective and flexible way of regulating the Reelin-Dab1-signaling pathway in a mixed cell population, by ensuring that secreted Reelin activates the signaling cascade only in target neuronal cells.  相似文献   

6.
Reelin activates SRC family tyrosine kinases in neurons   总被引:16,自引:0,他引:16  
BACKGROUND: Reelin is a large signaling molecule that regulates the positioning of neurons in the mammalian brain. Transmission of the Reelin signal to migrating embryonic neurons requires binding to the very-low-density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor-2 (apoER2). This induces tyrosine phosphorylation of the adaptor protein Disabled-1 (Dab1), which interacts with a shared sequence motif in the cytoplasmic tails of both receptors. However, the kinases that mediate Dab1 tyrosine phosphorylation and the intracellular pathways that are triggered by this event remain unknown. RESULTS: We show that Reelin activates members of the Src family of non-receptor tyrosine kinases (SFKs) and that this activation is dependent on the Reelin receptors apoER2 and VLDLR and the adaptor protein Dab1. Dab1 is tyrosine phosphorylated by SFKs, and the kinases themselves can be further activated by phosphorylated Dab1. Increased Dab1 protein expression in fyn-deficient mice implies a response to impaired Reelin signaling that is also observed in mice lacking Reelin or its receptors. However, fyn deficiency alone does not compound the neuronal positioning defect of vldlr- or apoer2-deficient mice, and this finding suggests functional compensation by other SFKs. CONCLUSIONS: Our results show that Dab1 is a physiological substrate as well as an activator of SFKs in neurons. Based on genetic evidence gained from multiple strains of mutant mice with defects in Reelin signaling, we conclude that activation of SFKs is a normal part of the cellular Reelin response.  相似文献   

7.
The adaptor protein Disabled1 (Dab1) interacts with amyloid precursor protein (APP) and decreases its pathological processing, an effect mediated by Fyn tyrosine kinase. Fyn is highly enriched in lipid rafts, a major site of pathological APP processing. To investigate the role of Fyn in the localization and phosphorylation of APP and Dab1 in lipid rafts, we isolated detergent-resistant membrane (DRM) fractions from wild-type and Fyn knock-out mice. In wild-type mice, all of the Fyn kinase, 17% of total APP, and 33% of total Dab1 were found in DRMs. Nearly all of the tyrosine phosphorylated forms of APP and Dab1 were in DRMs. APP and Dab1 co-precipitated both in and out of DRM fractions, indicating an association that is independent of subcellular localization. Fyn knock-out mice had decreased APP, Dab1, and tyrosine-phosphorylated Dab1 in DRMs but increased co-immunoprecipitation of DRM APP and Dab1. Expression of phosphorylation deficient APP or Dab1 constructs revealed that phosphorylation of APP increases, whereas phosphorylation of Dab1 decreases, the interaction between APP and Dab1. Consistent with these observations, Reelin treatment led to increased Dab1 phosphorylation and decreased association between APP and Dab1. Reelin also caused increased localization of APP and Dab1 to DRMs, an effect that was not seen in Fyn knock-out neurons. These findings suggest that Reelin treatment promotes the localization of APP and Dab1 to DRMs, and affects their phosphorylation by Fyn, thus regulating their interaction.  相似文献   

8.
The Reelin-Disabled-1 (Dab1) signaling pathway plays a key role in the positioning of neurons during brain development. Two alternatively spliced Dab1 isoforms have been identified in chick retina and brain: Dab1-E, expressed at early stages of development, and Dab1-L (commonly referred to as Dab1), expressed at later developmental stages. The well-studied Dab1-L serves as an adaptor protein linking Reelin signal to its downstream effectors; however, nothing is known regarding the role of Dab1-E. Here we show that Dab1-E is primarily expressed in proliferating retinal progenitor cells whereas Dab1-L is found exclusively in differentiated neuronal cells. In contrast to Dab1-L, which is tyrosine phosphorylated upon Reelin stimulation, Dab1-E is not tyrosine phosphorylated and may function independently of Reelin. Knockdown of Dab1-E in chick retina results in a significant reduction in the number of proliferating cells and promotes ganglion cell differentiation. Our results demonstrate a role for Dab1-E in the maintenance of the retinal progenitor pool and determination of cell fate.Retinal progenitor cells give rise to six major classes of neurons (cone, rod, bipolar, amacrine, horizontal, and ganglion) and one class of glia (Müller) (31, 60). The temporal birth of retinal cells follows a specific order, with ganglion cells differentiating first, followed by horizontal, amacrine, cone, rod, and then bipolar and Müller glial cells (13). Retinal cells in the mature retina are assembled into three nuclear layers (ganglion, inner, and outer) separated by the inner and outer plexiform layers.The Reelin-Disabled-1 (Dab1) signaling pathway is a key regulator of neuronal cell positioning. Binding of the extracellular glycoprotein Reelin to its lipoprotein receptors, the very low density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor 2 (ApoER2), activates Src family kinases (SFK) and induces tyrosine phosphorylation of Dab1 (3, 30, 35). The intracellular adaptor protein Dab1 contains three major domains: an N-terminal protein interaction/phosphotyrosine binding (PI/PTB) domain that binds to the NPxY motif within Reelin receptors (59), an internal tyrosine-rich region responsive to Reelin stimulation (43), and a C-terminal serine/threonine-rich region involved in Reelin-Dab1 signaling modulation (29). The tyrosine-rich domain of Dab1 consists of five highly conserved tyrosine residues (Y185, Y198, Y200, Y220, and Y232) that correspond to four tyrosine kinase recognition sites. Y185 and Y198/Y200 are located within two consensus SFK recognition sites (YQXI), whereas Y220 and Y232 are found within two consensus Abl recognition sites (YXVP) (56).Upon phosphorylation, Dab1 triggers a host of signaling events, including activation of the SFK, phosphatidylinositol 3-kinase (PI-3K)/Akt, mTOR, CrkL/C3G/Rap and LIMK1 (LIM kinase 1) pathways, and phosphorylation of n-cofilin (3, 5, 10-11, 14, 39). Together, these events result in the cytoskeleton remodeling and correct positioning of neurons during development. Dab1 tyrosine phosphorylation is essential for Reelin signaling, since mice expressing the nonphosphorylated Dab1 protein have phenotypes similar to those of mice deficient in Reelin (reeler), Dab1 (yotari/scrambler/Dab1−/−), or VLDLR and ApoER2 (VLDLR−/− ApoER2−/−) (36). These mice exhibit extensive defects in neuronal migration, including layer disruption in the cerebral cortex, cerebellum, and hippocampus (17, 34, 55, 59).Defects associated with disruption of Reelin-Dab1 signaling are also observed in mouse retina and include a reduction in the number of rod bipolar cells, abnormal synaptic layering of rod bipolar cells, a reduction in the density of AII amacrine dendrites, and alteration in the positioning of amacrine cell processes (53). In humans, Reelin mutations are associated with serious ocular and visual abnormalities, including retinal dysplasia and macular hypoplasia (48). In Drosophila, inactivation of Disabled disrupts ommatidium development and leads to a frequent loss of R7 photoreceptors (46). Thus, Reelin-Dab1 signaling appears to be critical for proper development of the retina as well as the brain.Alternative splicing of the Dab1 gene has been observed in a number of organisms, including Drosophila (23), mouse (6, 33), and zebrafish (16). We have identified two alternatively spliced Dab1 isoforms in the chick retina, Dab1-E and Dab1-L, expressed at early and late stages of development, respectively (42). Dab1-L, normally referred to as Dab1, has the five tyrosine residues described earlier. Dab1-E is missing a 35-amino-acid (aa) region that includes Y198 and Y220, the major Reelin-induced Dab1 phosphorylation sites (43). Dab1-E also has a 19-aa insertion located downstream of the tyrosine-rich domain (see Fig. Fig.1).1). To address the role of Dab1-E in the retina, we have carried out a detailed analysis of Dab1-E expression during development. We demonstrate that Dab1-E is found primarily in retinal progenitor cells and that knockdown of Dab1-E affects the pool of progenitor cells in the retina. Our data suggest a tyrosine phosphorylation-independent and possibly Reelin-independent role for Dab1-E in the regulation of cell proliferation and commitment.Open in a separate windowFIG. 1.Schematic diagram of exon exclusion and inclusion in Dab1 isoforms. The two exons deleted in Dab1-E but included in Dab1-L are shown in magenta; the exon included in Dab1-E but excluded from Dab1-L is shown in blue. The phosphotyrosine binding (PTB) domain common to both Dab1 isoforms is shown in yellow. Two tyrosines, at 185 and 232, are indicated in Dab1-E. Five tyrosines, at 185, 198, 200, 220, and 232, are indicated in Dab1-L. Alternative splicing converts Y185QTI (in Dab1-L) to Y185QVP (in Dab1-E). YQXI is a consensus Src family kinase phosphorylation site, whereas YXVP is a consensus Abl family kinase recognition site.  相似文献   

9.
Disabled1 regulates the intracellular trafficking of reelin receptors   总被引:8,自引:0,他引:8  
Reelin is a huge secreted protein that controls proper laminar formation in the developing brain. It is generally believed that tyrosine phosphorylation of Disabled1 (Dab1) by Src family tyrosine kinases is the most critical downstream event in Reelin signaling. The receptors for Reelin belong to the low density lipoprotein receptor family, most of whose members undergo regulated intracellular trafficking. In this study, we propose novel roles for Dab1 in Reelin signaling. We first demonstrated that cell surface expression of Reelin receptors was decreased in Dab1-deficient neurons. In heterologous cells, Dab1 enhanced cell surface expression of Reelin receptors, and this effect was mediated by direct interaction with the receptors. Moreover, Dab1 did not stably associate with the receptors at the plasma membrane in the resting state. When Reelin was added to primary cortical neurons, Dab1 was recruited to the receptors, and its tyrosine residues were phosphorylated. Although Reelin and Dab1 colocalized well shortly after the addition of Reelin, Dab1 was no longer associated with internalized Reelin. When Src family tyrosine kinases were inhibited, internalization of Reelin was severely abrogated, and Reelin colocalized with Dab1 near the plasma membrane for a prolonged period. Taken together, these results indicate that Dab1 regulates both cell surface expression and internalization of Reelin receptors, and these regulations may play a role in correct laminar formation in the developing brain.  相似文献   

10.
Disabled-1 alternative splicing in human fetal retina and neural tumors   总被引:1,自引:0,他引:1  
Katyal S  Glubrecht DD  Li L  Gao Z  Godbout R 《PloS one》2011,6(12):e28579
  相似文献   

11.
The Crk and Crk-like (CrkL) adaptor proteins play important roles in numerous signaling pathways, bridging tyrosine kinase substrates to downstream signaling effectors by virtue of their phosphotyrosine-binding SH2 domains and their effector-binding SH3 domains. Critical to understanding the diverse roles of Crk/CrkL is the identification of tissue- and signal-specific tyrosine phosphorylated substrates to which they are recruited and the tissue-specific effector proteins they chaperone into signaling complexes. Crk and CrkL are known biochemically and genetically to be essential mediators of Reelin/Disabled-1 (Dab1) signaling, which governs proper mammalian brain development. Multimeric Reelin clusters its receptors as well as the receptor-bound intracellular scaffolding protein Dab1. Clustering induces Fyn/Src-dependent Dab1 tyrosine phosphorylation, which recruits Crk/CrkL and SH3-bound effectors. Previously, 21 Crk/CrkL-SH3 binding proteins were identified from diverse cell types. We present here the proteomic identification of 101 CrkL-SH3 binding proteins from embryonic murine brain. The identified proteins are enriched in the Crk/CrkL-SH3 binding motif and signaling activities regulating cell adhesion and motility. These results suggest Reelin-induced Dab1 tyrosine phosphorylation may generate a multifaceted signaling scaffold containing a rich array of Crk/CrkL-SH3 binding effectors and may explain a growing diversity of cellular activities suggested to be influenced by Reelin/Dab1 signaling.  相似文献   

12.
BACKGROUND: Disabled-1 (Dab1) is an intracellular adaptor protein that regulates migrations of various classes of neurons during mammalian brain development. Dab1 function depends on its tyrosine phosphorylation, which is stimulated by Reelin, an extracellular signaling molecule. Reelin increases the stoichiometry of Dab1 phosphorylation and downregulates Dab1 protein levels. Reelin binds to various cell surface receptors, including two members of the low-density lipoprotein receptor family that also bind to Dab1. Mutations in Dab1, its phosphorylation sites, Reelin, or the Reelin receptors cause a common phenotype. However, the molecular mechanism whereby Reelin regulates Dab1 tyrosine phosphorylation is poorly understood.RESULTS: We found that Reelin-induced Dab1 tyrosine phosphorylation in neuron cultures is inhibited by acute treatment with pharmacological inhibitors of Src family, but not Abl family, kinases. In addition, Reelin stimulates Src family kinases by a mechanism involving Dab1. We analyzed the Dab1 protein level and tyrosine phosphorylation stoichiometry by using brain samples and cultured neurons that were obtained from mouse embryos carrying mutations in Src family tyrosine kinases. We found that fyn is required for proper Dab1 levels and phosphorylation in vivo and in vitro. When fyn copy number is reduced, src, but not yes, becomes important, reflecting a partial redundancy between fyn and src.CONCLUSIONS: Reelin activates Fyn to phosphorylate and downregulate Dab1 during brain development. The results were unexpected because Fyn deficiency does not cause the same developmental phenotype as Dab1 or Reelin deficiency. This suggests additional complexity in the Reelin signaling pathway.  相似文献   

13.
Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants.  相似文献   

14.
The focal adhesion protein VASP, a possible link between signal transduction pathways and the microfilament system, is phosphorylated by both cAMP- and cGMP-dependent protein kinases in vitro and in intact cells. Here, the analysis of VASP dephosphorylation by the serine/threonine protein phosphatases (PP) PP1, PP2A, PP2B and PP2C in vitro is reported. The phosphatases differed in their selectivity with respect to the dephosphorylation of individual VASP phosphorylation sites. Incubation of human platelets with okadaic acid, a potent inhibitor of PP1 and PP2A, caused the accumulation of phosphorylated VASP indicating that the phosphorylation status of VASP in intact cells is regulated to a major extent by serine/ threonine protein phosphatases. Furthermore, the accumulation of phosphorylated cAMP-dependent protein kinase substrate(s) appears to account for inhibitory effects of okadaic acid on platelet function.  相似文献   

15.
Phosphorylation of phospholipase C‐δ1 (PLC‐δ1) in vitro and in vivo was investigated. Of the serine/threonine kinases tested, protein kinase C (PKC) phosphorylated the serine residue(s) of bacterially expressed PLC‐δ1 most potently. It was also demonstrated that PLC‐δ1 directly bound PKC‐α via its pleckstrin homology (PH) domain. Using deletion mutants of PLC‐δ1 and synthetic peptides, Ser35 in the PH domain was defined as the PKC mediated in vitro phosphorylation site of PLC‐δ1. In vitro phosphorylation of PLC‐δ1 by PKC stimulated [3H]PtdIns(4,5)P2 hydrolyzing activity and [3H]Ins(1,4,5)P3‐binding of the PLC‐δ1. On the other hand, endogenous PLC‐δ1 was constitutively phosphorylated and phosphoamino acid analysis revealed that major phosphorylation sites were threonine residues in quiescent cells. The phosphorylation level and the species of phosphoamino acid were not changed by various stimuli such as PMA, EGF, NGF, and forskolin. Using matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry, we determined that Thr209 of PLC‐δ1 is one of the constitutively phosphorylated sites in quiescent cells. The PLC activity was potentiated when constitutively phosphorylated PLC‐δ1 was dephosphorylated by endogenous phosphatase(s) in vitro. Additionally, coexpression with PKC‐α reduced serine phosphorylation of PLC‐δ1 detected by an anti‐phosphoserine antibody and PLC‐δ1‐dependent basal production of inositol phosphates in NIH‐3T3 cells, suggesting PKC‐α activates phosphatase or inactivates another kinase involved in PLC‐δ1 serine phosphorylation to modulate the PLC‐δ1 activity in vivo. Taken together, these results suggest that PLC‐δ1 has multiple phosphorylation sites and phosphorylation status of PLC‐δ1 regulates its activity positively or negatively depends on the phosphorylation sites. J. Cell. Biochem. 108: 638–650, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Signaling through Disabled 1 requires phosphoinositide binding   总被引:4,自引:0,他引:4  
The Reelin signaling pathway plays a critical role in the correct positioning of neurons within the developing brain. Within this pathway, Disabled 1 (Dab1) serves as an intracellular adaptor that is tyrosine phosphorylated when Reelin, a secreted glycoprotein, binds to the lipoprotein receptors VLDLR and ApoER2 on the surface of neurons. The phosphotyrosine-binding (PTB) domain within its amino terminus enables Dab1 to recognize and bind to a conserved sequence motif within the cytoplasmic tails of the receptors. In addition, the PTB contains a Pleckstrin Homology-like subdomain that binds to phosphoinositides. Here, we show that the phosphoinositide-binding region within Dab1 PTB domain is required for membrane localization and basal tyrosine phosphorylation of Dab1 independently of VLDLR and ApoER2. Furthermore, receptor-independent membrane targeting of Dab1 is required for its interaction with Src and Crk, and disruption of phosphoinositide binding also blocks subsequent Reelin-induced tyrosine phosphorylation of Dab1.  相似文献   

17.
Apolipoprotein E Receptor 2 (ApoER2) and the tyrosine kinase Fyn are both members of the Reelin pathway, a signaling pathway essential for the laminar formation of the cortex during development and proper dendritic spine density and long-term potential (LTP) in the adult brain. In the presence of extracellular Reelin, ApoER2 binds the intracellular protein Dab1, an adaptor protein that is phosphorylated by Fyn. However, direct interactions between ApoER2 and Fyn are not well defined. Here, we show that total levels of ApoER2 and surface levels of ApoER2 are increased by active Fyn. Via a separate mechanism, ApoER2 is also phosphorylated by Fyn, an event that peaks in the postnatal cortex at day 5 and can occur at multiple ApoER2 tyrosine residues. Dab1 is also involved in this phosphorylation, promoting the phosphorylation of ApoER2 by Fyn when it is itself phosphorylated. These results elucidate some of the intracellular mechanisms that give rise to a functional Reelin pathway.  相似文献   

18.
19.
The ability of the cytoplasmic, full-length C-terminus of the β2-adrenergic receptor (BAC1) expressed in Escherichia coli to act as a functional domain and substrate for protein phosphorylation was tested. BAC1 was expressed at high-levels, purified, and examined in solution as a substrate for protein phosphorylation. The mobility of BAC1 on SDS–PAGE mimics that of the native receptor itself, displaying decreased mobility upon chemical reduction of disulfide bonds. Importantly, the C-terminal, cytoplasmic domain of the receptor expressed in E. coli was determined to be a substrate for phosphorylation by several candidate protein kinases known to regulate G-protein-linked receptors. Mapping was performed by proteolytic degradation and matrix-assisted laser desorption ionization, time-of-flight mass spectrometry. Purified BAC1 is phosphorylated readily by protein kinase A, the phosphorylation occurring within the predicted motif RRSSSK. The kinetic properties of the phosphorylation by protein kinase A displayed cooperative character. The activated insulin receptor tyrosine kinase, which phosphorylates the beta-adrenergic receptor in vivo, phosphorylates BAC1. The Y364 residue of BAC1 was predominantly phosphorylated by the insulin receptor kinase. GRK2 catalyzed modest phosphorylation of BAC1. Phosphorylation of the human analog of BAC1 in which Cys341 and Cys378 were mutated to minimize disulfide bonding constraints, displayed robust phosphorylation following thermal activation, suggesting under standard conditions that the population of BAC1 molecules capable of assuming the “activated” conformer required by GRKs is low. BAC1 was not a substrate for protein kinase C, suggesting that the canonical site in the second cytoplasmic loop of the intact receptor is preferred. The functional nature of BAC1 was tested additionally by expression of BAC1 protein in human epidermoid carcinoma A431 cells. BAC1 was found to act as a dominant-negative, blocking agonist-induced desensitization of the beta-adrenergic receptor when expressed in mammalian cells. Thus, the C-terminal, cytoplasmic tail of this G-protein-linked receptor expressed in E. coli acts as a functional domain, displaying fidelity with regard to protein kinase action in vivo and acting as a dominant-negative with respect to agonist-induced desensitization.  相似文献   

20.
Reelin is a large secreted protein that controls cortical layering by signaling through the very low density lipoprotein receptor and apolipoprotein E receptor 2, thereby inducing tyrosine phosphorylation of the adaptor protein Disabled-1 (Dab1) and suppressing tau phosphorylation in vivo. Here we show that binding of Reelin to these receptors stimulates phosphatidylinositol 3-kinase, resulting in activation of protein kinase B and inhibition of glycogen synthase kinase 3beta. We present genetic evidence that this cascade is dependent on apolipoprotein E receptor 2, very low density lipoprotein receptor, and Dab1. Reelin-signaling components are enriched in axonal growth cones, where tyrosine phosphorylation of Dab1 is increased in response to Reelin. These findings suggest that Reelin-mediated phosphatidylinositol 3-kinase signaling in neuronal growth cones contributes to final neuron positioning in the mammalian brain by local modulation of protein kinase B and glycogen synthase kinase 3beta kinase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号