首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
2.
Sun SC 《Cell research》2011,21(1):71-85
The non-canonical NF-κB pathway is an important arm of NF-κB signaling that predominantly targets activation of the p52/RelB NF-κB complex. This pathway depends on the inducible processing of p100, a molecule functioning as both the precursor of p52 and a RelB-specific inhibitor. A central signaling component of the non-canonical pathway is NF-κB-inducing kinase (NIK), which integrates signals from a subset of TNF receptor family members and activates a downstream kinase, IκB kinase-α (IKKα), for triggering p100 phosphorylation and processing. A unique mechanism of NIK regulation is through its fate control: the basal level of NIK is kept low by a TRAF-cIAP destruction complex and signal-induced non-canonical NF-κB signaling involves NIK stabilization. Tight control of the fate of NIK is important, since deregulated NIK accumulation is associated with lymphoid malignancies.  相似文献   

3.
Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-κB ligand (RANKL) in RA synoviocytes and CD4(+) T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4(+) T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4(+) T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-α in MH7A cells and CD4(+) T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4(+) T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.  相似文献   

4.
5.
6.
Caspases are intracellular proteases that are best known for their function in apoptosis signaling. It has become evident that many caspases also function in other signaling pathways that propagate cell proliferation and inflammation, but studies on the inflammatory function of caspases have mainly been limited to caspase-1-mediated cytokine processing. Emerging evidence, however, indicates an important contribution of caspases as mediators or regulators of nuclear factor-κB (NF-κB) signaling, which plays a key role in inflammation and immunity. Much still needs to be learned about the mechanisms that govern the activation and regulation of NF-κB by caspases, and this review provides an update of this area. Whereas apoptosis signaling is dependent on the catalytic activity of caspases, they mainly act as scaffolding platforms for other signaling proteins in the case of NF-κB signaling. Caspase proteolytic activity, however, counteracts the pro-survival function of NF-κB by cleaving specific signaling molecules. A striking exception is the paracaspase mucosa-associated lymphoid tissue 1 (MALT1), whose adaptor and proteolytic activity are both needed to initiate a full blown NF-κB response in antigen-stimulated lymphocytes. Understanding the role of caspases and MALT1 in the regulation of NF-κB signaling is of high interest for therapeutic immunomodulation.  相似文献   

7.
The major hallmark of cellular senescence is an irreversible cell cycle arrest and thus it is a potent tumor suppressor mechanism. Genotoxic insults, e.g. oxidative stress, are important inducers of the senescent phenotype which is characterized by an accumulation of senescence-associated heterochromatic foci (SAHF) and DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS). Interestingly, senescent cells secrete pro-inflammatory factors and thus the condition has been called the senescence-associated secretory phenotype (SASP). Emerging data has revealed that NF-κB signaling is the major signaling pathway which stimulates the appearance of SASP. It is known that DNA damage provokes NF-κB signaling via a variety of signaling complexes containing NEMO protein, an NF-κB essential modifier, as well as via the activation of signaling pathways of p38MAPK and RIG-1, retinoic acid inducible gene-1. Genomic instability evoked by cellular stress triggers epigenetic changes, e.g. release of HMGB1 proteins which are also potent enhancers of inflammatory responses. Moreover, environmental stress and chronic inflammation can stimulate p38MAPK and ceramide signaling and induce cellular senescence with pro-inflammatory responses. On the other hand, two cyclin-dependent kinase inhibitors, p16INK4a and p14ARF, are effective inhibitors of NF-κB signaling. We will review in detail the signaling pathways which activate NF-κB signaling and trigger SASP in senescent cells.  相似文献   

8.
《Reproductive biology》2022,22(3):100679
It has been reported that oxidative stress and chronic inflammation may be involved in the pathogenesis of polycystic ovary syndrome (PCOS). 8-oxoguanine DNA glycosylase (OGG1) is the main glycosylase that catalyzes the excision of DNA oxidation products. In this study, we investigated the role and potential mechanisms of OGG1 in the development of PCOS. We first analyzed OGG1 levels in serum and follicular fluid (FF) of PCOS patients, and significantly elevated OGG1 levels were noted in PCOS patients. We similarly observed a significant upregulation of OGG1 expression levels in ovarian tissue of the dehydroepiandrosterone (DHEA)-induced PCOS rat model. In addition, increased apoptosis and increased production of reactive oxygen species (ROS) were observed after the addition of OGG1-specific inhibitor (TH5487) in human granulosa-like tumor cell line (KGN) cells following a concentration gradient, along with a significant decrease in mRNA levels of inflammatory factors such as CXCL2, IL-6, MCP1, IL-1β, and IL-18. Significant decreases in protein phosphorylation levels of P65 and IκBα were also observed in cells. In addition, we found a significant positive correlation between OGG1 and IL-6 expression levels in human and DHEA-induced PCOS rat models. In conclusion, our results suggest that OGG1 might be involved in the pathogenesis of PCOS by regulating the secretion of IL-6 through NF-κB signaling pathway, and there might be a balance between the inhibition of oxidative stress and the promotion of chronic inflammation by OGG1 on KGN cells.  相似文献   

9.

Background  

Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates a multitude of cellular functions, including cell proliferation, survival, migration and angiogenesis. S1P mediates its effects either by signaling through G protein-coupled receptors (GPCRs) or through an intracellular mode of action. In this study, we have investigated the mechanism behind S1P-induced survival signalling.  相似文献   

10.
11.
The canonical nuclear factor-κB (NF-κB) signaling pathway controls a gene network important in the cellular inflammatory response. Upon activation, NF-κB/RelA is released from cytoplasmic inhibitors, from where it translocates into the nucleus, subsequently activating negative feedback loops producing either monophasic or damped oscillatory nucleo-cytoplasmic dynamics. Although the population behavior of the NF-κB pathway has been extensively modeled, the sources of cell-to-cell variability are not well understood. We describe an integrated experimental-computational analysis of NF-κB/RelA translocation in a validated cell model exhibiting monophasic dynamics. Quantitative measures of cellular geometry and total cytoplasmic concentration and translocated RelA amounts were used as priors in Bayesian inference to estimate biophysically realistic parameter values based on dynamic live cell imaging studies of enhanced GFP-tagged RelA in stable transfectants. Bayesian inference was performed on multiple cells simultaneously, assuming identical reaction rate parameters, whereas cellular geometry and initial and total NF-κB concentration-related parameters were cell-specific. A subpopulation of cells exhibiting distinct kinetic profiles was identified that corresponded to differences in the IκBα translation rate. We conclude that cellular geometry, initial and total NF-κB concentration, IκBα translation, and IκBα degradation rates account for distinct cell-to-cell differences in canonical NF-κB translocation dynamics.  相似文献   

12.
13.
The renin-angiotensin system (RAS) regulates vascular tone and plays a critical role in vascular remodeling, which is the result of a complex interplay of alterations in vascular tone and structure. Inhibition of the RAS has led to important pharmacological tools to prevent and treat vascular diseases such as hypertension, diabetic vasculopathy and atherosclerosis. Angiotensin converting enzyme 2 (ACE2) was recently identified as a multifunctional monocarboxypeptidase responsible for the conversion of angiotensin (Ang) II to Ang-(1–7). The ACE2/Ang-(1–7) signaling has been shown to prevent cellular proliferation, pathological hypertrophy, oxidative stress and vascular fibrosis. Thus, the ACE2/Ang-(1–7) signaling is deemed to be beneficial to the cardiovascular system as a negative regulator of the RAS. The addition of the ACE2/Ang-(1–7) signaling to the complexities of the RAS may lead to the development of novel therapeutics for the treatment of hypertension and other vascular diseases. The present review considers recent findings regarding the ACE2/Ang-(1–7) signaling and focuses on its regulatory roles in processes related to proliferation, inflammation, vascular fibrosis and remodeling, providing proof of principle for the potential use of ACE2 as a novel therapy for vascular disorders related to vascular remodeling.  相似文献   

14.
Human immunodeficiency virus (HIV) regulatory protein Tat has pro-oxidant property, which might contribute to Tat-induced long terminal repeat region (LTR) transactivation. However, the intracellular mechanisms whereby Tat triggers ROS production, and the relationship between Tat-induced ROS production and LTR transactivation, are still subject to debate. The present study was undertaken to evaluate the specific effects of Tat on nicotinamide adenine denucleotide phosphate (NADPH) oxidase in MAGI cells, and to determine the specific role of NADPH oxidase in Tat-induced LTR transactivation. Application of Tat to MAGI cells caused increases in ROS formation that were prevented by both pharmacologic NADPH oxidase inhibitors and by siRNA Nox2, but not by other inhibitors of pro-oxidant enzymes or siRNA Nox4. Furthermore, inhibition of NADPH oxidase by both pharmacologic NADPH oxidase inhibitors and by siRNA Nox2 attenuated Tat-induced p65 phosphorylation and IKK phosphorylation. Phosphatidylinositol 3-kinase/Akt signaling pathway was involved in Tat-induced NADPH oxidase stimulation. Finally, NADPH oxidase inhibitors or Nox2 siRNA, but not control siRNA, inhibited Tat-induced LTR transactivation. Tat-induced HIV-1 LTR transactivation was inhibited in wortmannin or LY294002 treated cells compared to control cells. Together, these data describe a specific and biologically significant signaling component of the MAGI cells response to Tat, and suggest the PI3K/Akt signaling pathway might originate in part with Tat-induced activation of NADPH oxidase and LTR transactivation.  相似文献   

15.
16.
17.
18.
Friedman R  Hughes AL 《Immunogenetics》2002,53(10-11):964-974
The mechanisms of innate immunity in vertebrates show certain overall resemblances to immune mechanisms of insects. Two hypotheses have been proposed to explain these resemblances. (1) According to the evolutionary continuity hypothesis, innate immune mechanisms evolved in the common ancestor of vertebrates and insects and have been conserved since that time. (2) In the independent-evolution hypothesis, the mechanisms of innate immunity in vertebrates evolved independently from invertebrate immune mechanisms. Phylogenetic analysis of five gene families (Pelle, Rel, IkappaB, Toll, and TRAF) whose members are involved in NF-kappaB signaling in vertebrates and insects were used to decide between these hypotheses. The phylogenies of the Rel and TRAF families strongly supported independent evolution of immune functions in vertebrates and invertebrates, and, except for a possible case in the Pelle family, orthologous molecules having immune functions in both vertebrates and invertebrates were not found. The results suggest that NF-kappaB represents an ancient, generalized signaling system that has been co-opted for immune system roles independently in vertebrate and insect lineages.  相似文献   

19.
Liu S  Chen ZJ 《Cell research》2011,21(1):6-21
Best known for its role in targeting protein degradation by the proteasome, ubiquitin modification has also emerged as an important mechanism that regulates cell signaling through proteasome-independent mechanisms. The role of ubiquitin as a versatile signaling tag is characteristically illustrated in the NF-κB pathways, which regulate a variety of physiological and pathological processes in response to diverse stimuli. Here, we review the role of ubiquitination in different steps of the NF-κB signaling cascades, focusing on recent advances in understanding the mechanisms of protein kinase activation by polyubiquitin chains in different pathways that converge on NF-κB.  相似文献   

20.
Both embryonic and adult neurogenesis involves the self-renewal/proliferation,survival,migration and lineage differentiation of neural stem/progenitor cells.Such dynamic process is tightly regulated by...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号