首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Par-4 (prostate apoptosis response 4) is a pro-apoptotic protein and tumour suppressor that was originally identified as a gene product up-regulated during apoptosis in prostate cancer cells. Here, we show, for the first time, that Par-4 is expressed and co-localizes with the actin filament bundles in vascular smooth muscle. Furthermore, we demonstrate that targeting of ZIPK to the actin filaments, as observed upon PGF-2α stimulation, is inhibited by the presence of a cell permeant Par-4 decoy peptide. The same decoy peptide also significantly inhibits PGF-2α induced contractions of smooth muscle tissue. Moreover, knockdown of Par-4 using antisense morpholino nucleotides results in significantly reduced contractility, and myosin light chain and myosin phosphatase target subunit phosphorylation. These results indicate that Par-4 facilitates contraction by targeting ZIPK to the vicinity of its substrates, myosin light chain and MYPT, which are located on the actin filaments. These results identify Par-4 as a novel regulator of myosin light chain phosphorylation in differentiated, contractile vascular smooth muscle.  相似文献   

2.
Zipper interacting protein kinase (ZIPK, also known as death-associated protein kinase 3 [DAPK3]) is a Ser/Thr kinase that functions in programmed cell death. Since its identification eight years ago, contradictory findings regarding its intracellular localization and molecular mode of action have been reported, which may be attributed to unpredicted differences among the human and rodent orthologs. By aligning the sequences of all available ZIPK orthologs, from fish to human, we discovered that rat and mouse sequences are more diverged from the human ortholog relative to other, more distant, vertebrates. To test experimentally the outcome of this sequence divergence, we compared rat ZIPK to human ZIPK in the same cellular settings. We found that while ectopically expressed human ZIPK localized to the cytoplasm and induced membrane blebbing, rat ZIPK localized exclusively within nuclei, mainly to promyelocytic leukemia oncogenic bodies, and induced significantly lower levels of membrane blebbing. Among the unique murine (rat and mouse) sequence features, we found that a highly conserved phosphorylation site, previously shown to have an effect on the cellular localization of human ZIPK, is absent in murines but not in earlier diverging organisms. Recreating this phosphorylation site in rat ZIPK led to a significant reduction in its promyelocytic leukemia oncogenic body localization, yet did not confer full cytoplasmic localization. Additionally, we found that while rat ZIPK interacts with PAR-4 (also known as PAWR) very efficiently, human ZIPK fails to do so. This interaction has clear functional implications, as coexpression of PAR-4 with rat ZIPK caused nuclear to cytoplasm translocation and induced strong membrane blebbing, thus providing the murine protein a possible adaptive mechanism to compensate for its sequence divergence. We have also cloned zebrafish ZIPK and found that, like the human and unlike the murine orthologs, it localizes to the cytoplasm, and fails to bind the highly conserved PAR-4 protein. This further supports the hypothesis that murine ZIPK underwent specific divergence from a conserved consensus. In conclusion, we present a case of species-specific divergence occurring in a specific branch of the evolutionary tree, accompanied by the acquisition of a unique protein–protein interaction that enables conservation of cellular function.  相似文献   

3.
Heat shock protein 105 (Hsp105) is a molecular chaperone, and the isoforms Hsp105α and Hsp105β exhibit distinct functions with different subcellular localizations. Hsp105β localizes in the nucleus and induces the expression of the major heat shock protein Hsp70, whereas cytoplasmic Hsp105α is less effective in inducing Hsp70 expression. Hsp105 shuttles between the cytoplasm and the nucleus; the subcellular localization is governed by the relative activities of the nuclear localization signal (NLS) and nuclear export signal (NES). Here, we show that nuclear accumulation of Hsp105α but not Hsp105β is involved in Adriamycin (ADR) sensitivity. Knockdown of Hsp105α induces cell death at low ADR concentration, at which ADR is less effective in inducing cell death in the presence of Hsp105α. Of note, Hsp105 is localized in the nucleus under these conditions, even though Hsp105β is not expressed, indicating that Hsp105α accumulates in the nucleus in response to ADR treatment. The exogenously expressed Hsp105α but not its NLS mutant localizes in the nucleus of ADR-treated cells. In addition, the expression level of the nuclear export protein chromosomal maintenance 1 (CRM1) was decreased by ADR treatment of cells, and CRM1 knockdown caused nuclear accumulation of Hsp105α both in the presence and absence of ADR. These results indicating that Hsp105α accumulates in the nucleus in a manner dependent on the NLS activity via the suppression of nuclear export. Our findings suggest a role of nuclear Hsp105α in the sensitivity against DNA-damaging agents in tumor cells.  相似文献   

4.
The serine/arginine-rich (SR) proteins are one type of major actors in regulation of pre-mRNA splicing. Their functions are closely related to the intracellular spatial organization. The RS domain and phosphorylation status of SR proteins are two critical factors in determining the subcellular distribution. Mammalian Transformer-2β (Tra2β) protein, a member of SR proteins, is known to play multiple important roles in development and diseases. In the present study, we characterized the subcellular and subnuclear localization of Tra2β protein and its related mechanisms. The results demonstrated that in the brain the nuclear and cytoplasmic localization of Tra2β were correlated with its phosphorylation status. Using deletional mutation analysis, we showed that the nuclear localization of Tra2β was determined by multiple nuclear localization signals (NLSs) in the RS domains. The point-mutation analysis disclosed that phosphorylation of serine residues in the NLSs inhibited the function of NLS in directing Tra2β to the nucleus. In addition, we identified at least two nuclear speckle localization signals within the RS1 domain, but not in the RS2 domain. The nuclear speckle localization signals determined the localization of RS1 domain-contained proteins to the nuclear speckle. The function of the signals did not depend on the presence of serine residues. The results provide new insight into the mechanisms by which the subcellular and subnuclear localization of Tra2β proteins are regulated.  相似文献   

5.
6.
Tob, a member of the Tob and BTG antiproliferative protein family, plays an important role in many cellular processes including cell proliferation. In this study, we have addressed molecular mechanisms regulating subcellular localization of Tob. Treatment with leptomycin B, an inhibitor of nuclear export signal (NES) receptor, resulted in a change in subcellular distribution of Tob from its pan-cellular distribution to nuclear accumulation, indicating the existence of NES in Tob. Our results have then identified an N-terminal region (residues 2-14) of Tob as a functional NES. They have also shown that Tob has a functional, bipartite nuclear localization signal (NLS) in residues 18-40. Thus, Tob is shuttling between the nucleus and the cytoplasm by its NES and NLS. To examine a possible relationship between subcellular distribution of Tob and its function, we exogenously added a strong NLS sequence or a strong NES sequence or both to Tob. The obtained results have demonstrated that the strong NLS-added Tob has a much weaker activity to inhibit cell cycle progression from G0/G1 to S phase. These results suggest that cytoplasmic localization or nucleocytoplasmic shuttling is important for the antiproliferative function of Tob.  相似文献   

7.
Zipper-interacting protein kinase (ZIPK) regulates Ca(2+)-independent phosphorylation of both smooth muscle (to regulate contraction) and non-muscle myosin (to regulate non-apoptotic cell death) through either phosphorylation and inhibition of myosin phosphatase, the myosin phosphatase inhibitor CPI17, or direct phosphorylation of myosin light chain. ZIPK is regulated by multisite phosphorylation. Phosphorylation at least three sites Thr-180, Thr-225, and Thr-265 has been shown to be essential for full activity, whereas phosphorylation at Thr-299 regulates its intracellular localization. Herein we utilized an unbiased proteomics screen of smooth muscle extracts with synthetic peptides derived from the sequence of the regulatory phosphorylation sites of the enzyme to identify the protein kinases that might regulate ZIPK activity in vivo. Discrete kinase activities toward Thr-265 and Thr-299 were defined and identified by mass spectrometry as Rho kinase 1 (ROCK1). In vitro, ROCK1 showed a high degree of substrate specificity toward native ZIPK, both stoichiometrically phosphorylating the enzyme at Thr-265 and Thr-299 as well as bringing about activation. In HeLa cells, coexpression of ZIPK with ROCK1 altered the ROCK-induced phenotype of focused stress fiber pattern to a Rho-like phenotype of parallel stress fiber pattern. This effect was also dependent upon phosphorylation at Thr-265. Our findings provide a new regulatory pathway in smooth muscle and non-muscle cells whereby ROCK1 phosphorylates and regulates ZIP kinase.  相似文献   

8.
Dynamic subcellular localization is an important regulatory mechanism for many proteins. cIAP1 and cIAP2 are two closely related members of inhibitor of apoptosis (IAP) family that play a role both as caspase inhibitors and as mediators of tumor necrosis factor (TNF) receptor signaling. Here, we report that cIAP1 and cIAP2 are nuclear shuttling proteins, whose subcellular localization is mediated by the CRM1-dependent nuclear export pathway. Blocking export with leptomycin B induces accumulation of both endogenous cIAP1 and epitope-tagged cIAP1 and cIAP2 in the nucleus of human cancer cells. We have identified a new CRM1-dependent leucine-rich nuclear export signal (NES) in the linker region between cIAP1 BIR2 and BIR3 repeats. Mutational inactivation of the NES, which is not conserved in cIAP2, reduces cIAP1 nuclear export. Forced relocation of cIAP1 to the nucleus did not significantly alter its ability to prevent apoptosis. Interestingly, co-expression experiments showed that the cIAP1 and cIAP2-interacting protein TNF receptor-associated factor 2 (TRAF2) plays an important role as regulator of IAP nucleocytoplasmic localization, by preventing nuclear translocation of cIAP1 and cIAP2. TRAF2-mediated cytoplasmic retention of cIAP1 was reduced upon TNFalpha treatment. Our results identify molecular mechanisms that contribute to regulate the subcellular localization of cIAP1 and cIAP2. Translocation between different cell compartments may add a further level of control for cIAP1 and cIAP2 activity.  相似文献   

9.
GW182 family proteins play important roles in microRNA (miRNA)-mediated gene silencing. They interact with Argonaute (Ago) proteins and localize in processing bodies, which are cytoplasmic foci involved in mRNA degradation and storage. Here, we demonstrated that human GW182 paralog, TNRC6A, is a nuclear–cytoplasmic shuttling protein, and its subcellular localization is conducted by a nuclear export signal (NES) and a nuclear localization signal (NLS) identified in this study. TNRC6A with mutations in its NES region was predominantly localized in the nucleus in an Ago-independent manner. However, it was found that TNRC6A could bring Ago protein into the nucleus via its Ago-interacting motif(s). Furthermore, miRNAs were also colocalized with nuclear TNRC6A-Ago and exhibited gene silencing activity. These results proposed the possibility that TNRC6A plays an important role in navigating Ago protein into the nucleus to lead miRNA-mediated gene silencing.  相似文献   

10.
11.
The mitotic kinesin-like protein (Mklp-1) localizes in the nucleus during interphase due to the presence of nuclear localization signal(s) [NLS(s)] within its sequence. Here, we mapped two NLSs to be 899SRKRRSST906 and 949KRKKP953 in the tail domain of Mklp-1, and showed that ectopic expression of a mutant Mklp-1 without the NLSs leads to cell cycle arrest at cytokinesis, indicating that the NLSs are necessary for Mklp-1 to execute its normal function during cell division. Furthermore, mutation of two serine residues in the first NLS to aspartic acid, which mimics phosphorylation, attenuated its nuclear localization function, suggesting that the function of this NLS might be regulated by phosphorylation.  相似文献   

12.
13.
3'-Phosphoinositide-dependent protein kinase-1 (PDK1), the direct upstream kinase of Akt, can localize to the nucleus during specific signalling events. The mechanism used for its import into the nucleus, however, remains unresolved as it lacks a canonical nuclear localization signal (NLS). Expression of activated Src kinase in C6 glioblastoma cells promotes the association of tyrosylphosphorylated PDK1 with the NLS-containing tyrosine phosphatase SHP-1 as well as the nuclear localization of both proteins. A constitutive nucleo-cytoplasmic SHP-1:PDK1 shuttling complex is supported by several lines of evidence including (i) the distribution of both proteins to similar subcellular compartments following manipulation of the nuclear pore complex, (ii) the nuclear retention of SHP-1 upon overexpression of a PDK1 protein bearing a disrupted nuclear export signal (NES), and (iii) the exclusion of PDK1 from the nucleus upon overexpression of SHP-1 lacking the NLS or following siRNA-mediated knock-down of SHP-1. The latter case results in a perinuclear distribution of PDK1 that corresponds with the distribution of PIP3 (phosphatidylinositol 3,4,5-triphosphate), while a PDK1 protein bearing a mutated PH domain that abrogates PIP3-binding is excluded from the nucleus. Our data suggest that the SHP-1:PDK1 complex is recruited to the nuclear membrane by binding to perinuclear PIP3, whereupon SHP-1 (and its NLS) facilitates active import. Export from the nucleus relies on PDK1 (and its NES). The intact complex contributes to Src kinase-induced, Akt-sensitive podial formation in C6 cells.  相似文献   

14.
K Engel  A Kotlyarov    M Gaestel 《The EMBO journal》1998,17(12):3363-3371
To study the intracellular localization of MAPKAP kinase 2 (MK2), which carries a putative bipartite nuclear localization signal (NLS), we constructed a green fluorescent protein-MAPKAP kinase 2 fusion protein (GFP-MK2). In transfected cells, this protein is located predominantly in the nucleus; unexpectedly, upon stress, it rapidly translocates to the cytoplasm. This translocation can be blocked by the p38 MAP kinase inhibitor SB203580, indicating its regulation by phosphorylation. Molecular mimicry of MK2 phosphorylation at T317 in GFP-MK2 led to a mutant which is located almost exclusively in the cytoplasm of the cell, whereas the mutant T317A shows no stress-induced redistribution. Since leptomycin B, which inhibits the interaction of exportin 1 with the Rev-type leucine-rich nuclear export signal (NES), blocks stress-dependent translocation of GFP-MK2, it is supposed that phosphorylation-induced export of the protein causes the translocation. We have identified the region responsible for nuclear export in MK2 which is partially overlapping with and C-terminal to the autoinhibitory motif. This region contains a cluster of hydrophobic amino acids in the characteristic spacing of a leucine-rich Rev-type NES which is necessary to direct GFP-MK2 to the cytoplasm. However, unlike the Rev-type NES, this region alone is not sufficient for nuclear export. The data obtained indicate that MK2 contains a constitutively active NLS and a stress-regulated signal for nuclear export. Keywords: nuclear export/nuclear import/protein phosphorylation/signal transduction/stress response  相似文献   

15.
Nuclear import and export of influenza virus nucleoprotein.   总被引:11,自引:4,他引:7       下载免费PDF全文
Influenza virus nucleoprotein (NP) shuttles between the nucleus and the cytoplasm. A nuclear localization signal (NLS) has been identified in NP at amino acids 327 to 345 (J. Davey et al., Cell 40:667-675, 1985). However, some NP mutants that lack this region still localize to the nucleus, suggesting an additional NLS in NP. We therefore investigated the nucleocytoplasmic transport of NP from influenza virus A/WSN/33 (H1N1). NP deletion constructs lacking the 38 N-terminal amino acids, as well as those lacking the 38 N-terminal amino acids and the previously identified NLS, localized to both the cytoplasm and the nucleus. Nuclear localization of a protein containing amino acids 1 to 38 of NP fused to LacZ proved that these 38 amino acids function as an NLS. Within this region, we identified two basic amino acids, Lys7 and Arg8, that are crucial for NP nuclear import. After being imported into the nucleus, the wild-type NP and the NP-LacZ fusion construct containing amino acids 1 to 38 of NP were both transported back to the cytoplasm, where they accumulated. These data indicate that NP has intrinsic structural features that allow nuclear import, nuclear export, and cytoplasmic accumulation in the absence of any other viral proteins. Further, the information required for nuclear import and export is located in the 38 N-terminal amino acids of NP, although other NP nuclear export signals may exist. Treatment of cells with a protein kinase C inhibitor increased the amounts of nuclear NP, whereas treatment of cells with a phosphorylation stimulator increased the amounts of cytoplasmic NP. These findings suggest a role of phosphorylation in nucleocytoplasmic transport of NP.  相似文献   

16.
17.
Hsp104 is a molecular chaperone in yeast that restores solubility and activity to inactivated proteins after severe heat shock. We investigated the mechanisms that influence Hsp104 subcellular distribution in both unstressed and heat-shocked cells. In unstressed cells, Hsp104 and a green fluorescent protein-Hsp104 fusion protein were detected in both the nucleus and the cytoplasm. We demonstrate that a 17-amino-acid sequence of Hsp104 nuclear localization sequence 17 (NLS17) is sufficient to target a reporter molecule to the nucleus and is also necessary for normal Hsp104 subcellular distribution. The nuclear targeting function of NLS17 is genetically dependent on KAP95 and KAP121. In addition, wild-type Hsp104, but not an NLS17-mutated Hsp104 variant, accumulated in the nucleus of cells depleted for the general export factor Xpo1. Interestingly, severe, nonlethal heat shock enhances the nuclear levels of Hsp104 in an NLS17-independent manner. Under these conditions, we demonstrate that karyopherin-mediated nuclear transport is impaired, while the integrity of the nuclear-cytoplasmic barrier remains intact. Based on these observations, we propose that Hsp104 continues to access the nucleus during severe heat shock using a karyopherin-independent mechanism.  相似文献   

18.
Multiple mechanisms regulate subcellular localization of human CDC6   总被引:7,自引:0,他引:7  
CDC6 is a protein essential for DNA replication, the expression and abundance of which are cell cycle-regulated in Saccharomyces cerevisiae. We have demonstrated previously that the subcellular localization of the human CDC6 homolog, HsCDC6, is cell cycle-dependent: nuclear during G(1) phase and cytoplasmic during S phase. Here we demonstrate that endogenous HsCDC6 is phosphorylated during the G(1)/S transition. The N-terminal region contains putative cyclin-dependent kinase phosphorylation sites adjoining nuclear localization sequences (NLSs) and a cyclin-docking motif, whereas the C-terminal region contains a nuclear export signal (NES). In addition, we show that the observed regulated subcellular localization depends on phosphorylation status, NLS, and NES. When the four putative substrate sites (serines 45, 54, 74, and 106) for cyclin-dependent kinases are mutated to alanines, the resulting HsCDC6A4 protein is localized predominantly to the nucleus. This localization depends upon two functional NLSs, because expression of HsCDC6 containing mutations in the two putative NLSs results in predominantly cytoplasmic distribution. Furthermore, mutation of the four serines to phosphate-mimicking aspartates (HsCDC6D4) results in strictly cytoplasmic localization. This cytoplasmic localization depends upon the C-terminal NES. Together these results demonstrate that HsCDC6 is phosphorylated at the G(1)/S phase of the cell cycle and that the phosphorylation status determines the subcellular localization.  相似文献   

19.
20.
Zipper-interacting protein kinase (ZIPK) is a widely expressed serine/threonine kinase implicated in cell death and smooth muscle contractility, but its mechanism of regulation is unknown. We have identified six phosphorylation sites in ZIPK that regulate both its enzyme activity and localization, including Thr180, Thr225, Thr265, Thr299, Thr306, and Ser311. Mutational analysis showed that phosphorylation of Thr180 in the kinase activation T-loop, Thr225 in the substrate-binding groove, and Thr265 in kinase subdomain X is essential for full ZIPK autophosphorylation and activity toward exogenous substrates. Abrogation of phosphorylation of Thr299, Thr306, and Ser311 had little effect on enzyme activity, but mutation of Thr299 and Thr300 to alanine resulted in redistribution of ZIPK from the cytosol to the nucleus. Mutation of Thr299 alone to alanine caused ZIPK to assume a diffuse cellular localization, whereas T299D redistributed the enzyme to the cytoplasm. C-terminal truncations of ZIPK at amino acid 273 or 342 or mutation of the leucine zipper motif increased ZIPK activity toward exogenous substrates by severalfold, suggesting a phosphorylation-independent autoinhibitory role for the C-terminal domain. Additionally, mutation of the leucine zipper reduced the ability of ZIPK to oligomerize and also caused ZIPK to relocalize from the cytoplasm to the nucleus in vivo. Together, our findings show that ZIPK is positively regulated by phosphorylation within its kinase domain and that it contains an inhibitory C-terminal domain that controls enzyme activity, localization, and oligomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号