首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
An intracellular cyclodextrin-hydrolyzing enzyme from Bacillus sphaericus E-244 isolated from soil was purified to a homogeneous state by means of Triton X-100 extraction, DEAE-Sepharose column chromatography, hydrophobic and molecular-sieve HPLC. The enzyme was estimated to have an Mr of 72,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis and 144,000 by HPLC gel filtration on TSK gel G 3000 SW. It had a pH optimum of 8.0, and the enzyme, stable at 25 degrees C and pH 5.5-9.5 for 24 h, was inactivated at 50 degrees C for 10 min. The enzyme hydrolyzed beta-cyclodextrin more effectively than linear maltooligosaccharides such as maltopentaose, maltohexaose and maltoheptaose or polysaccharides such as starch, amylopectin, amylose and pullulan.  相似文献   

2.
A cell-bound cyclodextrin-degrading enzyme with a relative molecular mass (Mr) of around 62 000 and an isoelectric point (pI) near 8.0 was isolated and purified to 94% homogeneity from Flavobacterium sp. The enzyme hydrolysed maltooligosaccharides and cyclodextrins to glucose, maltose, and maltotriose. Less glucose, but larger amounts of the line of maltooligosaccharides from maltose to (in case of cyclodextrins) the linearized substrates were found in short-term digests. Digestion of maltotriose yielded glucose, maltose, and some maltotetraose to maltohexaose, i.e. the enzyme catalysed both hydrolysis and transglycosylation. Starch was a poorer substrate, and was hydrolysed to mainly glucose and maltose, presumably by a kind of exo-attack. Pullulan was slightly digested, the products being glucose, panose/isopanose, and larger saccharides containing -1,6-glucosidic bonds. Since maltohexaose to maltooctaose were hydrolysed at higher rates than the cyclodextrins of corresponding lengths, the enzyme of Flavobacterium sp. was proposed to be classified as a decycling maltodextrinase. Correspondence to: H. Bender  相似文献   

3.
Germinating seeds and developing seedlings of Phalaenopsis Habsburg and Phalaenopsis Ruth Burton × (Phalaenopsis Abendrot × Phalaenopsis Abendrot) can utilize glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose as carbon sources. Fresh weight decreased significantly with increased polymerization from glucose through maltoheptaose. Seedling survival declined on higher molecular weight sugars reaching levels which were significantly different from those on glucose. Sugar uptake increased moderately with increasing molecular weight of oligomers. The maltooligosaccharides used in these experiments are hydrolyzed by the orchid seedlings and of the sugars which can support good growth glucose, but not maltose accumulate in culture media. As a result, media which supported seedlings contained substantial levels of glucose, the starting sugars, and decreasing amounts of the next shorter oligomers. This suggests enzymatic endwise hydrolysis of these maltooligosaccharides. Similar results were obtained with Phalaenopsis seedlings produced from seeds which were germinated on sugar-free medium and transferred to a solution containing the same oligomers. Sugars in media which did not support seedlings were not hydrolyzed.  相似文献   

4.
Arthrobacter sp. Q36 produces a novel enzyme, maltooligosyl trehalose synthase, which catalyzes the conversion of maltooligosaccharide into the non-reducing saccharide, maltooligosyl trehalose (α-maltooligosyl α-D-glucoside) by intramolecular transglycosylation. The enzyme was purified from a cell-free extract to an electrophoretically homogeneous state by successive column chromatography on Sepabeads FP-DA13, DEAE-Sephadex A-50, Ultrogel AcA44, and Butyl-Toyopearl 650M. The enzyme was specific for maltooligosaccharides except maltose, and catalyzed the conversion to form maltooligosyl trehalose. The Km of the enzyme for maltotetraose, maltopentaose, maltohexaose, and maltoheptaose were 22.9mM, 8.7mM, 1.4mM, and 0.9mM, respectively. The enzyme had a molecular mass of 81,000 by SDS-polyacrylamide gel electrophoresis and a pI of 4.1 by gel isoelectrofocusing. The N-terminal and C-terminal amino acids of the enzyme were methionine and serine, respectively. The enzyme showed the highest activity at pH 7.0 and 40°C, and was stable from pH 6.0 to 9.5 and up to 40°C. The enzyme activity was inhibited by Hg2+ and Cu2+.  相似文献   

5.
Summary A simple method for determination of starch hydrolysis degree by measurement of maltooligosaccharides using HPLC on SGX C-18 column with deionised water as mobile phase was presented. Separation of seven oligosaccharides in an order from glucose to maltoheptaose illustrated the action of two enzyme systems taking part of starch hydrolysis and following fermentation to ethanol.  相似文献   

6.
A maltooligosaccharide-metabolizing enzyme from Thermoactinomyces vulgaris R-47 (TGA) homologous to glucoamylases does not degrade starch efficiently unlike most glucoamylases such as fungal glucoamylases (Uotsu-Tomita et al., Appl. Microbiol. Biotechnol., 56, 465-473 (2001)). In this study, we purified and characterized TGA, and determined the subsite affinities of the enzyme. The optimal pH and temperature of the enzyme are 6.8 and 60 degrees C, respectively. Activity assays with 0.4% substrate showed that TGA was most active against maltotriose, but did not prefer soluble starch. Kinetic analysis using maltooligosaccharides ranging from maltose to maltoheptaose revealed that TGA has high catalytic efficiency for maltotriose and maltose. Based on the kinetics, subsite affinities were determined. The A1+A2 value of this enzyme was highly positive whereas A4-A6 values were negative and little affinity was detected at subsites 3 and 7. Thus, the subsite structure of TGA is different from that of any other GA. The results indicate that TGA is a metabolizing enzyme specific for small maltooligosaccharides.  相似文献   

7.
LamB, an outer membrane protein of Escherichia coli, is a component of the maltose-maltooligosaccharide transport system. We used p-nitrophenyl-alpha-D-maltohexaoside, a chromogenic analog of maltohexaose, and a periplasmic amylase that hydrolyzes this compound to study the LamB-mediated diffusion of p-nitrophenyl-alpha-D-maltohexaoside into the periplasm. Using this approach, we were able to characterize LamB in vivo as a saturable channel for maltooligosaccharides. Permeation through LamB follows Michaelis-Menten kinetics, with a Km of 0.13 mM and a Vmax of 3.3 nmol/min/10(9) cells. Previous studies suggested that maltose-binding protein increases the rate of maltooligosaccharide diffusion through LamB. We show here that, at least in strains that are unable to transport maltooligosaccharides into the cytoplasm, maltose-binding protein does not influence the rate of substrate diffusion. The periplasmic amylase had been previously described as being of the alpha-type. We have now purified this protein and analyzed its mode of action using chromogenic maltooligosaccharides of varying length. Analysis of the hydrolytic products revealed that the enzyme recognizes its substrate from the nonreducing that the enzyme recognizes its substrate from the nonreducing end and preferentially liberates maltohexaose, in contrast to the behavior of classical alpha-amylases that are endohydrolases. Using p-nitrophenyl-alpha-D-maltohexaoside as a substrate, we determined a Km of 3 microM and a Vmax of 0.14 mumol/min/mg of protein.  相似文献   

8.
The degradation and utilization of starch by three amylolytic and one nonamylolytic species of ruminal bacteria were studied. Pure cultures of Streptococcus bovis JB1, Butyrivibrio fibrisolvens 49, and Bacteroides ruminicola D31d rapidly hydrolyzed starch and maltooligosaccharides accumulated. The major starch hydrolytic products detected in S. bovis cultures were glucose, maltose, maltotriose, and maltotetraose. In addition to these oligosaccharides, B. fibrisolvens cultures produced maltopentaose. The products of starch hydrolysis by B. ruminicola were even more complex, yielding glucose through maltotetraose, maltohexaose, and maltoheptaose but little maltopentaose. Selenomonas ruminantium HD4 grew poorly on starch, digested only a small portion of the available substrate, and generated no detectable oligosaccharides as a result of cultivation in starch containing medium. S. ruminantium was able to grow on a mixture of maltooligosaccharides and utilize those of lower degree (less than 10) of polymerization. A coculture system containing S. ruminantium as a dextrin-utilizing species and each of the three amylolytic bacteria was developed to test whether the products of starch hydrolysis were available for crossfeeding to another ruminal bacterium. Cocultures of S. ruminantium and S. bovis contained large numbers of S. bovis but relatively few S. ruminantium and exhibited little change in the pattern of maltooligosaccharides observed for pure cultures of S. bovis. In contrast, S. ruminantium was able to compete with B. fibrisolvens and B. ruminicola for these growth substrates. When grown with B. fibrisolvens, S. ruminantium grew to high numbers and maltooligosaccharides accumulated to a much lesser degree than in cultures of B. fibrisolvens alone. S. ruminantium-B. ruminicola cultures contained large numbers of both species, and maltooligosaccharides never accumulated in these cocultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The degradation and utilization of starch by three amylolytic and one nonamylolytic species of ruminal bacteria were studied. Pure cultures of Streptococcus bovis JB1, Butyrivibrio fibrisolvens 49, and Bacteroides ruminicola D31d rapidly hydrolyzed starch and maltooligosaccharides accumulated. The major starch hydrolytic products detected in S. bovis cultures were glucose, maltose, maltotriose, and maltotetraose. In addition to these oligosaccharides, B. fibrisolvens cultures produced maltopentaose. The products of starch hydrolysis by B. ruminicola were even more complex, yielding glucose through maltotetraose, maltohexaose, and maltoheptaose but little maltopentaose. Selenomonas ruminantium HD4 grew poorly on starch, digested only a small portion of the available substrate, and generated no detectable oligosaccharides as a result of cultivation in starch containing medium. S. ruminantium was able to grow on a mixture of maltooligosaccharides and utilize those of lower degree (less than 10) of polymerization. A coculture system containing S. ruminantium as a dextrin-utilizing species and each of the three amylolytic bacteria was developed to test whether the products of starch hydrolysis were available for crossfeeding to another ruminal bacterium. Cocultures of S. ruminantium and S. bovis contained large numbers of S. bovis but relatively few S. ruminantium and exhibited little change in the pattern of maltooligosaccharides observed for pure cultures of S. bovis. In contrast, S. ruminantium was able to compete with B. fibrisolvens and B. ruminicola for these growth substrates. When grown with B. fibrisolvens, S. ruminantium grew to high numbers and maltooligosaccharides accumulated to a much lesser degree than in cultures of B. fibrisolvens alone. S. ruminantium-B. ruminicola cultures contained large numbers of both species, and maltooligosaccharides never accumulated in these cocultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Biochemical characterization of a novel heat-stable alpha-amylase, produced by a thermophilic strain of Bacillus brevis, has been made. The pattern of the enzyme action on different substrates was studied. It was found that reducing groups were rapidly liberated from amylopectin, soluble and insoluble starch compared to amylose and glycogen. B. brevis alpha-amylase acted via endo-attack producing mainly maltopentaose during the first hour of hydrolysis. The enzyme showed high activity towards maltohexaose and maltoheptaose. The alpha-amylase from B. brevis had a neutral pI and was found to be a glycoprotein, containing 9.2% (by mass) neutral sugars. The enzyme protein possessed a unique high glycine content. Calcium or sodium ions in appropriate concentrations were required for enzyme thermostability.  相似文献   

11.
An extracellular enzyme (RMEBE) possessing alpha- (1-->4)-(1-->6)-transferring activity was purified to homogeneity from Rhodothermus marinus by combination of ammonium sulfate precipitation, Q-Sepharose ion-exchange, and Superdex- 200 gel filtration chromatographies, and preparative native polyacrylamide gel electrophoresis. The purified enzyme had an optimum pH of 6.0 and was highly thermostable with a maximal activity at 80 degrees . Its half-life was determined to be 73.7 and 16.7 min at 80 and 85 degrees , respectively. The enzyme was also halophilic and highly halotolerant up to about 2 M NaCl, with a maximal activity at 0.5M. The substrate specificity of RMEBE suggested that it possesses partial characteristics of both glucan branching enzyme and neopullulanase. RMEBE clearly produced branched glucans from amylose, with partial alpha-(1-->4)-hydrolysis of amylose and starch. At the same time, it hydrolyzed pullulan partly to panose, and exhibited alpha-(1-->4)-(1-->6)-transferase activity for small maltooligosaccharides, producing disproportionated alpha-(1-->6)-branched maltooligosaccharides. The enzyme preferred maltopentaose and maltohexaose to smaller maltooligosaccharides for production of longer branched products. Thus, the results suggest that RMEBE might be applied for production of branched oligosaccharides from small maltodextrins at high temperature or even at high salinity.  相似文献   

12.
Wan D  Jiao L  Yang H  Liu S 《Planta》2012,235(6):1289-1297
Water-soluble ginseng oligosaccharides (designated as WGOS) with a degree of polymerization ranging from 2 to 10 were obtained from warm-water extract of Panax ginseng roots, and fractionated into five purified fractions (i.e., WGOS-0, WGOS-1, WGOS-2, WGOS-3, and WGOS-4) by gel-filtration chromatography. In order to ascertain the monosaccharide residues in the WGOS, a technique that combines acid hydrolysis and high-performance liquid chromatography was employed. It was found that only glucose residues were present in the WGOS. Fourier transform infrared spectroscopy and electrospray ionization tandem mass spectrometry provided the sequence, linkage, and configuration information. It is noteworthy that α-Glcp-(1?→?6)-α-Glcp, α-Glcp-(1?→?6)-α-Glcp-(1?→?4)-α-Glcp, α-Glcp-(1?→?6)-α-Glcp-(1?→?6)-α-Glcp-(1?→?4)-α-Glcp, and other six malto-oligosaccharides (i.e., maltopentaose, maltohexaose, maltoheptaose, maltooctaose, maltononaose, and maltodecaose) were detected in ginseng. Preliminary immunological tests in vitro indicated that WGOS were potent B and T-cell stimulators and WGOS-1 has the highest immunostimulating effect on lymphocyte proliferation among those purified fractions. It is hoped that the WGOS will be developed into functional food or medicine.  相似文献   

13.
The enzymes from the alpha-amylase family all share a similar alpha-retaining catalytic mechanism but can have different reaction and product specificities. One family member, cyclodextrin glycosyltransferase (CGTase), has an uncommonly high transglycosylation activity and is able to form cyclodextrins. We have determined the 2.0 and 2.5 A X-ray structures of E257A/D229A CGTase in complex with maltoheptaose and maltohexaose. Both sugars are bound at the donor subsites of the active site and the acceptor subsites are empty. These structures mimic a reaction stage in which a covalent enzyme-sugar intermediate awaits binding of an acceptor molecule. Comparison of these structures with CGTase-substrate and CGTase-product complexes reveals three different conformational states for the CGTase active site that are characterized by different orientations of the centrally located residue Tyr 195. In the maltoheptaose and maltohexaose-complexed conformation, CGTase hinders binding of an acceptor sugar at subsite +1, which suggests an induced-fit mechanism that could explain the transglycosylation activity of CGTase. In addition, the maltoheptaose and maltohexaose complexes give insight into the cyclodextrin size specificity of CGTases, since they precede alpha-cyclodextrin (six glucoses) and beta-cyclodextrin (seven glucoses) formation, respectively. Both ligands show conformational differences at specific sugar binding subsites, suggesting that these determine cyclodextrin product size specificity, which is confirmed by site-directed mutagenesis experiments.  相似文献   

14.
Glucoamylase, industrially derived from Aspergillus niger, was chromatographically separated into forms I and II and purified to near homogeneity. Preparations were proved to be free of D-glucosyltransferase by electrophoretic and differential inhibition tests. Maximum rates and Michaelis constants were obtained for both glucoamylases I and II with maltooligosaccharides from maltose to maltoheptaose and with isomaltooligosac-charides from isomaltose to isomaltohexaose. Subsite maps were calculated from these kinetic data and were not significantly different for the two forms. Subsites in both forms had lower affinities for D-glucosyl residues contained in isomaltooligosaccharides than for D-glucosyl residues in maltooligosaccharides.  相似文献   

15.
A new bacterial strain, identified as Bacillus subtilis US116, was isolated from Tunisian soil and selected for its potential production of an atypical amylase with an industrial interest. The identification was founded on physiological tests and molecular techniques related to the 16S rRNA, 23S rRNA genes and intergenic sequences showing the highest similarity of 98% with regions in the complete genome of Bacillus subtilis 168 (accession no. Z99104). This strain produces an atypical amylase that was purified to homogeneity by a combination of acetone precipitation, size exclusion and ion exchange chromatography. The molecular mass of the enzyme is about 60 kDa as determined by SDS–PAGE. Optimal conditions for the activity of the purified enzyme are pH 6 and 65 °C. The half-life duration is about 3 h at 70 °C and 5 h at 65 °C. This enzyme belongs to the endo-type amylases according to the hydrolytic mode study using Ceralpha and Betamyl methods. It is classified as a maltoheptaose- and maltohexaose-forming amylase since it generates about 30% maltohexaose (DP6) and 20% maltoheptaose (DP7) from starch. Moreover, the minimum length of maltosaccharide cleaved by this enzyme was maltoheptaose.  相似文献   

16.
We report the molecular characterization and the detailed study of the recombinant maltooligosyl trehalose synthase mechanism from the thermoacidophilic archaeon Sulfolobus acidocaldarius. The mts gene encoding a maltooligosyl trehalose synthase was overexpressed in Escherichia coli using the T7-expression system. The purified recombinant enzyme exhibited optimum activity at 75 degrees C and pH 5 with citrate-phosphate buffer and retained 60% of residual activity after 72 h of incubation at 80 degrees C. The recombinant enzyme was active on maltooligosaccharides such as maltotriose, maltotetraose, maltopentaose and maltoheptaose. Investigation of the enzyme action on maltooligosaccharides has brought much insight into the reaction mechanism. Results obtained from thin-layer chromatography suggested a possible mechanism of action for maltooligosyl trehalose synthase: the enzyme, after converting the alpha-1,4-glucosidic linkage to an alpha-1,1-glucosidic linkage at the reducing end of maltooligosaccharide glc(n) is able to release glucose and maltooligosaccharide glc(n-1) residues. And then, the intramolecular transglycosylation and the hydrolytic reaction continue, with the maltooligosaccharide glc(n-1) until the initial maltooligosaccharide is reduced to maltose. An hypothetical mechanism of maltooligosyl trehalose synthase acting on maltooligosaccharide is proposed.  相似文献   

17.
The 84th tryptophan residue in Saccharomycopsis alpha-amylase molecule was replaced by a leucine residue and the resulting site-directed mutant, W84L enzyme, showed an increase in transglycosylation activity. At a 40% digestion point of maltoheptaose (G7), for example, maltooligosaccharide products larger than maltodecaose (G10) amounted to approx. 60% of the total product from the mutant enzyme reaction, whereas no such large products were observed in the native enzyme reaction. Analysis of the reaction products from p-nitrophenyl maltooligosaccharides indicated that these large products were formed by addition of the hydrolysis products on the nonreducing end side to the starting intact substrates. These results suggest that the tryptophan residue located at subsite 3 of the enzyme plays an important role not only to hold the substrate, but also to liberate the hydrolysis products from the substrate binding pocket.  相似文献   

18.
The gene previously designated as putative cyclodextrinase from Thermotoga maritima (TMG) was cloned and overexpressed in Escherichia coli. The recombinant TMG was partially purified and its enzymatic characteristics on various substrates were examined. The enzyme hydrolyzes various maltodextrins including maltotriose to maltoheptaose and cyclomaltodextrins (CDs) to mainly glucose and maltose. Although TMG could not degrade pullulan, it rapidly hydrolyzes acarbose, a strong amylase and glucosidase inhibitor, to acarviosine and glucose. Also, TMG initially hydrolyzes p-nitrophenyl-alpha-pentaoside to give maltopentaose and p-nitrophenol, implying that the enzyme specifically cleaves a glucose unit from the reducing end of maltooligosaccharides unlike to other glucosidases. Since its enzymatic activity is negligible if alpha-methylglucoside is present in the reducing end, the type of the residue at the reducing end of the substrate is important for the TMG activity. These results support the fact that TMG is a novel exo-acting glucosidase possessing the characteristics of both CD-/pullulan hydrolyzing enzyme and alpha-glucosidase.  相似文献   

19.
A newly isolated bacterium, identified as Bacillus subtilis 65, was found to produce raw-starch-digesting alpha-amylase. The electrophoretically homogeneous preparation of enzyme (molecular weight, 68,000) digested and solubilized raw corn starch to glucose and maltose with small amounts of maltooligosaccharides ranging from maltotriose to maltoheptaose. This enzyme was different from other amylases and could digest raw potato starch almost as fast as it could corn starch, but it showed no adsorbability onto any kind of raw starch at any pH. The mixed preparation with Endomycopsis glucoamylase synergistically digested raw potato starch to glucose at 30 degrees C. The raw-potato-starch-digesting alpha-amylase showed strong digestibility to small substrates, which hydrolyzed maltotriose to maltose and glucose, and hydrolyzed p-nitrophenyl maltoside to p-nitrophenol and maltose, which is different from the capability of bacterial liquefying alpha-amylase.  相似文献   

20.
The thermoacidophilic archaeon Sulfolobus solfataricus MT4 encodes a maltooligosyltrehalose synthase (MTS), that catalyzes an intramolecular transglycosylation process converting the glycosidic linkages at the reducing end of dextrins from alpha-1,4 into alpha-1,1. In this research the gene encoding MTS was cloned and expressed in Lactococcus lactis NZ9000 using the so-called NICE system. Growth conditions of the recombinant strain were optimized in flask experiments in relation to enzyme production. Batch experiments in 2 L-fermenters were performed on the best identified semidefined medium and 256 U L(-1) of recombinant MTS were produced. Purified recombinant MTS shows its optimal activity at 70 degrees C and pH 5.5, prefers maltoheptaose and maltohexaose as substrates, and demonstrates minimal side hydrolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号