首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We modified classic equilibrium dialysis methodology to correct for dialysant dilution and Donnan effects, and have systematically studied how variations in total lipid concentration, bile salt (taurocholate):lecithin (egg yolk) ratio, and cholesterol content influence inter-mixed micellar/vesicular (non-lecithin-associated) concentrations (IMC) of bile salts (BS) in model bile. To simulate large volumes of dialysant, the total volume (1 ml) of model bile was exchanged nine times during dialysis. When equilibrium was reached, dialysate BS concentrations plateaued, and initial and final BS concentrations in the dialysant were identical. After corrections for Donnan effects, IMC values were appreciably lower than final dialysate BS concentrations. Quasielastic light scattering was used to validate these IMC values by demonstrating that lipid particle sizes and mean scattered light intensities did not vary when model biles were diluted with aqueous BS solutions of the appropriate IMC. Micelles and vesicles were separated from cholesterol-supersaturated model bile, utilizing high performance gel chromatography with an eluant containing the IMC. Upon rechromatography of micelles and vesicles using an identical IMC, there was no net transfer of lipid between micelles and vesicles. To simulate dilution during gel filtration, model biles were diluted with 10 mM Na cholate, the prevailing literature eluant, resulting in net transfer of lipid between micelles and vesicles, the direction of which depended upon total lipid concentration and BS/lecithin ratio. Using the present methodology, we demonstrated that inter-mixed micellar/vesicular concentrations (IMC) values increased strongly (5 to 40 mM) with increases in both bile salt (BS):lecithin ratio and total lipid concentration, whereas variations in cholesterol content had no appreciable effects. For model biles with typical physiological biliary lipid compositions, IMC values exceeded the critical micellar concentration of the pure BS, implying that in cholesterol-supersaturated biles, simple BS micelles coexist with mixed BS/lecithin/cholesterol micelles and cholesterol/lecithin vesicles. We believe that this methodology allows the systematic evaluation of IMC values, with the ultimate aim of accurately separating micellar, vesicular, and potential other cholesterol-carrying particles from native bile.  相似文献   

2.
A nonmicellar, bile salt-independent mode of cholesterol transport in human bile involving phospholipid vesicles was recently reported by our group. In the present study, we have investigated the relative contribution of the phospholipid vesicles and mixed bile salt-phospholipid micelles to cholesterol transport in human hepatic and gallbladder biles. The vesicles (ca 800 A diameter) were demonstrated by quasi-elastic light scattering (QELS) in fresh bile and after chromatography. Gel filtration under conditions that preserved micellar integrity demonstrated that biliary cholesterol was associated with both vesicles and micelles. At low bile salt concentration, the vesicular phase was predominant and most of the cholesterol was transported by it. With increasing bile salt concentrations, a progressive solubilization of the vesicles occurred with a concomitant increase in the amount of cholesterol transported by micelles. The vesicular carrier may be of particular biological significance for cholesterol solubilization in supersaturated biles.  相似文献   

3.
Biliary lipids, water and cholesterol gallstones   总被引:8,自引:0,他引:8  
Cholesterol supersaturation, hydrophobic bile salts, pronucleating proteins and impaired gall-bladder motility may contribute to gallstone pathogenesis. We here show that both gallstone-susceptible C57L and gallstone-resistant AKR male inbred mice exhibit supersaturated gall-bladder biles during early lithogenesis, whereas bile-salt composition becomes hydrophobic only in susceptible C57L mice. In vitro, cholesterol crystallization occurs depending on relative amounts of lipids; excess cholesterol may exceed solubilizing capacity of mixed bile salt-phospholipid micelles, whereas excess bile salts compared with phospholipids leads to deficient cholesterol-storage capacity in vesicles. In vivo, bile lipid contents are mainly determined at the level of the hepatocyte canalicular membrane, where specific transport proteins enable lipid secretion [ABCG5/G8 (ATP-binding cassette transporter G5/G8) for cholesterol, MDR3 (multi-drug resistant 3) for phospholipid, BSEP (bile salt export pump)]. These transport proteins are regulated by farnesoid X and liver X nuclear receptors. After nascent bile formation, modulation of bile water contents in biliary tract and gall-bladder exerts critical effects on cholesterol crystallization. During progressive bile concentration (particularly in the fasting gall-bladder), cholesterol and, preferentially, phospholipid transfer occurs from cholesterol-unsaturated vesicles to emerging mixed micelles. The remaining unstable cholesterol-enriched vesicles may nucleate crystals. Various aquaporins have recently been discovered throughout the biliary tract, with potential relevance for gallstone formation.  相似文献   

4.
The proportion of biliary cholesterol carried by phospholipid vesicles may be an important determinant of the lithogenicity of bile. The distribution of biliary cholesterol between vesicles and other aggregational forms is often determined by gel filtration under standard conditions. The aim of this study was to measure the proportion of biliary cholesterol in vesicles in native unprocessed bile and to compare it with values obtained by chromatography. A modified quasi-elastic light-scattering method was used to measure vesicular cholesterol in whole bile. It was suitable only for lightly pigmented biles with a relatively monodisperse population of vesicles. In ten human biles examined, the proportion of cholesterol in vesicles by gel filtration was 40 +/- 8.1% (mean +/- S.D.) by chemical measurement, and 38 +/- 7.2% by [3H]cholesterol estimation. Quasi-elastic light-scattering measurements of these biles produced vesicular cholesterol values of 36 +/- 9.4%. Chromatography may affect lipid particles in bile. Nevertheless, it provides a relatively accurate measurement of biliary cholesterol in vesicles.  相似文献   

5.
Cholesterol-phospholipid vesicles in human bile: an ultrastructural study   总被引:2,自引:0,他引:2  
Phospholipid vesicles, a newly described (bile salt independent) mode of cholesterol transport in human bile, were previously characterized by quasi-elastic light scattering and gel filtration. In the present study the ultrastructure of these vesicles was investigated by electron microscopy using freeze-fracture and negative-staining techniques. Vesicles of varying size were found in all 14 hepatic and 3 gallbladder biles examined. The diameter of the vesicles ranged from 25 to 75 nm by electron microscopy after freeze fracture and from 54 to 94 nm by quasi-elastic light scattering. They had a spherical shape and appeared to be unilamellar. The appearance of the vesicles in fresh hepatic and gallbladder biles as well as in chromatographic fractions was similar. Vesicles were dissolved by the addition of exogenous bile salts. Cholesterol is transported in human bile by both vesicles and micelles. The role of the vesicles may be particularly important in preventing cholesterol precipitation in dilute and supersaturated biles.  相似文献   

6.
Biliary micellar cholesterol nucleates via the vesicular pathway   总被引:1,自引:0,他引:1  
Biliary cholesterol nucleates primarily from phospholipid vesicles. In this study, we investigated the mode of nucleation of micellar cholesterol. Ten biles (four human and six model) were examined. The vesicular and micellar fractions of each bile were separated by gel chromatography. The whole biles and their isolated carriers were incubated at 37 degrees C until nucleation time. In whole human biles, the proportion of total cholesterol in vesicles rose throughout the incubation (from zero time to nucleation time) from 15.5 +/- 8.6% to 28.0 +/- 12.5%, and in model biles from 46.8 +/- 22.4% to 75.5 +/- 8.2%. The vesicular isolated fraction remained unchanged throughout incubation. In isolated micelles devoid of vesicles at zero time, new vesicles formed during incubation, carrying increasing proportions of cholesterol. At nucleation time, these vesicles contained 11.0% of originally micellar cholesterol in human biles, and 41.2% in model biles. The new vesicles formed in whole bile and in the micellar fraction were chromatographically and chemically similar to the vesicles originally present in bile. These data suggest that micellar cholesterol nucleates via the neoformation of phospholipid vesicles, which seem to be the final common pathway for cholesterol nucleation in bile.  相似文献   

7.
Both phosphatidylcholine (PC) and sphingomyelin (SM) are the major phospholipids in the outer leaflet of the hepatocyte canalicular membrane. Yet, the phospholipids secreted into bile consist principally (>95%) of PC. In order to understand the physical;-chemical basis for preferential biliary PC secretion, we compared interactions with bile salts (taurocholate) and cholesterol of egg yolk (EY)SM (mainly 16:0 acyl chains, similar to trace SM in bile), buttermilk (BM)SM (mainly saturated long (>20 C-atoms) acyl chains, similar to canalicular membrane SM) and egg yolk (EY)PC (mainly unsaturated acyl chains at sn-2 position, similar to bile PC). Main gel to liquid-crystalline transition temperatures were 33. 6 degrees C for BMSM and 36.6 degrees C for EYSM. There were no significant effects of varying phospholipid species on micellar sizes or intermixed-micellar/vesicular bile salt concentrations in taurocholate-phospholipid mixtures (3 g/dL, 37 degrees C, PL/BS + PL = 0.2 or 0.4). Various phases were separated from model systems containing both EYPC and (EY or BM)SM, taurocholate, and variable amounts of cholesterol, by ultracentrifugation with ultrafiltration and dialysis of the supernatant. At increasing cholesterol content, there was preferential distribution of lipids and enrichment with SM containing long saturated acyl chains in the detergent-insoluble pelletable fraction consisting of aggregated vesicles. In contrast, both micelles and small unilamellar vesicles in the supernatant were progressively enriched in PC. Although SM containing vesicles without cholesterol were very sensitive to micellar solubilization upon taurocholate addition, incorporation of the sterol rendered SM-containing vesicles highly resistant against the detergent effects of the bile salt. These findings may have important implications for canalicular bile formation.  相似文献   

8.
Effective detergent:lipid ratios (i.e. molar ratios in the mixed aggregates, vesicles or micelles) have been estimated for the solubilization of phosphatidylcholine vesicles by Triton X-100. Effective molar ratios are given for both the onset and the completion of bilayer solubilization; small unilamellar, large unilamellar and multilamellar vesicles have been used. Effective detergent:lipid ratios are independent of phospholipid concentration, and their use allows a deeper understanding of membrane-surfactant interactions.  相似文献   

9.
We describe the use and validation of Superose 6, a high performance gel filtration medium for rapid, high resolution separation and sizing of coexisting simple micelles, mixed micelles, and vesicles in bile. We fractionated model biles (1.7-4.2 g/dl total lipid concentration, 0.15 M NaCl) composed of lecithin (L), cholesterol (Ch), and the common bile salt taurocholate (TC) using Superose 6 gel filtration columns (1.0 cm diameter, 30 cm length, 0.5 ml model bile application, 1.0 ml fractions) pre-equilibrated and eluted with 2.5-10.0 mM TC. Lipid particle sizes were determined by quasielastic light scattering and lipid compositions by conventional analyses. In the absence of L and Ch, pure TC "biles" (32.2 mM), when eluted in the presence of 7.5 mM TC, yielded a single peak of particles (mean hydrodynamic radii, Rh values of 11-15 A), consistent with simple TC micelles. Model biles containing L and TC ([L] = 13.8 mM, [TC] = 32.2 mM) were fractionated with baseline resolution into TC-L mixed micelles, (Rh values of 30-40 A) and simple TC micelles. In agreement with the ternary TC-L-H2O phase diagram (Mazer, N. A., et al. 1980. Biochemistry. 19: 601-615), the proportions of simple and mixed micelles were inversely related to L concentrations ([L] = 0-32.2 mM) and correlated positively with eluant TC concentration. Superose 6 gel fractionation of model biles "super-saturated" with Ch (TC:L:Ch molar ratio 27:63:10, total lipid concentration 3 g/dl) yielded high resolution separation of vesicles (Rh value of 320 A) from mixed micelles of TC-L-Ch (Rh values of 40-50 A) and simple TC micelles (Rh values of 11-15 A). At an eluant TC concentration of 7.5 mM, Ch-rich vesicles (Ch/L molar ratio = 1.6) separated that contained 40% of total Ch, 9% of total L, and no TC, accurately reflecting predictions of the quaternary L-Ch-TC-H2O metastable phase diagram (Mazer, N. A., and M. C. Carey. 1983 Biochemistry. 22: 426-442). This suggested that a 7.5 mM TC concentration approximated the intermicellar concentration under the experimental conditions. We also fractionated an identical model bile using conventional Sephacryl S-300, a medium generally used to study model and native biles. Compared with Superose 6, the Sephacryl S-300 column of equivalent size yielded particle separations with lower resolution and speed (30 h v l h).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The solubilization of multilamellar egg yolk lecithin liposomes by sodiumtaurodeoxycholate in aqueous phase was studied by ultrafiltration as a function of time, bile salt and cholesterol concentration. The corresponding equilibrium states were analysed. Complete solubilization was achieved at total bile salt/lecithin molar mixing ratios of approximately 5. The minimum ratio to start solubilization was 0.1, corresponding to a free bile salt concentration of only 5% of the critical micelle concentration (CMC). Mean equilibrium constants for the partition of bile salts between non-filterable aggregates and filterable mixed micelles and also the free bile salt concentration were determined. Sodiumtaurodeoxycholate had a higher affinity for small mixed micelles than for lamellar mixed aggregates especially in the presence of cholesterol, which reduces the degree and rate of the solubilization process. A non-homogeneous distribution of bile salts in the lipid phase was detected at low bile salt concentrations.  相似文献   

11.
We determined the distribution of lecithin molecular species between vesicles and mixed micelles in cholesterol super-saturated model biles (molar taurocholate-lecithin-cholesterol ratio 67:23:10, 3 g/dl, 0.15 M NaCl, pH approximately 6-7) that contained equimolar synthetic lecithin mixtures or egg yolk or soybean lecithins. After apparent equilibration (48 h), biles were fractionated by Superose 6 gel filtration chromatography at 20 degrees C, and lecithin molecular species in the vesicle and mixed micellar fractions were quantified as benzoyl diacylglycerides by high performance liquid chromatography. With binary lecithin mixtures, vesicles were enriched with lecithins containing the most saturated sn-1 or sn-2 chains by as much as 2.4-fold whereas mixed micelles were enriched in the more unsaturated lecithins. Vesicles isolated from model biles composed of egg yolk (primarily sn-1 16:0 and 18:0 acyl chains) or soy bean (mixed saturated and unsaturated sn-1 acyl chains) lecithins were selectively enriched (6.5-76%) in lecithins with saturated sn-1 acyl chains whereas mixed micelles were enriched with lecithins composed of either sn-1 18:1, 18:2, and 18:3 unsaturated or sn-2 20:4, 22:4, and 22:6 polyunsaturated chains. Gel filtration, lipid analysis, and quasielastic light scattering revealed that apparent micellar cholesterol solubilities and metastable vesicle cholesterol/lecithin molar ratios were as much as 60% and 100% higher, respectively, in biles composed of unsaturated lecithins. Acyl chain packing constraints imposed by distinctly different particle geometries most likely explain the asymmetric distribution of lecithin molecular species between vesicles and mixed micelles in model bile as well as the variations in apparent micellar cholesterol solubilities and vesicle cholesterol/lecithin molar ratios.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Human bile contains a factor with cholesterol nucleation-promoting activity that binds to concanavalin A-Sepharose. In this study we have investigated the effect of this activity on the dynamics of lipid solubilization in supersaturated model bile. A concanavalin A binding protein fraction of human bile was mixed with model bile and the effect on the distribution of cholesterol and phospholipid between mixed micelles and phospholipid/cholesterol vesicles was studied by means of density gradient ultracentrifugation. The nucleation-promoting activity containing fraction induced a transfer of cholesterol and phospholipid from the micellar to the vesicular phase. This led to a decrease in the density of the vesicular fraction. We have also studied the effect of promoting activity on the nucleation time of an isolated vesicle fraction. A decrease of the nucleation time of 10.7 +/- 1.3 to 2.3 +/- 0.3 days was observed. In conclusion, a concanavalin A binding protein fraction from human bile stimulated cholesterol nucleation via a double effect; it increased the amount of vesicular cholesterol and phospholipid, and it also directly induced nucleation of cholesterol from the vesicles.  相似文献   

13.
R Schubert  K H Schmidt 《Biochemistry》1988,27(24):8787-8794
Binding equilibria of common bile salts (BS) and different mixtures of membrane lipids were correlated with BS-induced structural changes of large unilamellar vesicles, with transition of vesicles to mixed micelles (MM), and with successive transformations of MM. At very low BS concentrations, in the outer vesicle monolayer definite BS/lipid aggregates are formed, the size and BS binding strength of which depend on the BS and lipid species involved. At increasing BS concentrations, binding to the membranes is hampered, and above a critical BS content, membrane stress due to asymmetric BS binding leads to formation of transient membrane holes, as shown by inulin release from the vesicles. Independent of the BS and lipid species, membrane solubilization starts at a ratio r = 0.3 of bound BS/lipid. Increasing phosphatidylserine, phosphatidylethanolamine, and cholesterol contents stabilize the lecithin membrane against BS to different degrees and in different ways, whereas the destabilization by sphingomyelin is probably due to the enhancement of the membrane gel-liquid transition temperature. Conjugation of the BS with glycine or taurine has a modulating effect on membrane hole formation, rather than on lipid solubilization. Diphenylhexatriene fluorescence anisotropy indicates a BS-induced drop of the internal membrane order and its restoration during membrane solubilization. At higher concentrations ursodeoxycholate induces additional condensation, whereas the other BS cause internal disorder in the MM. Above ratios r of approximately 8:1, we found a release of BS from these MM and suggest a rodlike structure for them. The results were discussed with respect to BS/membrane interactions during lipid excretion from the liver cell.  相似文献   

14.
Using complementary physical-chemical methods including turbidimetry, quasielastic light scattering, gel filtration, and phase analysis, we examined the interactions between dilute concentrations of the common bile salt, taurochenodeoxycholate (TCDC), and uni- and multilamellar vesicles (MLVs) composed of defined molecular species of lecithin (L) and varying contents of cholesterol (Ch). Dissolution rates of MLVs with micellar TCDC, as assessed by turbidimetry, were more rapid with vesicles composed of sn-1 palmitoyl species, typical of biliary L, compared with those composed of the more hydrophobic sn-1 stearoyl species. Incorporation of Ch retarded MLV dissolution rates in proportion to the Ch content, and only at high Ch contents were dissolution rates appreciably influenced by the sn-2 fatty acid composition of L. When MLVs contained Ch in amounts characteristic of intracellular membranes (Ch/L approximately 0.1), the dissolution rates of the individual L species by TCDC accurately predicted the steady state L composition of human bile. TCDC interacted with small unilamellar L/Ch vesicles (SUVs) at concentrations well below, as well as appreciably above, its critical micellar concentration. In accordance with the TCDC-egg yolk L-H2O phase diagram, perimicellar concentrations of TCDC interacted with SUVs to form aggregates that were approximately twice the size of the SUVs. These were consistent with the formation of a dispersed hexagonal (rod-like) phase, which co-existed with aqueous bile salt (BS) monomers and either micellar or unilamellar SUV phases. Micellar TCDC completely solubilized SUVs as mixed micelles, putatively via this transient hexagonal phase. With modest Ch-supersaturation, dissolution was followed by the reemergence of a new vesicle population that coexisted metastably with mixed micelles. With high Ch supersaturation, TCDC extracted L and Ch molecules from SUVs in different proportions to form Ch-supersaturated mixed micelles and Ch-enriched SUVs, in accordance with the metastable phase diagram. These experiments are consistent with the hypothesis that sn-1 palmitoyl L species are subselected for bile, in part, by physical-chemical interactions of intracellular BS concentrations with Ch-poor membranes and that the subsequent evolution of Ch-rich vesicles and Ch-saturated mixed micelles occurs via a transitional hexagonal (rod) phase. These liquid-crystalline states are likely to be transient in Ch-unsaturated biles, but may persist in Ch-supersaturated human biles because of their high Ch contents which retard or inhibit these phase transitions.  相似文献   

15.
The partitioning of phosphatidylcholine (PC) molecular species between mixed micelles and vesicles was studied in each of seven human gallbladder biles. Biles were fractionated by Sephacryl S-300 SF gel filtration chromatography, and PC species in the micellar and vesicular fractions were quantitated by high performance liquid chromatography. Micelles were enriched in species containing unsaturated acyl groups (e.g., 16:1-18:2, 18:1-18:2, and 18:1-18:3); vesicles were enriched in more highly saturated species (e.g., 16:0-16:1, 16:0-18:1, and 18:0-18:1). Separate multivariate analyses for each bile demonstrated that the distribution of PC species between vesicles and micelles was related to the degree of sn-1 and sn-2 unsaturation, and sn-1, but not sn-2, chain length. In addition, the tendency to partition into the micellar phase was particularly marked when unsaturation was present at both the sn-1 and sn-2 positions. When this interaction was included in the multivariate analyses, the regression models accounted for virtually all of the variation in PC partitioning (for each of the seven patients r2 = 0.92-0.98, P less than 0.03). These results suggest that the partitioning of PC species between micelles and vesicles is strictly determined by sn-1 chain length and the degree of unsaturation at both the sn-1 and sn-2 positions. In light of recent reports that fatty acyl composition influences the cholesterol content of vesicles and micelles in model biles, these results raise the possibility that diet-induced alterations in the phospholipid species and the relative proportions of biliary lipid particles may influence the cholesterol-carrying capacity of bile.  相似文献   

16.
Because gallstones form so frequently in human bile, pathophysiologically relevant supersaturated model biles are commonly employed to study cholesterol crystal formation. We used cryo-transmission electron microscopy, complemented by polarizing light microscopy, to investigate early stages of cholesterol nucleation in model bile. In the system studied, the proposed microscopic sequence involves the evolution of small unilamellar to multilamellar vesicles to lamellar liquid crystals and finally to cholesterol crystals. Small aliquots of a concentrated (total lipid concentration = 29.2 g/dl) model bile containing 8.5% cholesterol, 22.9% egg yolk lecithin, and 68.6% taurocholate (all mole %) were vitrified at 2 min to 20 days after fourfold dilution to induce supersaturation. Mixed micelles together with a category of vesicles denoted primordial, small unilamellar vesicles of two distinct morphologies (sphere/ellipsoid and cylinder/arachoid), large unilamellar vesicles, multilamellar vesicles, and cholesterol monohydrate crystals were imaged. No evidence of aggregation/fusion of small unilamellar vesicles to form multilamellar vesicles was detected. Low numbers of multilamellar vesicles were present, some of which were sufficiently large to be identified as liquid crystals by polarizing light microscopy. Dimensions, surface areas, and volumes of spherical/ellipsoidal and cylindrical/arachoidal vesicles were quantified. Early stages in the separation of vesicles from micelles, referred to as primordial vesicles, were imaged 23-31 min after dilution. Observed structures such as enlarged micelles in primordial vesicle interiors, segments of bilayer, and faceted edges at primordial vesicle peripheries are probably early stages of small unilamellar vesicle assembly. A decrease in the mean surface area of spherical/ellipsoidal vesicles was correlated with the increased production of cholesterol crystals at 10-20 days after supersaturation by dilution, supporting the role of small unilamellar vesicles as key players in cholesterol nucleation and as cholesterol donors to crystals. This is the first visualization of an intermediate structure that has been temporally linked to the development of small unilamellar vesicles in the separation of vesicles from micelles in a model bile and suggests a time-resolved system for further investigation.  相似文献   

17.
Biliary cholesterol/phospholipid vesicles play an important role in the pathogenesis of gallstone disease. A prerequisite for the study of the lipid composition and stability of these vesicles is a reliable method to quantify the amount of vesicular lipid. In the present report we show that NMR can be used to determine the distribution of biliary lecithin between the micellar and vesicular phases. The relatively large size of the vesicles leads to such a broadening of the lipid resonances that they are no longer visible in high resolution 1H-NMR spectra. Since micelles are much smaller, lipid present in the micellar phase does give rise to sharp peaks in 1H-NMR spectra. Micellar lecithin can easily be quantified in these spectra. The resonances of cholesterol are masked by the closely related bile acid that is present in a much higher concentration. By determining the difference between chemically and NMR estimated lecithin, the distribution of this phospholipid between the micellar phase and vesicular phase can be assessed. We have compared the results of NMR with gel permeation and density gradient ultracentrifugation. Using standard fractionation conditions, both gel permeation and density gradient ultracentrifugation lead to an underestimation of vesicular lecithin, the difference being minor at relatively high total lipid concentrations (10 g/dl) but large in diluted model bile. We conclude that 1H-NMR can be used to determine the distribution of lecithin in model bile.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Bile salts are essential for phospholipid secretion into the bile. To study the relevance of the structure of phospholipids for their interaction with bile salts, we used spin-labeled or fluorescent phospholipid analogues of different head groups and acyl chain length. Those analogues form micelles in aqueous suspension. Their solubilization by bile salts resulting in the formation of mixed micelles was followed by the decrease of spin-spin interaction of spin-labeled analogues or by the relief of fluorescence self-quenching of (7-nitro-2-1,3-benzooxadiazol (NBD))-labeled analogues. Solubilization of analogue micelles occurred at and above the critical micellar concentration (CMC) of the bile salts. As revealed by stopped-flow technique, solubilization of NBD-analogues was very rapid with half times as low as 0.1 sec above the CMC of taurocholate. Both kinetics and extent of solubilization were independent of the phospholipid head group, but were significantly affected by the fatty acid chain length. Furthermore, using vesicles with varying phospholipid composition and different types of analogues in self-quenching concentrations, we could show that bile salt-mediated vesicle solubilization depended on the fatty acid chain length of phospholipids. In contrast, neither for phospholipids nor for analogues could an influence of the lipid head group on the solubilization process be observed. These findings support a head group-independent mechanism of bile salt-mediated enrichment of specific phospholipids in the bile fluid.  相似文献   

19.
Aggregation of cholesterol-phospholipid vesicles in supersaturated biles precedes cholesterol crystal formation. In this study we examined the relationship between the percentage of cholesterol carried by vesicles and/or their composition and the propensity to form cholesterol crystals (nucleation time). Bile (common bile duct, gallbladder and T-tube) was obtained from patients with and without gallstones. Gel filtration chromatography resolved three peaks, a void volume vesicle, a smaller vesicle (identified by electron microscopy and of distinct composition compared to the larger void volume vesicle), and the mixed micelle. The void volume vesicle was present in 11 of 28 abnormal gallbladder biles, but in none of the 10 normal gallbladder biles. Despite this difference, no correlation between the nucleation time of whole bile with either the percentage of cholesterol carried by or cholesterol/phospholipid ratio of the void volume vesicle was found. Nucleation time was, however, found to correlate with the composition of the small-vesicular transport form. No significant difference in the composition or percentage of the small-vesicular form or the combined vesicular forms was found between normal and abnormal gallbladder biles, although the latter nucleated significantly more rapidly. Our results confirm the importance of vesicles in the nucleation process but suggest that other factors, not yet identified, appear to be responsible for the more rapid nucleation seen in abnormal gallbladder biles.  相似文献   

20.
We have demonstrated in vitro the efficacy of the taurine-conjugated dihydroxy bile salts deoxycholate and chenodeoxycholate in solubilizing both cholesterol and phospholipid from hamster liver bile-canalicular and contiguous membranes and from human erythrocyte membrane. On the other hand, the dihydroxy bile salt ursodeoxycholate and the trihydroxy bile salt cholate solubilize much less lipid. The lipid solubilization by the four bile salts correlated well with their hydrophobicity: glycochenodeoxycolate, which is more hydrophobic than the tauro derivative, also solubilized more lipid. All the dihydroxy bile salts have a threshold concentration above which lipid solubilization increases rapidly; this correlates approximately with the critical micellar concentration. The non-micelle-forming bile salt dehydrocholate solubilized no lipid at all up to 32 mM. All the dihydroxy bile acids are much more efficient at solubilizing phospholipid than cholesterol. Cholate does not show such a pronounced discrimination. Lipid solubilization by chenodeoxycholate was essentially complete within 1 min, whereas that by cholate was linear up to 5 min. Maximal lipid solubilization with chenodeoxycholate occurred at 8-12 mM; solubilization by cholate was linear up to 32 mM. Ursodeoxycholate was the only dihydroxy bile salt which was able to solubilize phospholipid (although not cholesterol) below the critical micellar concentration. This similarity between cholate and ursodeoxycholate may reflect their ability to form a more extensive liquid-crystal system. Membrane specificity was demonstrated only inasmuch as the lower the cholesterol/phospholipid ratio in the membrane, the greater the fractional solubilization of cholesterol by bile salts, i.e. the total amount of cholesterol solubilized depended only on the bile-salt concentration. On the other hand, the total amount of phospholipid solubilized decreased with increasing cholesterol/phospholipid ratio in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号