首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
突触传递的长时程抑制(long-term depression,LTD)和长时程增强(long term-potentiation,LTP)是突触可塑性的两种重要形式,并且与学习记忆密切相关。本文探讨Sprague-Dawley(SD)大鼠在海马齿状回区(dentate gyrus,DG)注射36h孵育形成的寡聚体Aβ1-4230d后,在体海马前穿通纤维-齿状回通路(perforant path-dentate gyrus pathway,PP-DG)的突触可塑性和空间记忆能力的变化。2.5月龄SD大鼠随机分为寡聚体Aβ1-42注射组[即阿尔茨海默病(Alzheimer’s disease,AD)模型组,n=12]和正常对照组(n=12),分别在双侧海马DG区注射5μg寡聚体Aβ1-42或生理盐水。应用Morris水迷宫检测大鼠空间记忆能力。同时运用神经电生理在体胞外记录技术,检测寡聚体Aβ1-42引起的海马双脉冲易化(paired pulse facilitation,PPF)、LTD、LTP等突触可塑性形式的变化。结果显示:(1)AD模型组大鼠空间记忆能力下降(P<0.05);(2)寡聚体Aβ1-42降低...  相似文献   

2.
Tan T  Zhang BL  Tian X 《生理学报》2011,63(3):225-232
突触传递的长时程抑制(long-term depression,LTD)和长时程增强(longterm-potentiation,LTP)是突触可塑性的两种重要形式,并且与学习记忆密切相关.本文探讨Sprague-Dawley(SD)大鼠在海马齿状回区(dentate gyrus,DG)注射36 h孵育形成的寡聚体Aβ...  相似文献   

3.
吴坤  徐林  黄京飞 《动物学研究》2009,30(4):389-395
在作为成瘾检测手段的条件化位置偏爱模型中,环境背景和成瘾药物间的关联性学习起着关键的作用。突触可塑性作为学习记忆可能的物质基础,在药物成瘾方面的研究也越来越多,但其表现形式,长时程增强(LTP)或者长时程抑制(LTD)在成瘾过程中所发挥的具体作用尚不得而知。因此,本文利用生物信息学手段,设计并合成了旨在分别阻断LTP和LTD的干扰肽,研究其对小鼠吗啡条件化位置偏爱的影响。结果发现,干扰肽Pep-A2和Pep-A3能够分别特异地阻断海马CA1区的LTP和LTD,在测试前尾静脉注射具有穿膜特性的LTP/LTD特异性干扰肽(Tat-A2/Tat-A3),均能阻断或损伤吗啡诱导的条件化位置偏爱的表达。此发现提示我们,LTP和LTD在成瘾性异常记忆的过程中均发挥着重要的作用。  相似文献   

4.
代谢型谷氨酸受体在突触可塑性中的作用研究进展   总被引:5,自引:0,他引:5  
突触可塑性是近 30年来神经科学领域的研究热点之一 ,它主要包括长时程增强 (long termpotentiation ,LTP)和长时程抑制 (long termdepression ,LTD)。以往的研究已经证实 ,离子型谷氨酸受体 (iGluRs)中的NMDA受体和AMPA受体 ,在LTP和LTD的诱导和维持中通过阳离子内流 ,引起细胞内的级联反应而起作用。新近的研究发现 ,代谢型谷氨酸受体 (mGluRs)与G蛋白偶联 ,通过细胞内的多种信使系统介导慢突触传递。本文主要就mGluRs在不同脑区LTP和LTD中的作用进行综述  相似文献   

5.
目的:探讨双电极绑定条件下记录大鼠在体海马CA1区长时程增强的可行性。方法:雄性Wistar大鼠乌拉坦麻醉;脑立体定位仪上埋置脑室导管;安装自制的刺激/记录绑定电极;引导基础性场兴奋性突触后电位(fEP-SP);强直刺激诱导长时程增强(LTP)。结果:绑定后的刺激和记录电极能可靠地引起海马CA1区fEPSP,fEPSP的出现率几乎100%;基础性fEPSP记录可保持长时间稳定;高频刺激成功诱导出LTP并维持达3h以上,诱导率约67%;双脉冲易化记录稳定、可靠;脑室注射β淀粉样蛋白(Aβ)对LTP显示出明显的压抑作用。结论:采用双电极绑定技术进行在体海马LTP记录简便易行、节省资源、引导fEPSP和诱导LTP的成功率较高,有望成为一项重要的研究学习和记忆机制的电生理辅助手段。  相似文献   

6.
低铅暴露对大鼠海马突触可塑性范围的影响   总被引:1,自引:0,他引:1  
长时程增强(LTP)和长时程抑制(LTD),作为突触可塑性变化的两种主要形式,被认为是学习记忆的可能机制.突触可塑性范围可以定量的表征突触可塑性的变化.应用在体电生理技术,在同一只动物上记录LTP和LTD,研究了发育过程中慢性铅暴露对大鼠海马齿状回颗粒细胞突触可塑性范围和双脉冲易化的影响.对照组的LTP、LTD的幅度分别是187.9±6.2%(n=7),85.2±1.6%(n=7),而铅处理组分别为140.5±1.2%(n=7),102.8±3.8%(n=7).与对照组相比,铅处理组的LTP的幅度降低了47.4%,LTD的诱导几乎完全被铅损伤.先诱导出LTP后再通过低频刺激则可以在铅处理组诱导出LTD(81.5±2.2%(n=7)),但远远小于对照组(66.8±4.3%(n=7)).对照组突触可塑性范围是103.1±11.5%(n=7),是铅处理组突触可塑性范围(37.7±9.6%(n=7))的2.7倍.在对照组,双脉冲易化反应是从脉冲间隔20ms时开始,而铅处理组则是从50ms开始.当脉冲间隔为70ms时,两组的双脉冲易化幅度均达到最大值,但易化的强度有显著的差异,分别为211.6±32.2%(n=7),11.1±26.9%(n=7).结果表明铅显著地抑制了大鼠海马齿状回颗粒细胞的双脉冲易化效应,降低了双脉冲易化的间隔范围和突触可塑性范围.这可能是铅损伤学习记忆功能的机制之一.  相似文献   

7.
诱导成年大鼠海马CA1区长时程压抑的强直刺激型式   总被引:1,自引:1,他引:0  
Chen L  Jiang ML  Han TZ 《生理学报》2006,58(3):287-291
标准低频率连续刺激(1~2 Hz,15 min)能够诱导幼年大鼠(<4周)海马CA1区同突触长时程压抑(long-term depression,LTD),而只有较高频率且持续时间较长的连续刺激才能诱导出成年动物该部位稳定的LTD.本研究采用成年大鼠海马脑片标本,电刺激Schaffer侧枝传入纤维,在CA1区锥体细胞层记录群体锋电位,选用两种新的刺激参数以观测不同刺激型式在诱导成年大鼠LTD中的作用.诱导LTD的刺激参数为(1)2 Hz,5串,串长60 s,串间隔60 s;(2)5 Hz,5串,串长24 s,串间隔96 s;(3)对照组参数2 Hz,300 s.结果显示,对照参数未能诱导出LTD;而两种频率不同但脉冲总数与刺激总时程相同的多串刺激,即参数(1)与参数(2),均在成年大鼠海马CA1区诱导产生了LTD.两种参数所诱导的LTD特征具有参数特异性,该特征主要表现为LTD诱导潜伏期和LTD的幅度参数(1)、(2)诱导的LTD的潜伏期分别为15~25 min和30~40 min;强直刺激后80 min时LTD的幅度分别为(57.5±2.8)%和(67.7±3.4)%.以上结果表明特定型式的低频率刺激能够诱导成年大鼠海马CA1区的LTD,提示LTD的诱导与刺激的组合型式相关,并且2 Hz较5 Hz的多串刺激在诱导LTD中更为有效.  相似文献   

8.
皮质酮对大鼠海马脑片CA1区长时程增强效应的影响   总被引:2,自引:0,他引:2  
目的:探讨糖皮质激素对海马神经突触可塑性的影响。方法:高浓度(10^-5mol/L)皮质酮直接作用于大鼠海马脑片,记录CA1区LTP)。结果:海马脑片CA1区LTP的形成受到抑制。结论:应激时过量糖皮质激素会直接影响海马神经突触可塑性。  相似文献   

9.
Liu XJ  Huang FS  Huang C  Yang ZM  Feng XZ 《生理学报》2008,60(2):284-291
通过细胞外记录方法记录场兴奋性突触后电位(field excitatory postsynaptic potential,fEPSP)的变化是研究突触可塑性,诸如长时程增强(long-term potentiation,LTP)和双脉冲可塑性(paired-pulse plasticity,PPP)的最常见方法之一。fEPSP波形的起始斜率、起始面积、峰值及总面积等的变化常用作判断突触可塑性增强或减弱的标准。在相同记录结果中测量fEPSP波形不同部位通常会有不同的结果,因此可能得出不同的结论,这些往往会被研究者忽略。本文通过测量小鼠海马CA1区细胞fEPSP波形的起始斜率、起始面积、峰值、总面积及时间参数等,分析比较高频刺激(high-frequency stimulation,HFS)诱发的突触可塑性,包括LTP和PPP的变化。结果显示,LTP过程中AMPA受体动力学变化加快,且在同一记录中,fEPSP波形不同部位的测量分析可以产生较大幅度的LTP和PPP差异。给予HFS后,双脉冲诱发fEPSP的比率在测量起始面积时略有下降,但在测量起始斜率时则显著增加,这些结果可能导致相反的结论。因此,全面仔细地分析fEPSP波形在整个实验中的变化对正确了解突触可塑性至关重要。  相似文献   

10.
突触传递的长时程增强(long-term potentiation,LTP)被认为是学习记忆的基础之一.突触传递由已增强状态回到LTP形成前基线水平的过程称为逆转,可由低频刺激、骤冷刺激、药物处理、短时缺氧等去增强的方法获得.对逆转LTP的发现、诱导途径、特性及可能机制等进行了综述.  相似文献   

11.
Fear conditioning is a valuable behavioral paradigm for studying the neural basis of emotional learning and memory. The lateral nucleus of the amygdala (LA) is a crucial site of neural changes that occur during fear conditioning. Pharmacological manipulations of the LA, strategically timed with respect to training and testing, have shed light on the molecular events that mediate the acquisition of fear associations and the formation and maintenance of long-term memories of those associations. Similar mechanisms have been found to underlie long-term potentiation (LTP) in LA, an artificial means of inducing synaptic plasticity and a physiological model of learning and memory. Thus, LTP-like changes in synaptic plasticity may underlie fear conditioning. Given that the neural circuit underlying fear conditioning has been implicated in emotional disorders in humans, the molecular mechanisms of fear conditioning are potential targets for psychotherapeutic drug development.  相似文献   

12.
Using a simplified preparation of the Aplysia siphon-withdrawal reflex, we previously found that associative plasticity at synapses between sensory neurons and motor neurons contributes importantly to classical conditioning of the reflex. We have now tested the roles in that plasticity of two associative cellular mechanisms: activity-dependent enhancement of presynaptic facilitation and postsynaptically induced long-term potentiation. By perturbing molecular signaling pathways in individual neurons, we have provided the most direct evidence to date that each of these mechanisms contributes to behavioral learning. In addition, our results suggest that the two mechanisms are not independent but rather interact through retrograde signaling.  相似文献   

13.
It is generally believed that spatio-temporal configurations of distributed activity in the brain contribute to the coding of neuronal information and that synaptic contacts between nerve cells could play a central role in the formation of privileged pathways of activity. Synaptic plasticity is not the only mode of regulation of information processing in the brain and persistent regulations of ionic conductances in some specialized neuronal areas such as the dendrites, the cell body and the axon could also modulate, in the short- and the long-term, the propagation of information in the brain. Persistent changes in intrinsic excitability have been reported in several brain areas in which activity is modified during a classical conditioning. The role of synaptic activity seems to be determinant in the induction but the learning rules and the underlying mechanisms remain to be defined. This review discusses the role of neuronal activity in the induction of intrinsic plasticity in cortical, hippocampal and cerebellar neurons. Activation and inactivation properties of ionic channels in the axon determine the short-term dynamics of axonal propagation and synaptic transmission. Activation of glutamate receptors initiates a long-term modification in neuronal excitability that may represent the substrate for the mnesic engram and for the stabilization of the epileptic state. Similarly to synaptic plasticity, long-lasting intrinsic plasticity appears to be reversible and to express a certain level of input or cellular specificity. These non-synaptic forms of plasticity affect the signal propagation in the axon, the dendrites and the soma. They not only share common learning rules and induction pathways with the better known synaptic plasticity such as NMDA receptor-dependent LTP and LTD but also contribute in synergy with these synaptic changes to the formation of a coherent mnesic engram.  相似文献   

14.
Theta burst stimulation of the human motor cortex   总被引:28,自引:0,他引:28  
It has been 30 years since the discovery that repeated electrical stimulation of neural pathways can lead to long-term potentiation in hippocampal slices. With its relevance to processes such as learning and memory, the technique has produced a vast literature on mechanisms of synaptic plasticity in animal models. To date, the most promising method for transferring these methods to humans is repetitive transcranial magnetic stimulation (rTMS), a noninvasive method of stimulating neural pathways in the brain of conscious subjects through the intact scalp. However, effects on synaptic plasticity reported are often weak, highly variable between individuals, and rarely last longer than 30 min. Here we describe a very rapid method of conditioning the human motor cortex using rTMS that produces a controllable, consistent, long-lasting, and powerful effect on motor cortex physiology and behavior after an application period of only 20-190 s.  相似文献   

15.
16.
Johansen JP  Cain CK  Ostroff LE  LeDoux JE 《Cell》2011,147(3):509-524
Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias.  相似文献   

17.
This paper reviews evidence supporting adaptive plasticity in muscle and cutaneous afferent reflex pathways induced by training and rehabilitative interventions. The perspective is advanced that the behavioral and functional relevance of any intervention and the reflex pathway under study should be considered when evaluating both adaptation and transfer. A cornerstone of this concept can be found in acute task-dependent reflex modulation. Because the nervous system allows the expression of a given reflex according to the motor task, an attempt to evaluate the training adaptation should also be evoked under the same conditions as training bearing in mind the functional role of the pathway under study. Within this framework, considerable evidence supports extensive adaptive plasticity in human muscle afferent pathways in the form of operant conditioning, strength training, skill training, and locomotor training or retraining. Directly comparable evidence for chronic adaptation in cutaneous reflex pathways is lacking. However, activity-dependent plasticity in cutaneous pathways is documented particularly in approaches to neurological rehabilitation. Overall, the adaptive range for human muscle afferent reflexes appears bidirectional (that is, increased or reduced amplitudes) and on the order of 25-50%. The adaptive range for cutaneous pathways is currently uncertain.  相似文献   

18.
BACKGROUND: It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. RESULTS: By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. CONCLUSIONS: We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.  相似文献   

19.
A recent study shows that avoidance conditioning in the cephalopod Octopus vulgaris is mediated by long-term potentiation (LTP), a form of synaptic plasticity thought to be important in vertebrate associative learning. Thus, LTP appears to be an evolutionarily conserved learning mechanism.  相似文献   

20.
Shin RM  Tsvetkov E  Bolshakov VY 《Neuron》2006,52(5):883-896
Input-specific long-term potentiation (LTP) in afferent inputs to the amygdala serves an essential function in the acquisition of fear memory. Factors underlying input specificity of synaptic modifications implicated in information transfer in fear conditioning pathways remain unclear. Here we show that the strength of naive synapses in two auditory inputs converging on a single neuron in the lateral nucleus of the amygdala (LA) is only modified when a postsynaptic action potential closely follows a synaptic response. The stronger inhibitory drive in thalamic pathway, as compared with cortical input, hampers the induction of LTP at thalamo-amygdala synapses, contributing to the spatial specificity of LTP in convergent inputs. These results indicate that spike timing-dependent synaptic plasticity in afferent projections to the LA is both temporarily and spatially asymmetric, thus providing a mechanism for the conditioned stimulus discrimination during fear behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号