首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the spermatozoa and spermatogenesis of the lottiid limpet Patelloida latistrigata is described by transmission electron microscopy. Although the lengths of the spermatozoa (about 60 μm) and their head region (about 12 μm) are similar to those of other patellogastropods, the structure of the sperm head and midpiece are very different. The head consists of an unusually large acrosome (about 11-μm long) with a broad posterior invagination that houses the relatively small nucleus. The midpiece mitochondria, which are rather elongate with large folded tubular cristae, are housed in a cytoplasmic sheath posterior to the nucleus. The proximal centriole is unusually elongate (about 2-μm long). The axoneme that emerges from the distal centriole is surrounded anteriorly by the cytoplasmic sheath in which the cytoplasmic side of the plasma membrane has electron-dense material. The flagellum is enlarged at its terminal end. Spermatogenesis is similar to that described for other patellogastropods. Patelloida latistrigata, therefore, has spermatozoa that seem to meet the morphological criteria of ent-aquasperm, which raises the question of whether fertilization is truly external in this limpet. However, it is also possible that the modifications to the sperm are linked to unknown specializations of the egg or egg envelope.  相似文献   

2.
The spermatozoon of Hemirhamphodon pogonognalhus shows modifications that are frequent though not obligate in internally fertilizing sperm, notably elongation of the nucleus and extension of the mitochondria of the midpiece as an elongate sheath around the proximal region of the axoneme. These similarities to poecilid and jenynsid sperm are considered homoplasic. As in the mature sperm of all but one investigated teleost, an acrosome is absent. The elongate, blade-shaped, electron-dense nucleus has a mean length of 3.2 μm; its basal implantation fossa, less than one-tenth of the length of the nucleus, houses the anterior half of the distal and only centriole (of triplet construction with satellite rays), a centriolar plug, and a mass connecting the centriole to the wall of the fossa. A unilateral putative centriole adjunct is present. The anterior region of the axoneme is surrounded by a mitochondrial sleeve, and internal to this, separated by a cisterna, by a submitochondrial sleeve. The mitochondrial sleeve unites posteriorly with the submitochondrial sleeve. Between the submitochondrial sleeve and the axoneme is a space, the cytoplasmic canal, that is open to the exterior posteriorly. The discrete, cristate mitochondria, in their sleeve, are unique in investigated atherinomorph sperm in being bilateral, grouped on only two opposing sides of the axoneme, with an arc-shaped ‘intermitochondrial link’ between. The 9 + 2 flagellum is unique for the Animalia in having 23 radial subplasmalemmal rods, repeated longitudinally (periodicity 0.025 pm) in a quasicrystalline array. Internal fertilization is deduced to have arisen in the Exocoetoidei independently of that in the Cyprinidcntiformes.  相似文献   

3.
Scanning and transmission electron microscopy were used to investigate the fine structure of sperm of the Mediterranean amberjack Seriola dumerilii. Each spermatozoon has an ovoid head which lacks an acrosome, a short, irregularly-shaped midpiece and a long flagellar tail. The midpiece houses eight spherical mitochondria, which are separated from the axoneme by the cytoplasmic canal. The centrioles are arranged approximately at right angles to each other. The proximal centriole lies inside, and the distal centriole outside, the nuclear fossa. The flagellum is inserted eccentrically into the head and is tangential to the nucleus, so that the spermatozoon is asymmetrical. It contains the conventional 9 + 2 axoneme, shows intratubular differentiations in the A microtubules of doublets 1, 2, 5 and 6, and possesses one pair of lateral fins. On the basis of its ultrastructural organization, the amberjack sperm resembles type II sperm as defined previously, except for the presence of the proximal centriole inside the nuclear fossa. This could result from a partial rotation of the nucleus during spermiogenesis.  相似文献   

4.
Spermatozoon structure and motility in the anuran Lepidobatrachus laevis   总被引:1,自引:1,他引:0  
Synthetic human gonadotropin releasing hormone (GnRH) injections were used for induction of spermatozoon release followed by cloacal lavage or mechanical stimulation of sperm release in Lepidobatrachus laevis . Light microscopic observations of Lepidobatrachus laevis spermatozoa indicated an acrosomal segment with a length of 4.1 μm delineated by an indentation, a nuclear region of 12.6 μm in length and a midpiece of 0.87 μm in length. The tail was 54.9 μm long by 1.35 μm wide with two lateral axial fibers and a central undulating membrane. At the electron microscopic level, the unusual tail had two complete axonemes that emanated from the distal centriole. The tail also contained two axial fibers 77 nm in diameter medial to the axonemes and was connected by an undulating membrane. An unusual accessory cell adherent to the head of the spermatozoon was noted in freshly obtained suspensions of spermatozoa. Spermatozoa with the accessory cell were motile and a subsequent loss of motility was correlated with the shedding of the accessory cell.  相似文献   

5.
We describe sperm ultrastructure and acrosome differentiation during spermiogenesis in Crassostrea gigas (Mollusca Bivalvia). The sperm cell is a uniflagellated cell of the primitive type. The head region contains a rounded or conical nucleus surmounted by small acrosome. This organelle consists of a membrane-bound acrosomal granule, the contents of which have a homogeneous density, except in the anterior region, which is positive for PTA. The acrosome also surrounds the perforatorium, which includes oriented fibrillar elements: this is the axial body. The middle piece contains four mitochondria encircling two perpendicular centrioles. The distal centriole is provided with a system of mechanical fixation to the plasma membrane, consisting of nine fibers in radial arrangement. The tail flagellum, about 50 m?m long, contains the usual microtubular axoneme. © 1993 Wiley-Liss, Inc.  相似文献   

6.
The midpiece of Thyone sperm contains a large mitochondrion and a centriolar pair. Associated with one of the pair, i.e., the basal body of the flagellum, are satellite structures which apparently anchor the flagellar axoneme to the mitochondrion and to the plasma membrane covering the midpiece. Immediately before and as the acrosomal process elongates, the flagellum and the midpiece begin to rotate at 1-2 rotations per second even though the head of the sperm, by being firmly attached on its lateral surfaces to the coverslip, does not rotate at all. This rotation is not observed in the absence of flagellar beating whose frequency is much greater than that of its gyration. To understand how the midpiece rotates relative to the sperm head, it is first necessary to realize that in Thyone the flagellar axoneme projects at an acute angle to the principal axis of the sperm and is bent towards one side of this axis. Thus movement of the flagellum induces the sperm to tumble or yaw in solution. If the head is stuck, the midpiece will rotate because all that connects the sperm head to the midpiece is the plasma membrane, a liquid-like layer. A finger-like projection extends from the proximal centriole into an indentation in the basal end of the nucleus. In contrast to the asymmetry of the flagellum, this indentation is situated exactly on the principal axis of the sperm and, along with the finger-like projection, acts as a biological bearing to maintain the orderly rotation of the midpiece. The biological purpose of flagellar gyration during fertilization is discussed.  相似文献   

7.
Morphology and fine structure of Barbus barbus L 1758 spermatozoa were studied using scanning (SEM) and transmission (TEM) electron microscopy. The results confirm that spermatozoa exhibit morphological features typical to all teleost fishes. They are differentiated into a head, a midpiece and a flagellum with the typical '9 + 2' pairs of microtubules. Both dynein arms are present in the flagellum. The spermatozoa have spherical nuclei, 4–6 mitochondria located in the postnuclear cytoplasmic region and centriolar complex (proximal and distal centrioles). Total length, head width, length of midpiece and length of flagellum were measured to be 56.35 ± 7.42, 1.80 ± 0.06, 0.48 ± 0.14 and 54.30 ± 6.97 μm, respectively. Highly significant linear correlation was observed between posterior and anterior width of midpiece (P < 0.01). Principal component analysis (PCA) was used to explore which parameters can explain the individual variation of sperm morphology. About 44% of the total accumulated variance was absorbed by the analysis of the two first components, distinguishing different groups of parameters related to head and midpiece. The lengths of flagellum and head are more isolated; indicating that the individual variation of sperm morphology depends on these two parameters. Comparing the results of this study with information on cyprinids spermatozoa reveals that the number of mitochondria and the length of the flagellum are good characters to characterize spermatozoa of the Cyprinidae in a phylogenetic arrangement.  相似文献   

8.
The mature sperm of Dina lineata is of the modified type. The sperm are 48 μm long and 0.3 μm wide. The sperm are filiform and helicoidal cells with a distinct head, a midpiece, and a tail. There are two distinct regions in the head: the acrosome and the posterior acrosome, each with its own characteristic morphology. The midpiece is the mitochondrial region and has a single mitochondrion. Two distinct portions can be observed in the tail: the axonematic region and the terminal piece. In the process of spermatogenesis the early spermatogonia divide to form a poliplast of 512 spermatic cells. In the spermiogenesis the following sequential stages can be distinguished: elongation of the flagellum; reciprocal migration of mitochondria and Golgi complex; condensation of chromatin and formation of the posterior acrosome; spiralization of nuclear and mitochondrial regions; and, finally, formation of the anterior acrosome. The extreme morphological complexity of the Dina spermatozoon is related to the peculiar hypodermal fertilization which characterizes the erpobdellid family. Correlation between sperm morphology and fertilization biology in the Annelida is revised.  相似文献   

9.
Scanning and transmission electron microscopy were used to investigate the fine structure of the sperm of the Sparid fish Pagellus erythrinus L. The spermatozoon of pandora has a spherical head lacking an acrosome, a cone-shaped midpiece and a long tail. The midpiece houses a single mitochondrion. The centriolar complex lies inside the nuclear fossa and is composed of a proximal and a distal centriole which are arranged at right angles to each other. The flagellum is inserted medio-laterally into the head, contains the conventional 9+2 axoneme and possesses one pair of lateral fins. On the basis of its ultrastructural organization, the pandora sperm can be regarded as an evolved form of the primitive spermatozoon found in Teleosts. According to the morphological classification proposed by Mattei (1970), the sperm of pandora belongs to a "type I" designation, like that of the other Sparid fish.  相似文献   

10.
Sperm incorporation and the formation of the fertilization cone with its associated microvilli were investigated by scanning electron microscopy of eggs denuded of their vitelline layers with dithiothreitol or stripped of their elevating fertilization coats by physical methods. The activity of the elongating microvilli which appear to engulf the entering spermatozoon was recorded in living untreated eggs with time-lapse video microscopy. Following the acrosome reaction, the elongated acrosomal process connects the sperm head to the egg surface. About 15 microvilli adjacent to the attached sperm elongate at a rate of 2.6 μm/min and appear to engulf the sperm head, midpiece, and sperm tail. These elongate microvilli swell to form the fertilization cone (average height, 6.7 ± 2.0 μm) and are resorbed as the sperm tail enters the egg cytoplasm 10 min after insemination. Cytochalasin B, an inhibitor of microfilament motility, completely inhibits the observed egg plasma membrane surface activity in both control and denuded eggs. These results argue for a role of the microfilaments found in the egg cortex and microvilli as necessary for the engulfment of the sperm during incorporation and indicate that cytochalasin interferes with the fertilization process at this site.  相似文献   

11.
Scanning and transmission electron microscopy were used to investigate the fine structure of the sperm of the sparid fish Sparus aurata L. The mature spermatozoon of gilthead sea bream belongs, like that of the other sparid fish, to a "type I" as defined by Mattei (1970). It has a spherical head which lacks an acrosome, a short, irregularly-shaped midpiece and a long cylindrical tail. The nucleus reveals a deep invagination (nuclear fossa) in which the centriolar complex is located. The two centrioles are approximately perpendicular to each other and show a conventional "9+0" pattern. The proximal centriole is associated with a cross-striated cylindrical body lying inside a peculiar satellite nuclear notch which appears as a narrow invagination of the nuclear fossa. The distal centriole is attached to the nuclear envelope by means of a lateral plate and radial fibres made of an electron-dense material. The short midpiece houses one mitochondrion. The flagellum is inserted perpendicularly into the base of the nucleus and contains the conventional 9+2 axoneme.  相似文献   

12.
The spermatozoa of Thunnus thynnus and Euthynnus alletteratus consist of an acrosome-less head (comprising the ovoid nucleus and the short midpiece) and a long flagellar tail that contains the conventional 9 + 2 axoneme and lacks lateral fins. The centrioles are arranged at approximately right angles and lie outside of a shallow nuclear groove. The flagellum inserts laterally on the nucleus, therefore the spermatozoon is asymmetrical. The midpiece contains a few mitochondria which are separated from the axoneme by the cytoplasmic canal; they are spherical in T. thynnus and elongate, somewhat irregular in E. alletteratus . Although the main ultrastructural characteristics of the spermatozoa appear to indicate a great homogeneity in the sperm morphology within the family Scombridae, small species-specific divergences may be of use in systematics.  相似文献   

13.
玫瑰无须鲃精子的超微结构   总被引:9,自引:0,他引:9  
透射和扫描电镜研究显示玫瑰无须售巴(Puntius conchonius)的精子由头、中片和尾三部分组成。头部无顶体,呈球形或卵圆形,主要由细胞核组成,核内染色质致密。核前端几乎无细胞质存在,核膜紧密靠近细胞质膜,而在核的后端有少量细胞质存在。在核后端偏于一侧处有一个浅的核后凹,中心粒复合体部分地镶嵌于其中,中心粒复合体由近端中心粒和远端中心粒组成,二者呈钝角形排列,鞭毛从远端中心粒的末端发出。中片由前边的主要部分——领和后边细薄的袖套构成。领内含有数个不规则分布的线粒体包埋于细胞质中,袖套的长短、粗细差别较大,有的精子没有袖套。由于与鞭毛的不对称连接,使得头部及中片均呈不对称型。尾是一根细长的鞭毛,尾丝具有典型的“9+2”微管结构,尾部两侧均无侧鳍。与鲤科其它鱼精子相比,该鱼精子的主要特征是具有长短不一的袖套,领内有不同数量的液泡,且有些空泡向外界开口呈孔状。袖套的长短与领内液泡化水平似有某种相互联系,这也许与精子的老化程度有关[动物学报51(5):892—897,2005]。  相似文献   

14.
In Cristatella mucedo spermiogenesis occurs in a morula consisting of a large number of spermatids connected with a central cytophore. The mature sperm cell is filiform and consists of a head, a midpiece and a tail region, the latter two separated by a deep circular constriction. The comparatively short head contains a drop-shaped, bilaterally symmetrical and pointed nucleus capped by a minute acrosome. The single centriole is placed in a deep posterior invagination of the nucleus followed by the axoneme with the typical 9 + 2 pattern. The elongated midpiece is 0.9–1.1 μm thick and contains several helices of mitochondria surrounding the axoneme. The tail is thicker (1.3 μm) and richer in cytoplasm with many compact accumulations of an electron-dense substance lying peripherally and another less dense material wrapped around the axoneme. The course of the spermiogenesis and the fine structure of the sperm are very similar to that of Plumatella fungosa. Comparison with other species shows that the same sperm type is recognizable in four of the five families of Phylactolaemata and, provided it occurs also in the fifth family, the Stephanellidae, is a synapomorphy of the entire class.  相似文献   

15.
Fürböck, S., Patzner, R.A. and Lahnsteiner, F. 2008. Fine structure of spermatozoa of Chondrostoma nasus and Rutilus meidingerii (Teleostei, Cyprinidae), as revealed by scanning and transmission electron microscopy. — Acta Zoologica (Stockholm) 91 : 88–95
The fine structure of spermatozoa of sneep or nase, Chondrostoma nasus , and lake chub, Rutilus meidingerii , was investigated by means of scanning and transmission electron microscopy. The uniflagellate spermatozoa of C. nasus lacked an acrosome. The flagellum contained the conventional nine peripheral doublets and one central pair of microtubules (9 + 2 pattern) and lacked lateral fins. The uniflagellate spermatozoa of R. meidingerii were made up of a head, also without an acrosome. For both species the sperm tail was covered by a plasma membrane. The midpiece of C. nasus contained five or six mitochondria on average, vesicles and glycogen granules, whereas the midpiece of R. meidingerii had seven mitochondria of a spherical or ovoid shape. The centriolar complex was located caudolaterally with respect to the nucleus. In C. nasus , the centrioles were orientated at an angle of 125° to each other, whereas the centrioles of R. meidingerii were at an angle of 110°. The fine structure of C. nasus and R. meidingerii spermatozoa showed species-specific differences in the position of the proximal centriole relative to the distal centriole, the position and number of mitochondria, size of the head and the length of the flagellum. (Correction added on 11 June 2009, after first online publication: The word 'axoneme' was deleted from the sentence 'The flagellum contained the conventional nine peripheral doublets and one central pair of microtubules (9 + 2 pattern) axoneme and lacked lateral fins.')  相似文献   

16.
G. W. Rouse 《Acta zoologica》1988,69(4):205-216
The fine structure of the spermatozoa of two spionids is described. The spermatozoon of Prionospio cf. queenslandica is typical of an animal utilizing external fertilization, in having a subspheroidal nucleus, a midpiece composed of unmodified rounded mitochondria surrounding two centrioles and a free flagellum. The acrosome is unusual in showing bilateral symmetry. The spermatozoon of Tripolydora sp. resembles that of spionids utilizing spermatophores, in possessing an extremely elongate nucleus and midpiece. The nucleus is penetrated by the 9+2 axoneme for its entire length, linking with a single centriole at the anterior end. Platelets surround the nucleus and intermingle with the mitochondria of the midpiece, which terminates with an annulus. The acrosome shows some internal vesiculation and substructuring. Sperm structure in relation to reproductive methods is discussed and the view of external fertilization as primitive is questioned.  相似文献   

17.
An investigation of sperm ultrastructure in representatives of the marine bivalve families Carditidae (Carditoidea) and Crassatellidae (Crassatelloidea) reveals features o f taxonomic significance. Spermatozoa of Cardita muricata (Carditidae) and Eucrassatella cumingii, E. kingicola, Talabrica aurora (Crassatellidae) differ from the classic aquasperm type in having an elongate acrosomal vesicle and elongate nucleus. In addition, the midpiece region in these species is composed of a distinctive, and here considered t o be apomorphic. arrangement of 8 (rarely 7 or 9), tightly abutted mitochondria grouped around ii dense rod which is continuous with the distal centriole (basal body). A recognizable (i.e. triplet-substructure) proximal centriole is therefore absent in mature spermatozoa of crassatellids and carditids. This situation contrasts with the presence of an unmodified proximal centriole in the spermatozoa o f all other investigated bivalves. Observations on crassatellid and carditid spermatids indicate that the dense r o d is derived through metamorphosis of the proximal centriole. The shared and highly characteristic midpiece features of spermatozoa of the Crassatellidae and Carditidae clearly indicate ii close relationship between these families and support the unification of the Crassatelloidea and Carditoidea into a single superfamily Carditoidea Fleming. 1820 (date priority over Crassatelloidea Férussac. 1822).  相似文献   

18.
The sperm cells of Nymphon leptocheles and N. rubrum are of the primitive type, which is a remarkable condition among arthropods. The motile sperm consist of a somewhat elongated head, a kind of midpiece and a long tail. An acrosome is absent. The nucleus is surrounded by longitudinally oriented microtubules running in furrows in the nuclear envelope. These microtubules are not interconnected by links or connected to the nuclear envelope; they persist in the mature sperm. No appreciable chromatin condensation takes place. The midpiece contains some unmodified mitochondria and a centriole. The tail is a simple, free flagellum. The results are in particular discussed in relation to other known microtubule-nuclear envelope complexes in sperm cells. The sperm cells of Pycnogonum littorale are, on the other hand, highly aberrant. They are unmotile, elongated cells containing a very high number (often more than 1000) of longitudinal microtubules arranged in complex patterns. Some folded membranes may represent the nuclear envelope. Other organelles are unidentificable or may be absent.  相似文献   

19.
 The process of sperm development in the sea urchin Anthocidaris crassispina was studied by light and electron microscopy. Similar to other echinoids studied, a single flagellum, striated rootlet and nuage-like materials were present in spermatogonia of A. crassispina. Spermatocytes near the diplotene stage showed intracellular localization of the axoneme which appeared to be a retracted flagellum prior to cell division. Fibrous filaments were associated with a proximal centriole in spermatocytes and spermatids and might be involved in movement of the proximal centriole. An acrosomal vesicle was developed and a residual body was formed in spermatids. The special development patterns in A. crassispina attributed to the presence of two patterns of tail development and two patterns of mitochondrial development during spermiogenesis. These four lines of spermiogenesis resulted in the formation of four morphological types of sperm cell, i.e. sperms with: (1) a symmetrical midpiece and posterior tail, (2) an asymmetrical midpiece and posterior tail, (3) a symmetrical midpiece and bent tail and (4) an asymmetrical midpiece and bent tail. Sperm cells with bent tails (type 3+4) were probably still at the late spermatid stage because results of scanning electron microscopy demonstrated gradual detachment and eventual straightening of the bent tail, and their percentage occurrence in the sperm population decreased significantly (P<0.05) towards the spawning season of A. crassispina. Spermatozoa with a symmetrical midpiece were dominant (averaging 70% occurrence in the sperm population) over those with an asymmetrical midpiece. The dimorphic spermatozoa in A. crassispina (types 1, 2) are both considered to be euspermatozoa as their morphology is typical for Echinoida. Accepted: 4 May 1998  相似文献   

20.
Morphological studies on the gametes and entry of the spermatozoan into the egg of the zebra danio, Brachydanio rerio, were conducted primarily with scanning electron microscopy. The spermatozoan showed a spherical head, which lacked an acrosome, a midpiece containing several mitochondria, and a flagellum. Observations of the unfertilized egg confirmed and extended prior studies showing a distinct cluster of microvilli on the plasma membrane, identified as the sperm entry site, beneath the inner micropylar aperture (Hart and Donovan, '83). The fertilizing spermatozoan attached to the sperm entry site within 5 seconds of the mixing of a gamete suspension. Binding to the egg microvilli appeared restricted to the equatorial surface of the spermatozoan. Fusion between the plasma membranes of the interacting gametes was followed by the formation of a distinct, nipple-shaped fertilization cone. The sperm head was partially incorporated into the fertilization cone cytoplasm by 60 seconds postinsemination. The incorporation of the entire sperm head, midpiece, and a portion of the flagellum occurred between 1 and 2 minutes. During this time, the fertilization cone shortened and was transformed into a massive, blister-like cytoplasmic swelling. Concurrently, upward movements of the ooplasm resulted in the gradual disappearance of the original depression in the egg surface containing the sperm entry site. The second polar body, fully developed by 10 minutes postinsemination, formed approximately 10-15 microns from the site of sperm penetration. Development of the fertilization cone, formation of the second polar body and exocytosis of cortical granules at the sperm entry site readily occurred in parthenogenetically activated eggs, indicating that these surface rearrangements do not require sperm binding and/or fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号